REFERENCES

- Ainsworth, M.D.S., Blehar, M.C., Waters, E., and Wall, S. (1978). *Patterns of Attachment: A Psychological Study of the Strange Situation*. Hillsdale, NJ: Lawrence Erlbaum Associates.
- Aksan, N., and Kochanska, G. (2004). Links Between Systems of Inhibition from Infancy to Preschool Years. *Child Development*, 75: 1477–1499.
- Andreassen, C., and Fletcher, P. (2005). Early Childhood Longitudinal Study, Birth Cohort (ECLS-B) Methodology Report for the Nine-Month Data Collection (2001–02), Volume 1: Psychometric Characteristics (NCES 2005–100). U.S. Department of Education. Washington, DC: National Center for Education Statistics.
- Ayres, A.J. (1979). Sensory Integration and the Child. Los Angeles: Western Psychological Services.
- Baker, F. (2001). *The Basics of Item Response Theory*, (2nd ed.). College Park, MD: ERIC Clearinghouse on Assessment and Evaluation (ERIC ED458219).
- Bayley, N. (1993). *Bayley Scales of Infant Development, Second Edition*. San Antonio, TX: The Psychological Corporation.
- Beals, D.E., and Snow, C.E. (1994). Thunder is When the Angels are Upstairs Bowling: Narratives and Explanations at the Dinner Table. *Journal of Narrative and Life History, 4:* 331–352.
- Bethel, J., Green, J.L., Kalton, G., and Nord, C. (2005). *Early Childhood Longitudinal Study, Birth Cohort (ECLS-B), Methodology Report for the Nine-Month Data Collection (2001–02), Volume 2: Sampling* (NCES 2005–147). U.S. Department of Education. Washington, DC: National Center for Education Statistics.
- Block, J. (1961). *The Q-Sort Method in Personality Assessment and Psychiatric Research*. Palo Alto, CA: Consulting Psychologists Press, Inc.
- Block, J.H., and Block, J. (1980). The Role of Ego-Control and Ego-Resiliency in the Organization of Behavior. In W.A. Collins (Ed.), *The Minnesota Symposia on Child Psychology*, *13*(pp. 39-101). Hillsdale, NJ: Lawrence Erlbaum Associates (Wiley).
- Bock, R.D., and Zimowski, M.F. (1997). Multiple Group IRT. In W.J. van der Linden and R.K. Hambleton (Eds.), *Handbook of Item Response Theory* (pp. 433-448). New York: Springer-Verlag.
- Bornstein, M.H., and Suess, P.E. (2000). Physiological Self-regulation and Information Processing in Infancy: Cardiac Vagal Tone and Habituation. *Child Development*, 71: 273–287.
- Bowlby, J. (1969). Attachment and Loss: Vol 1. Attachment. New York: Basic Books.
- Bowlby, J. (1973). Attachment and Loss: Vol. 2 Separation: Anxiety and anger. New York: Basic Books.
- Bowlby, J. (1980). Attachment and Loss: Vol. 3 Loss: Sadness and depression. New York: Basic Books.

- Brady-Smith, C., O'Brien, C., Berlin, L., and Ware, A. (1999). Early Head Start Research and Evaluation Project 24-Month Child-Parent Interaction Rating Scales for the 3-Bag Assessment. Unpublished manuscript. New York: Center for Children and Families, Teachers College, Columbia University.
- Byrk, A.S., and Raudenbush, S.W. (1987). Application of Hierarchical Linear Models to Assessing Change. *Psychological Bulletin*, 101: 147–158.
- Caldwell, B., and Bradley R.H. (1979). *Home Observation for Measurement of the Environment*. Little Rock, AR: University of Arkansas.
- Caldwell, B., and Bradley R.H. (2001). *Home Inventory Administration Manual* (3rd Ed.). Little Rock, AR: University of Arkansas.
- Cassidy, J., and Shaver, P.R. (Eds.). (1999). *Handbook of Attachment: Theory, Research, and Clinical Applications*. New York: The Guilford Press.
- DeGangi, G.A., Poisson, S., Sickel, R.Z., and Wiener, A.S. (1995). *Infant/Toddler Symptom Checklist*. San Antonio, TX: The Psychological Corporation.
- Feeney, J. (1999). Adult Romantic Attachment and Couple Relationships. In J. Cassidy and P.R. Shaver (Eds.), *Handbook of Attachment: Theory, Research, and Clinical Applications* (pp. 355–377). New York: The Guilford Press.
- Fenson, L., Dale, P.S., Reznick, J.S., Bates, E., Thal, D., and Pethick, S. (1994). Variability in Early Communicative Development. *Monographs of the Society for Research in Child Development*, 59(5, Serial No. 242).
- Fisher, A.G., Murray, E.A., and Bundy, A.C. (Eds.). (1991). *Sensory Integration: Theory and Practice*. Philadelphia, PA: F.A. Davis.
- Gesell, A. (1949). Gesell Developmental Schedules. New York: The Psychological Corporation.
- Green, P.J., Hoogstra, L.A., Ingels, S.J., Greene, H.N., and Marnell, P.K. (1997). Formulating a Design for the ECLS: Review of Longitudinal Studies (NCES 97–24). U.S. Department of Education, Washington, DC: National Center for Education Statistics Working Paper.
- Greenberg, M.T., DeKlyen, M., Speltz, M.L., and Endriga, M.C. (1997). The Role of Attachment Processes in Externalizing Psychopathology in Young Children. *Attachment and Psychopathology*. (pp. 196-222). New York: Guilford Press.
- Grossmann, K.E., Grossmann, K., and Zimmerman, P. (1999). A Wider View of Attachment and Exploration: Stability and Change During the Years of Immaturity (pp. 760-786). In J. Cassidy and P.R. Shaver (Eds.), *Handbook of Attachment: Theory, Research, and Clinical Applications*. New York: Guilford Press.
- Guttman, L. (1944). A Basis for Scaling Qualitative Data. American Sociological Review, 9: 139–150.

