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An Empirical Study of Poststratified Estimator 

 

Fan Zhang 

 

Introduction 

 

 In National Center for Education Statistics (NCES) surveys, ordinary poststratification and 

raking ratio adjustment are commonly used techniques for improving the precision and reducing the bias 

of estimators. Generally speaking, poststratification refers to any method of data analysis which involves 

forming units into homogeneous groups after observation of the sample, especially for those cases where 

additional information, external to the sample, is available for the subgroups. While the ordinary post-

stratified estimator (or ratio-adjusted estimator) is a special case of regression estimator, raking ratio 

adjustment can be extended to loglinear models for weighting. One disadvantage is that no simple 

formula for its variance is available (Bethlehem and Keller, 1987). The regression estimator and raking 

ratio adjusted estimator, however, are both special cases of a more general class of estimators—the 

calibration estimator (Deville and Sarndal&& , 1992). More importantly, any other member of the 

calibration estimator class is asymptotically equivalent to the regression estimator and, as a 

consequence, all members of the calibration estimator class share the same asymptotic variance (Deville 

and Sarndal&& , 1992).  

 

 In this study, we first present the Horvitz-Thompson estimator in matrix form (section 1) in 

order to compare it with the regression estimator (section 2). In section 3 we discuss the unconditional 

variance of the regression estimator and compare it to the unconditional variance of the Horvitz-

Thompson estimator. Our intention in discussing the regression estimator here is to throw some light on 

a more complicated estimator—the raking ratio adjusted estimator. The raking ratio adjusted estimator, 

although its variance formula is hard to find, shares the same asymptotic variance with the regression 

estimator (section 4). Since conditional variance estimates are preferred, we reviewed a recent study 

conducted by Yung and Rao (1996) (section 5). Raking ratio adjustment was performed on the 
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estimates of 1993 National Household Education Survey (NHES:93) School Readiness component 

(section 6). In section 7, we compare variance estimates which incorporated the raking ratio adjustment 

to variance estimates which did not incorporate the adjustment. 

 

1. The Horvitz-Thompson Estimator 

 

 Let Y = ′( , , )y1  y  ..., y2 N  denote the N × 1  vector of values of the target variable for all 

elements in the population U. A sample s of size n from the population can be represented by an N×N-

diagonal matrix T(s), where tii = 1 if element i is in sample s and 0 otherwise. The inclusion probability 

matrix is denoted by Π  = diag N N( )π i × , where π π1 , ,  2 ..., π N  are the inclusion probabilities for all 

elements. Also let 1N be a N×1 vector of all ones. Our objective is to estimate the population total of y 

defined by 

 Y yii
N= =∑ = ′1 1 YN . 

To this end, the commonly used Horvitz-Thompson estimator of Y is 

 $ ( )Y
y

sHT
i

i
i
n

HT= = ′ ==
−∑

π1 1 T Y W YN
1Π . 

Here W 1 TN
1

HT s= ′ −Π ( )  is the design weight variable for Horvitz-Thompson estimator. The variance 

of $YHT  is 

 V Y
y y

HT kl k l
k

k

l

l
k
N

l
N( $ ) ( )= ′ = −== ∑∑Y Y∆ π π π

π π11 . 

Here ∆ ∆= ×( )kl N N  with ∆kl kl k l k l= −( ) /π π π π π  and π kl  is the joint inclusion probability of 

element k and l selected in the sample. The corresponding variance estimator is 

 $ ( $ )
( )

V Y
y y

HT
kl k l

kl

k

k

l

l
ss=

−
∑∑

π π π

π π π
. 
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2. The Regression Estimator 

 

 The Horvitz-Thompson estimator, although unbiased, is not efficient when relevant auxiliary 

variables are present. In practice, information external to the sample is often available in addition to the 

inclusion probabilities. This information can be used to increase precision and reduce bias. Let 

X x x x1 2= (    , , ..., )N ′  be the N p× -matrix of values of the auxiliary variables for all elements. Here 

x i = ′( , , )xi1  x  ..., xi2 ip  is the p × 1  vector of values of the p variates for element i. It is natural to 

chose a vector B = (b1, b2, ..., bp ′)  to regress Y on X such that  

 ′ = = − ′ − ′= =∑ ∑E E Y XB Y XB x BEii
N

i
2

1
2

1( )) ( - ) = (yi i
N  

is minimized; here E = ′( , , )E1  E  ..., E2 N . Without an assumption of any model, the ordinary least 

squares method results in 

 ( ) ( )B X X X Y x x x U V1
i i

1= ′ ′ ′ =−
=

−

=
−∑ ∑( ) = ii

N
ii

N y1

1

1  

with U x xi= ′=∑ ii
N

1  and V xi= =∑ yii
N

1 . Since x xi ′=∑ ii
N

1  = ( )x xik ili
N

p p= ×∑ 1 , apply Horvitz-

Thompson estimator to estimate x xik ili
N
=∑ 1  for fixed k and l results in x xik il ii

n π=∑ 1 . Therefore, the 

Horvitz-Thompson estimator of U x xi= ′=∑ ii
N

1  can be written as 

 $ ( ) .U x x X T Xi
1=









 = ′ = ′=

×

−
=

−∑ ∑
x x

s
ik il

i
i
n

p p
i ii

n

π
π1

1
1 Π   

Similarly, the Horvitz-Thompson estimator of V xi= =∑ yii
N

1  can be written as 

 $V x= =−
=∑ i i ii

n yπ 1
1 ′ −X T Y1Π (s) . 