- Hambleton, R.K., Swaminathan, H., and Rogers, H.J. (1991). Fundamentals of Item Response Theory (p.42). Newbury Park, CA: Sage Publications, Inc.
- Hart, B., and Risley, T.R. (1995). *Meaningful Differences in the Everyday Experience of Young American Children*. Baltimore, MD: Paul H. Brookes Publishing Co.
- Hazan, C., and Zeifman, D. (1999). PairBonds as Attachments: Evaluating the Evidence. In J. Cassidy and P.R. Shaver (Eds.), *Handbook of Attachment: Theory, Research, and Clinical Applications* (pp. 336–354). New York: The Guilford Press.
- Ireton, H. (1997). Child Development Inventory Manual. Minneapolis, MN: Behavioral Science Systems.
- Kochanska, G., Coy, K.C., and Murray, K.T. (2001). The Development of Self-regulation in the First Four Years of Life. *Child Development*, 72: 1091–1111.
- Kuder, G.F., and Richardson, M.W. (1937). The Theory of the Estimation of Test Reliability. *Psychometrika*, 2:151–160.
- Lamb, M.E. (2000). Attachment. In A.E. Kazdin (Ed.), *Encyclopedia of Psychology, 1*(pp. 284-289). Washington, DC: American Psychological Association.
- Linacre, J.M., and Wright, B.D. (1994). Chi-Square Fit Statistics. *Rasch Measurement Transactions*, 8(2): 350.
- Lord, F.M., and Novick, M. (1968). *Statistical Theories of Mental Test Scores*. Reading, MA: Addison-Wesley.
- Lyons-Ruth, K., and Jacobvitz, D. (1999). Attachment Disorganization. In J. Cassidy and P.R. Shaver (Eds.), *The Handbook of Attachment*. New York: Guilford Press.
- Main, M. (2000). Attachment theory. In A.E. Kazdin (Ed.), *Encyclopedia of Psychology, 1*(pp. 289-293). Washington, DC: American Psychological Association.
- Main, M., and Solomon, J. (1986). Discovery of an Insecure-disorganized/disoriented Attachment Pattern. In T.B. Brazelton, and M. Yogman (Eds.), *Affective Development in Infancy* (pp. 95–124). Norwood, NJ: Ablex.
- Meisels, S.J., Atkins-Burnett, S., and Nicholson, J. (1996). *Assessment of Social Competence, Adaptive Behaviors, and Approaches to Learning with Young Children* (NCES 96–18). U.S. Department of Education, Washington, DC: National Center for Education Statistics Working Paper.
- Miller, A., McDonough, S.C., Rosenblum, K.L., and Sameroff, A.J. (2002). Emotion Regulation in Context: Situational Effects on Infant and Caregiver Behavior. *Infancy*, *3*: 403–433.
- Moore, K., Manlove, J., Richter, K., Halle, T., Le Menestrel, S., Zaslow, M., Greene, A.D., Mariner, C., Romano, A., and Bridges, L. (1999). *A Birth Cohort Study: Conceptual and Design Considerations and Rationale* (NCES 1999–01). U.S. Department of Education. Washington, DC: National Center for Education Statistics Working Paper.

- Moss, E., St-Laurent, D., and Parent, S. (1999). Disorganized Attachment and Developmental Risk at School Age. In J. Solomon and C. George (Eds.), *Disorganized Attachment* (pp. 160–186). New York: Guilford.
- Nelson, K. (1973). Structure and Strategy in Learning to Talk. *Monographs of the Society for Research in Child Development, 38*.
- NICHD Early Child Care Research Network. (2004). Fathers' and Mothers' Parenting Behavior and Beliefs as Predictors of Children's Adjustment in the Transition to School. *Journal of Family Psychology*, 18: 628–638.
- NICHD Early Child Care Research Network. (2005). Predicting Individual Differences in Attention, Memory and Planning in First Grade from Experiences at Home, Child Care and School. *Developmental Psychology*, 41: 99–114.
- Nord, C., Edwards, B. Andreassen, C., Green, J.L., and Wallner-Allen, K. (2006). *Early Childhood Longitudinal Study, Birth Cohort (ECLS-B), User's Manual for the ECLS-B Longitudinal 9-Month-2-Year Data File and Electronic Codebook* (NCES 2006–046). U.S. Department of Education. Washington, DC: National Center for Education Statistics.
- Nord, C., Edwards, B., Hilpert, R., Branden, L., Andreassen, C. Elmore, A., Sesay, D., Fletcher, P. Green, J., Saunders, R., Dulaney R., Reaney, L., Flanagan, K., and West, J. (2004). Early Childhood Longitudinal Study, Birth Cohort (ECLS-B), User's Manual for the ECLS-B Nine-Month Restricted-Use Data File and Electronic Code Book (NCES 2004–092). U.S. Department of Education. Washington, DC: National Center for Education Statistics.
- Posada, G., Gao, Y., Wu, F., Posada, R., Tascon, J., Schoelmerich, A., Sagi, A., Kondo-Ikemura, K., Haaland, W., and Synnevaag, B. (1995). The Secure-base Phenomenon Across Cultures, Children's Behavior, Mothers' Preferences, and Experts' Concepts. In E. Waters, B.E. Vaughn, G. Posada, and K. Kondo-Ikemura (Eds.), Caregiving, Cultural and Cognitive Perspectives on Secure-base Behavior and Working Models. Monographs of the Society for Research in Child Development, 60(2-3, Serial No. 244).
- Raju, N.S., van der Linden, W. J., and Fleer, P.F. (1995). IRT-Based Internal Measures of Differential Functioning of Items and Tests. *Applied Psychological Measurement*, 19(4): 353–368.
- Rathmann, P. (1994). Good Night, Gorilla. New York: Putnam
- Raver, C.C. (2004). Placing Emotional Self-Regulation in Sociocultural and Socioeconomic Contexts. *Child Development*, 75: 346–353.
- Smith, R.M., Schumacker, R.E., and Bush, M.J. (1998). Using Item Mean Squares to Evaluate Fit to the Rasch Model. *Journal of Outcome Measurement*, 2: 66-78.
- Speltz, M.L., Greenberg, M.T., and DeKlyen, M. (1990). Attachment in Preschoolers with Disruptive Behavior: A Comparison of Clinic-referred and Nonproblem Children. *Development and Psychopathology*, 2:31–46.
- Stern, D. (1985). The Interpersonal World of the Infant. New York: Basic Books.

- Stocking, M., and Lord, F.M. (1983). Developing a Common Metric in Item Response Theory. *Applied Psychological Measurement*, 7: 201-210.
- Trevarthen, C., and Aitken, K.J. (2001). Infant Intersubjectivity: Research, Theory and Clinical Applications. *Journal of Child Psychology and Psychiatry*, 42: 3–48.
- van IJzendoorn, M.H., and Sagi, A. (1999). Cross-cultural Patterns of Attachment. In J. Cassidy and P.R. Shaver (Eds.), *Handbook of Attachment*. NY: Guilford Press.
- von Davier, M., and von Davier, A.A. (2004). *A Unified Approach to IRT Scale Linking and Scale Transformations*. Princeton, NJ: Educational Testing Service.
- Walker-Andrews, A.S. (1998). Emotions and Social Development: Infants' Recognition of Emotions in Others. *Pediatrics*, 102 (5) Supplement: 1268–1271.
- Ward, M.J., Lee, S.S., and Lipper, E.G. (2000). Failure-to-thrive Is Associated With Disorganized Infant-Mother Attachment and Unresolved Maternal Attachment. *Infant Mental Health Journal*, 21:428–442.
- Waters, E. (1995). The Attachment Q-Set (Version 3.0). In E. Waters, B.E. Vaughn, G. Posada, and K. Kondo-Ikemura (Eds.), Caregiving, Cultural and Cognitive Perspectives on Secure-base Behavior and Working Models. Monographs of the Society for Research in Child Development, 60(2-3, Serial No. 244).
- Waters, E., and Deane, K.E. (1985). Defining and Assessing Individual Differences in Attachment Relationships: Q-Methodology and the Organization of Behavior in Infancy and Early Childhood. In I. Bretherton and E. Waters (Eds.), *Growing Points in Attachment Theory and Research* (pp. 41–65), *Monographs of the Society for Research in Child Development*, 50(1-2, Serial No. 209).
- Waters, E., Vaughtn, B., Posada, G., and Kondo-Ikemura, K. (Eds.) (1995). Caregiving, Cultural, and Cognitive Perspectives on Secure-base Behavior and Working Models: New Growing Points of Attachment Theory and Research. *Monographs of the Society for Research and Child Development*, 60(2-3, Serial No. 244).
- Willet, J.B. (1989). Questions and Answers in the Measurement of Change. In R.Z. Rothkopf (Ed.), *Review of Research in Education*, v.15 (pp. 350–351). Washington, DC: AERA.
- Willet, J.B. (1997). Measuring Change: What Individual Growth Modeling Buys You. In E. Amsel and K.A. Renninger (Eds.), *Change and Development: Issues of Theory, Method, and Application* (p. 218). Mahwah, NJ: Lawrence Erlbaum Associates.
- Zimowski, M.F., Muraki, E., Mislevy, R.J., and Bock, R.D. (1996). *BILOG-MG: Multiple-Group IRT Analysis and Test Maintenance for Binary Items*. Chicago: Scientific Software International.