A customarily used estimator of B is: 

 $B = $ $U V− =1 ( )x x xi iπ πi ii
n

i ii
n y−

=
− −

=′∑ ∑1
1

1 1
1  = ( )′ ′− − −X T X X T Y1 1Π Π( ) ( )s s

1
. 

$B  is asymptotically design unbiased (see for example, Bethlehem & Keller, 1987). Based on $B , the 

regression estimator of Y  is defined as 

 $ $ ( $ ) $
,Y YR HT HT= + − ′t t BX X . 
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Here t X 1 xX N i= ′ = = ′= = =∑ ∑ ∑ ∑i
N

ii
N

ii
N

ip
Nx x x1 11 21( , , )  ...,  i=1  are the population totals of the 

auxiliary variables, and $ ( ) ( , , ),t X T 11
NX HT i i i iss ip iss x x x= ′ = ′− − − −∑∑ ∑Π 1

1
1

1 1π π π ...,   is the 

Horvitz-Thompson estimator of the auxiliary variable totals based on the sample. $YR  is asymptotically 

design unbiased for Y (Bethlehem & Keller 1987). Also notice 

 $YR ( )= ′ + − ′ ′ ′− − − −[ ( ) ( $ ) ( ) ( )],1 T t t X T X X T YN
1

X X
1 1Π Π Πs s sHT

1
= W YR . 

Here ( )W 1 T t t X T X X TN
1

X X
1 1

R HTs s s= ′ + − ′ ′ ′− − − −Π Π Π( ) ( $ ) ( ) ( ),
1

 is the regression weight 

variable for the regression estimator. Another important property of WR  is that the regression estimates 

of auxiliary variables are always equal to the population total: 

 $X W X tR = = ′R X , 

which is termed as calibration equation (Deville and Sarndal&& , 1992). A potential problem is that some 

of the regression weights can be negative. Huang (1978) designed a computer program to produce 

nonnegative regression weights. 

 

3. The Mean Square Error of Regression Estimator 

 

 We discuss two estimators of MSE( $YR ), the mean square error of $YR . The first estimator starts 

from an alternative expression for the regression estimator: 

 $ $ ( $ ) $
,Y YR HT X X HT= + − ′t t B = + − ′ ′− − − −∑∑∑ π π πi i X X HT i i isss i i iy y1 1 1 1( $ ) ( ),t t x x x  

      [ ]= + − ′ ′− − −∑∑ 1 1 1 1( $ ) ( ),t t x x xX X HT i i is is i iyπ π . 

Let g i s X X HT i i is i, ,( $ ) ( )= + − ′ ′− −∑1 1 1t t x x xπ  and notice by definition y Ei i i= + ′x B . We have 

$YR = = ′ +∑ ∑ ∑g y g g Ei s is i i s i is i s i is, , ,/ / /π π πx B . Here gi s i, /′∑ x Bs iπ  can be also written as 

 gi s i, /′∑ x Bs iπ [ ]= ′ + − ′ ′ ′− − − −∑ ∑ ∑x t t x x x x Bi is X X HT i i is i i isπ π π1 1 1 1( $ ) ( ),  

    [ ]= ′ + − ′$ ( $ ), ,t t t BX HT X X HT = ′t BX , 

which is a constant. Therefore 
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 V Y V g ER i s i is( $ ) ( / ),= ∑ π . 

Since gi s,  depends on the sample s, the variance estimator for the Horvitz-Thompson estimator can not 

be applied directly here. Disregard this and use e yi s i,
$= − ′x Bi  to substitute E yi i i= − ′x B , Sarndal&&  

(1982) proposed variance estimator 

 $ ( $ ) ( / )( / )( / ), , , ,V Y g e g eR kl kl k s k s k l s l s ll sk s1 = ∈∈ ∑∑ ∆ π π π . 

We shall see in section 5 that $ ( $ )V YR1  might perform better as a conditional variance estimator of $YR .  

 

The second estimator of MSE( $YR ) starts from the Taylor linearizatioin substitution of $YR  

(Sarndal&& , Swensson and Wretman, 1992): 

 $ $ $ ( $ ),Y Y Y yR LR HT X X HT i i X ss≅ = + − ′ = + ′ − ′− −∑∑t t B t B x Bi
1

iπ π1  

      = ′ + − ′−∑t B x BX i i is yπ 1( ) = ′ + −∑t BX i is Eπ 1 . 