This page is intentionally left blank.

Appendix A: Intercorrelations of Major Direct Child Assessments

A-1. Intercorrelations of major direct child assessments, 2-year: 2003

Item	X2MTLTSC	X2MTLSCL	X2MTL_F	X2MTL_G	X2MTL_H	X2MTL_I	X2MTL_J	X2MTRTSC	X2MTRSCL
X2MTLTSC	†	.95	.84	.92	.93	.92	.67	.43	.39
X2MTLSCL	.95	†	.88	.96	.98	.97	.71	.36	.46
X2MTL F	.84	.88	†	.93	.82	.76	.34	.36	.44
X2MTL G	.92	.96	.93	†	.96	.92	.52	.35	.43
X2MTL H	.93	.98	.82	.96	†	.99	.70	.34	.42
X2MTL I	.92	.97	.76	.92	.99	†	.77	.32	.41
X2MTL J	.67	.71	.34	.52	.70	.77	†	.22	.31
X2MTRTSC	.43	.36	.36	.35	.34	.32	.22	†	.91
X2MTRSCL	.39	.46	.44	.43	.42	.41	.31	.91	†
X2MTR F	.36	.40	.46	.40	.36	.34	.18	.80	.86
X2MTR G	.38	.44	.44	.43	.41	.40	.27	.91	.99
X2MTR H	.38	.45	.43	.43	.42	.41	.30	.91	1.00
X2MTR I	.36	.43	.38	.40	.41	.41	.32	.86	.96
X2MTR J	.33	.41	.33	.36	.39	.40	.37	.78	.89
X2TBSPPT	.36	.37	.33	.37	.37	.37	.23	.12	.14
C2SENSTV	.34	.34	.30	.35	.35	.34	.22	.09	.11
C2POSRGD	.28	.28	.25	.28	.28	.27	.17	.10	.11
C2NEGRGD	11	12	10	12	12	12	07	01 ¹	02
C2NTRUSV	17	17	15	17	17	17	10	06	06
C2COGDEV	.33	.33	.30	.33	.34	.33	.20	.12	.13
C2DETACH	11	11	12	12	10	10	04	06	06
C2ENGPRT	.44	.46	.43	.46	.46	.44	.27	.17	.21
C2NEGPRT	22	22	21	23	22	21	13	09	10
C2STNATT	.43	.45	.40	.45	.45	.44	.29	.17	.21
X2CHHGHT	.011	.09	.08	.08	.08	.08	.06	$.02^{1}$.12
X2CHWGHT	05	01 ¹	$.00^{1}$	02^{1}	02	03	01 ¹	.04	.09
X2CHMUAC	04	02	03	04	03	03	$.02^{1}$.07	.09
X2CHCRFM	.09	.10	.11	.09	$.07^{1}$	$.07^{1}$	$.01^{1}$.12	.13
X2CHBMI	06	07	05	07	08	08	05	.04	$.02^{1}$
X2TASCLS	23	24	27	27	25	23	12	18	19
X2TASCNF	.16	.15	.14	.17	.18	.17	.11	.11	.11
X2TASSEC	.34	.34	.35	.36	.34	.32	.17	.23	.23
X2TASDEP	15	16	14	16	16	16	12	20	21
X2HSWARM	.24	.24	.25	.25	.24	.22	.11	.11	.11
X2HSCOOP	.36	.36	.37	.38	.36	.35	.18	.21	.23
X2HSENJY	.33	.33	.32	.34	.34	.32	.20	.32	.33
X2HSINDP	.08	.09	.08	.09	.09	.09	.06	.14	.14
X2HSATT	15	16	13	15	16	16	13	17	18
X2HSUPST	19	19	17	20	20	19	13	22	23
X2HSAVD	25	25	25	26	26	24	14	21	22
X2HSDMND	31	31	30	33	32	31	19	24	25
X2HSMDY	19	18	21	20	18	17	07	11	10

A-1. Intercorrelations of major direct child assessments, 2-year: 2003—Continued

Item	X2MTR_F	X2MTR_G	X2MTR_H	X2MTR_I	X2MTR_J	X2TBSPPT	C2SENSTV	C2POSRGD	C2NEGRGD
X2MTLTSC	.36	.38	.38	.36	.33	.36	.34	.28	11
X2MTLSCL	.40	.44	.45	.43	.41	.37	.34	.28	12
X2MTL F	.46	.44	.43	.38	.33	.33	.30	.25	10
X2MTL G	.40	.43	.43	.40	.36	.37	.35	.28	12
X2MTL H	.36	.41	.42	.41	.39	.37	.35	.28	12
X2MTL ⁻ I	.34	.40	.41	.41	.40	.37	.34	.27	12
X2MTLJ	.18	.27	.30	.32	.37	.23	.22	.17	07
X2MTRTSC	.80	.91	.91	.86	.78	.12	.09	.10	01 ¹
X2MTRSCL	.86	.99	1.00	.96	.89	.14	.11	.11	02
X2MTR F	†	.87	.84	.69	.55	.13	.10	.10	02^{1}
X2MTR G	.87	†	.99	.94	.83	.14	.11	.11	03
X2MTR H	.84	.99	†	.97	.89	.14	.11	.11	02
X2MTR I	.69	.94	.97	†	.96	.13	.10	.10	02^{1}
X2MTR J	.55	.83	.89	.96	†	.12	.10	.10	02^{1}
X2TBSPPT	.13	.14	.14	.13	.12	†	.86	.86	28
C2SENSTV	.10	.11	.11	.10	.10	.86	†	.63	33
C2POSRGD	.10	.11	.11	.10	.10	.86	.63	†	-0.21
C2NEGRGD	02 ¹	03	02	02^{1}	02^{1}	28	33	21	†
C2NTRUSV	04	06	06	06	06	27	33	20	.46
C2COGDEV	.13	.13	.13	.12	.11	.86	.63	.59	18
C2DETACH	07	05	05	04	04	32	31	27	.10
C2ENGPRT	.19	.20	.21	.19	.18	.66	.60	.53	22
C2NEGPRT	08	10	10	09	09	27	27	23	.35
C2STNATT	.19	.20	.21	.19	.18	.51	.48	.47	17
X2CHHGHT	.10	.12	.12	.12	.12	.03	.03	.011	01 ¹
X2CHWGHT	.06	.08	.09	.09	.08	03	04	02^{1}	.011
X2CHMUAC	.05	.08	.09	.10	.10	08	07	06	.011
X2CHCRFM	.13	.11	.11	.09	.08	$.06^{1}$	$.08^{1}$.031	01 ¹
X2CHBMI	.011	$.02^{1}$	$.02^{1}$.02	$.02^{1}$	05	06	04	$.02^{1}$
X2TASCLS	20	21	21	19	17	10	08	08	.07
X2TASCNF	.11	.13	.12	.12	.11	.09	.07	.08	01 ¹
X2TASSEC	.24	.24	.24	.22	.19	.19	.18	.15	10
X2TASDEP	19	21	21	20	18	03	03	02	02^{1}
X2HSWARM	.12	.12	.11	.10	.09	.16	.15	.12	10
X2HSCOOP	.22	.23	.23	.21	.18	.19	.18	.14	12
X2HSENJY	.31	.34	.34	.32	.28	.15	.12	.12	04
X2HSINDP	.14	.15	.15	.13	.12	.011	.01	.011	$.02^{1}$
X2HSATT	15	18	19	18	17	02^{1}	02	01 ¹	00^{1}
X2HSUPST	21	24	23	22	19	04	03	03	02^{1}
X2HSAVD	20	23	23	22	19	14	10	10	.05
X2HSDMND	23	26	26	24	22	14	12	11	.07
X2HSMDY	12	11	11	09	08	13	13	10	.08

A-1. Intercorrelations of major direct child assessments, 2-year: 2003—Continued

Item	C2NTRUSV	C2COGDEV	C2DETACH	C2ENGPRT	C2NEGPRT	C2STNATT	X2CHHGHT	X2CHWGHT	X2CHMUAC
X2MTLTSC	17	.33	11	.44	22	.43	.011	05	04
X2MTLSCL	17	.33	11	.46	22	.45	.09	01 ¹	02
X2MTL F	15	.30	12	.43	21	.40	.08	$.00^{1}$	03
X2MTL G	17	.33	12	.46	23	.45	.08	02 ¹	04
X2MTL H	17	.34	10	.46	22	.45	.08	02	03
X2MTL I	17	.33	10	.44	21	.44	.08	03	03
X2MTL J	10	.20	04	.27	13	.29	.06	01 ¹	$.02^{1}$
X2MTRTSC	06	.12	06	.17	09	.17	$.02^{1}$.04	.07
X2MTRSCL	06	.13	06	.21	10	.21	.12	.09	.09
X2MTR F	04	.13	07	.19	08	.19	.10	.06	.05
X2MTR G	06	.13	05	.20	10	.20	.12	.08	.08
X2MTR H	06	.13	05	.21	10	.21	.12	.09	.09
X2MTR I	06	.12	04	.19	09	.19	.12	.09	.10
X2MTR J	06	.11	04	.18	09	.18	.12	.08	.10
X2TBSPPT	27	.86	32	.66	27	.51	.03	03	08
C2SENSTV	33	.63	31	.60	27	.48	.03	04	07
C2POSRGD	20	.59	27	.53	23	.47	.01	02	06
C2NEGRGD	.46	18	.10	22	.35	17	01 ¹	.011	.011
C2NTRUSV	†	19	.03	24	.45	17	$.00^{1}$	$.02^{1}$.03
C2COGDEV	19	†	25	.58	22	.54	.02	02 ¹	07
C2DETACH	.03	25	†	21	$.02^{1}$	14	01 ¹	01 ¹	$.00^{1}$
C2ENGPRT	24	.58	21	†	37	.76	$.00^{1}$	03	06
C2NEGPRT	.45	22	$.02^{1}$	37	†	38	$.02^{1}$.03	.03
C2STNATT	17	.54	14	.76	38	†	$.01^{1}$	02^{1}	05
X2CHHGHT	$.00^{1}$.02	01 ¹	$.00^{1}$	$.02^{1}$	$.01^{1}$	†	.51	.27
X2CHWGHT	$.02^{1}$	02^{1}	01 ¹	03	.03	02^{1}	.51	†	.50
X2CHMUAC	.03	07	$.00^{1}$	06	.03	05	.27	.50	†
X2CHCRFM	10	.05	01 ¹	$.02^{1}$	04 ¹	$.07^{1}$.33	.36	.23
X2CHBMI	.03	04	00^{1}	04	.02	03	07	.82	.41
X2TASCLS	.07	10	.011	16	.14	14	.02	.06	.02
X2TASCNF	03	.09	01 ¹	.13	07	.13	.011	04	03
X2TASSEC	11	.16	04	.24	19	.22	01 ¹	07	05
X2TASDEP	00^{1}	02^{1}	00^{1}	08	.03	08	02	00^{1}	03
X2HSWARM	11	.15	05	.19	18	.16	04	11	08
X2HSCOOP	14	.17	03	.24	23	.21	02	10	06
X2HSENJY	04	.14	03	.22	12	.22	$.00^{1}$	02 ¹	$.00^{1}$
X2HSINDP	.011	$.00^{1}$	00^{1}	.04	$.02^{1}$.05	.04	.03	.04
X2HSATT	.011	02^{1}	01 ¹	07	.05	07	00^{1}	.03	02^{1}
X2HSUPST	$.00^{1}$	05	$.00^{1}$	09	.06	09	01 ¹	.02	02^{1}
X2HSAVD	.05	15	$.02^{1}$	18	.13	17	.03	.05	.02
X2HSDMND	.09	12	.011	20	.19	18	$.02^{1}$.08	.04
X2HSMDY	.08	10	.04	15	.10	14	01 ¹	.03	.04

A-1. Intercorrelations of major direct child assessments, 2-year: 2003—Continued

Item	X2CHCRFM	X2CHBMI	X2TASCLS	X2TASCNF	X2TASSEC	X2TASDEP	X2HSWARM	X2HSCOOP
X2MTLTSC	.09	06	23	.16	.34	15	.24	.36
X2MTLSCL	.10	07	24	.15	.34	16	.24	.36
X2MTL F	.11	05	27	.14	.35	14	.25	.37
X2MTL G	.09	07	27	.17	.36	16	.25	.38
X2MTL H	$.07^{1}$	08	25	.18	.34	16	.24	.36
X2MTL I	$.07^{1}$	08	23	.17	.32	16	.22	.35
X2MTL J	.011	05	12	.11	.17	12	.11	.18
X2MTRTSC	.12	.04	18	.11	.23	20	.11	.21
X2MTRSCL	.13	.02	19	.11	.23	21	.11	.23
X2MTR F	.13	.011	20	.11	.24	19	.12	.22
X2MTR G	.11	$.02^{1}$	21	.13	.24	21	.12	.23
X2MTR H	.11	$.02^{1}$	21	.12	.24	21	.11	.23
X2MTR ⁻ I	.09	.02	19	.12	.22	20	.10	.21
X2MTR J	.08	$.02^{1}$	17	.11	.19	18	.09	.18
X2TBSPPT	$.06^{1}$	05	10	.09	.19	03	.16	.19
C2SENSTV	$.08^{1}$	06	08	.07	.18	03	.15	.18
C2POSRGD	.03	04	08	.08	.15	02	.12	.14
C2NEGRGD	01 ¹	$.02^{1}$.07	01 ¹	10	02 ¹	10	12
C2NTRUSV	10	.03	.07	03	11	00^{1}	11	14
C2COGDEV	.05	04	10	.09	.16	02 ¹	.15	.17
C2DETACH	01 ¹	00^{1}	.011	01 ¹	04	00^{1}	05	03
C2ENGPRT	$.02^{1}$	04	16	.13	.24	08	.19	.24
C2NEGPRT	04 ¹	.02	.14	07	19	.03	18	23
C2STNATT	$.07^{1}$	03	14	.13	.22	08	.16	.21
X2CHHGHT	.33	07	.02	$.01^{1}$	01 ¹	02	04	02
X2CHWGHT	.36	.82	.06	04	07	00^{1}	11	10
X2CHMUAC	.23	.41	.02	03	05	03	08	06
X2CHCRFM	†	.20	.11	06 ¹	08	$.04^{1}$	10	06 ¹
X2CHBMI	.20	†	.05	05	07	.011	09	09
X2TASCLS	.11	.05	†	25	58	.39	36	50
X2TASCNF	06 ¹	05	25	†	.35	22	.19	.26
X2TASSEC	08	07	58	.35	†	30	.74	.83
X2TASDEP	$.04^{1}$.011	.39	22	30	†	.21	16
X2HSWARM	10	09	36	.19	.74	.21	†	.73
X2HSCOOP	06 ¹	09	50	.26	.83	16	.73	†
X2HSENJY	12	02^{1}	60	.38	.68	65	.27	.41
X2HSINDP	$.02^{1}$.011	31	.19	.32	89	26	.02
X2HSATT	$.04^{1}$.03	.33	17	16	.86	.16	25
X2HSUPST	$.05^{1}$.03	.36	17	29	.90	.05	27
X2HSAVD	.10	.03	.29	14	20	19	43	31
X2HSDMND	.13	.08	.58	32	60	.66	41	65
X2HSMDY	.011	.03	.36	26	86	.06	58	56

A-1. Intercorrelations of major direct child assessments, 2-year: 2003—Continued

Item	X2HSENJY	X2HSINDP	X2HSATT	X2HSUPST	X2HSAVD	X2HSDMND	X2HSMDY
X2MTLTSC	.33	.08	15	19	25	31	19
X2MTLSCL	.33	.09	16	19	25	31	18
X2MTL F	.32	.08	13	17	25	30	21
X2MTL ⁻ G	.34	.09	15	20	26	33	20
X2MTL ⁻ H	.34	.09	16	20	26	32	18
X2MTL ⁻ I	.32	.09	16	19	24	31	17
X2MTL ⁻ J	.20	.06	13	13	14	19	07
X2MTRTSC	.32	.14	17	22	21	24	11
X2MTRSCL	.33	.14	18	23	22	25	10
X2MTR F	.31	.14	15	21	20	23	12
X2MTR ⁻ G	.34	.15	18	24	23	26	11
X2MTR ⁻ H	.34	.15	19	23	23	26	11
X2MTR ^T I	.32	.13	18	22	22	24	09
X2MTR ⁻ J	.28	.12	17	19	19	22	08
X2TBSPPT	.15	.011	02^{1}	04	14	14	13
C2SENSTV	.12	.01	02	03	10	12	13
C2POSRGD	.12	.01	01	03	10	11	10
C2NEGRGD	04	$.02^{1}$	00 ¹	02 ¹	.05	.07	.08
C2NTRUSV	04	.01	.011	$.00^{1}$.05	.09	.08
C2COGDEV	.14	$.00^{1}$	02 ¹	05	15	12	10
C2DETACH	03	00 ¹	01 ¹	$.00^{1}$.021	.011	.04
C2ENGPRT	.22	.04	07	09	18	20	15
C2NEGPRT	12	.021	.05	.06	.13	.19	.10
C2STNATT	.22	.05	07	09	17	18	14
X2CHHGHT	$.00^{1}$.04	00^{1}	01 ¹	.03	.021	01 ¹
X2CHWGHT	021	.03	.03	.02	.05	.08	.03
X2CHMUAC	$.00^{1}$.04	02 ¹	02 ¹	.02	.04	.04
X2CHCRFM	12	.021	.041	$.05^{1}$.10	.13	.011
X2CHBMI	021	.011	.03	.03	.03	.08	.03
X2TASCLS	60	31	.33	.36	.29	.58	.36
X2TASCNF	.38	.19	17	17	14	32	26
X2TASSEC	.68	.32	16	29	20	60	86
X2TASDEP	65	89	.86	.90	19	.66	.06
X2HSWARM	.27	26	.16	.05	43	41	58
X2HSCOOP	.41	.02	25	27	31	65	56
X2HSENJY	†	.55	45	60	41	63	43
X2HSINDP	.55	.95 †	60	67	.36	42	28
X2HSATT	45	60	†	.84	07	.69	20
X2HSUPST	60	67	.84	†	.011	.69	06
X2HSAVD	41	.36	07	$.01^{1}$	†	.24	09
X2HSDMND	63	42	.69	.69	.24	†	.17
X2HSMDY	43	28	20	06	09	.17	†

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Survey, Birth Cohort (ECLS-B), 2-year data collection, 2003-04.

[†] Not applicable.

All correlations were significant at p < .05 except for these items.

Appendix B: Toddler Attachment Sort Items

Below is a list of the TAS-45 items. Most of these items were derived from the two versions of the Attachment Q-sort (Waters & Deane, 1985; Waters, 1995). The wording of some of these items may have been modified from the original in order to make the item more readable. The Flesch-Kinkaid readability level of the items is generally at the eighth grade or below. In addition, a set of 6 items that address children's disorganized behaviors were culled from the literature on disorganized attachment and were added in order to be able to classify the disorganized attachment type.

The TAS-45 items include:

Hot spot 1: Warm, Cuddly

- Hugs and cuddles against mother without being asked to do so.
- Relaxes when in contact with mother.
- Seeks and enjoys being hugged by mother.
- When crying or upset, is easily comforted by contact with mother.

Hot spot 2: Cooperativeness

- When mother asks child to do something, child understands what she wants (may or may not obey).
- Cooperates with mother and gives her things if asked.
- Responds to positive hints from mother.
- Obeys when asked to bring or give mother something.
- When mother says "come here," child obeys.

Hot spot 3: Enjoys Company

- If asked, lets friendly adult strangers/new visitors hold or share toys.
- A social child who enjoys the company of others.
- Enjoys being hugged or held by friendly adult strangers/new visitors.
- Eager to join in with friendly adult strangers/new visitors, does not wait to be asked.
- Enjoys copying what friendly adult strangers do.

Hot spot 4: Independent

- Is very independent.
- Shows no fear, into everything.
- Usually finds something else to do when finished with an activity (does not go to mother for help.
- Takes off and explores new things on own.
- Hardly ever asks mother for any help (as child knows she is usually busy).

Hot spot 5: Attention-seeker

- Tries to stop mother from giving affection to other people (including family members).
- When mother talks with anybody else, child wants mother's attention.
- Wants to be at the center of mother's attention.
- When child is bored, will go to mother looking for something to do.
- Often wants mother's attention.

Hot spot 6: Upset by separation

- Is very clingy, stays closer to mother or returns more often than simply keeping track of mother's whereabouts.
- Gets upset if mother leaves and shifts to another place.
- Cries often, regardless of how hard or how long.
- Child does not try new things and always wants mother to help.
- Cries or tries to stop mother from leaving or moving to another place.

Hot spot 7: Avoids others, does not socialize

- Soon loses interest in friendly adult strangers/new visitors.
- Often plays out of mother's sight (e.g., watches TV-not needing mother).
- Turns away from friendly adult strangers/new visitors and goes own way.
- If there is a choice, child prefers to play with toys rather than with friendly adults.
- When a new visitor arrives, child first ignores or avoids him/her.

Hot spot 8: Demanding/Angry

- When child cries, cries loud and long.
- When child sees something really nice to play with, child will fuss and whine or try to drag mother over to it.
- When mother does not do what child wants right away, child knows she won't be "coming" and then fusses, gets angry or gives up.
- Easily becomes angry at mother.
- Cries as a way of getting mother to do what is wanted.

Hot spot 9: "Moody"/Unsure about how to react/"unusual behaviors"

- Generally cranky or grouchy when with mother.
- With mother, child suddenly switches mood. For instance goes from being nice to mean, or calm to upset (crying, afraid, angry), or gets upset and then goes blank.
- Goes all floppy (limp) when held by mother.
- Looks dazed and unsure (e.g., stares blankly, or freezes in an unusual position for a few seconds).
- Come to mother to give her toys, but will not touch or look at her.
- Suddenly aggressive towards mother for no reason (e.g., hits, slaps, pushes or bites mother).