Here $YLR  is the linearized regression estimator of Y . Since B and ′tX  are population parameters and 

$YLR  is unbiased for population mean Y —that is, E Y YLR( $ ) = —therefore 

 MSE Y V Y
E E

R LR kl k l
k

k

l

l
l
N

k
N( $ ) ( $ ) ( )≅ = −== ∑∑ π π π

π π11  

which is thereafter estimated by 

 $ ( $ )
( )

V Y
e e

R
kl k l

kl

k

k

l

l
ss2 =

−
∑∑

π π π

π π π
 

with e yi s i i,
$= − ′x B . 

 

 V YLR( $ )  provides a heuristic explanation of why the regression estimator has smaller 

unconditional variance (over all possible samples) compared to Horvitz-Thompson. If ′x Bi  is a perfect 

substitute of yi , that is yi i= ′x B , then E i = 0  and therefore, MSE YR( $ )  ≅  V YLR( $ )  = 0. If x i  is not 

related to yi  at all, then B 0≅  and E yi i≅ . Then  

 MSE YR( $ )  ≅ = − === ∑∑V Y
y y

V YLR kl k l
k

k

l

l
l
N

k
N

HT( $ ) ( ) ( $ )π π π
π π11   



An Empirical Study of Poststratified Estimator  Page 6 

 

which indicates MSE Y V YR HT( $ ) ( $ )≅ . When x i  is partially related to yi , E i  has smaller variation than 

yi .  

 

4. The Role of Regression Estimator 

 

 The auxiliary variables used in the regression estimator can be both quantitative variables and 

qualitative variables. Actually, the poststratified estimator is a special case of the regression estimator 

when the auxiliary variables are the indicator variables for the poststrata. Suppose the population is 

partitioned into C post-strata with known population counts Mc, c = 1, ..., C. Let 

x i i i iCx x x= ′( , , )1 2  ...,   be the post-strata indicator vector so that xic  = 1 if element i belongs to that 

post-stratum c and 0 otherwise. The Horvitz-Thompson estimator of Mc is given by 

 $
,M xc HT ic ii s ii sc

= =−
∈

−
∈∑ ∑π π1 1  

where sc  is the sample of elements belonging to the c-th post-stratum. And the Horvitz-Thompson 

estimator of the post-stratum total Yc  is given by 

 $
,Y x y yc HT ic i ii s i ii sc

= =−
∈

−
∈∑ ∑π π1 1 . 

The post-stratified estimator is therefore defined as 

 $
$

$
,

,Y
M

M
Yps

c

c HT
c HT

c
= ∑ . 

Notice t xX ii
N

CM M M= = ′=∑ 1 1 2( , , ) ...,  , $ ,t X HT =  ( $ ,,M HT1  $ ,,M HT2  ...,  $ ),MC HT ′ , and  

 $ ( ) ( , , )B = ′−
∈ ×

− −
∈

−
∈

−
∈∑ ∑ ∑ ∑diag y y yii s C C i ii s i ii s i ii sc C

π π π π1 1 1 1 1
1 2

 ...,   

     = ′( $ , $ , $ )R R RC1 2  ...,   

where $ $ $
, ,R Y Mc c HT c HT= . Therefore, the regression estimator reduces to 

 $ $ ( $ ) $,Y Y M M RR HT c c HT cc
C= + −=∑ 1 = $Yps . 

 

 The ratio adjusted post-stratified estimator $Yps  discussed above requires population counts at 

cell level. However, these cell counts are not always available, especially when several auxiliary 
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variables are used. For instance, age group counts are available from one file and region group counts 

are available from another file. Here the population marginal counts are known, but the cross-

classification is lacking and, therefore, it is described as incomplete poststratification. 

 

 Two techniques are often applied to handle incomplete poststratification. The first approach 

uses regression estimator by introducing multiple poststrata indicator variables (Bethlehem and Keller, 

1987). The second approach uses raking ratio adjustment (Deming and Stephan, 1940). Raking 

estimation uses iterative proportional fitting and can be extended to loglinear models for weighting. One 

disadvantage is that no simple formula for its variance is available (Bethlehem and Keller, 1987). 

 

 The importance of the regression estimator was revealed by Deville and Sarndal&&  (1992). 

Deville and Sarndal&&  introduced the calibration estimator, which includes often used estimators such as 

the ratio estimator, the regression estimator, and the raking ratio estimator as special cases. They 

proved that any other member of the calibration estimator class is asymptotically equivalent to the 

regression estimator and, as a consequence, all members of the calibration estimator class share the 

same asymptotic variance. Hence the variance estimators for the regression estimator discussed in 

section 3 and the conditional variance estimator in the next section can be used to estimate the variance 

of any estimator in the calibration class. 

 

5. Estimation of Conditional Variance of Regression Estimator 

 

 In section 3 we considered the unconditional variance of the regression estimator which is 

calculated over all possible samples under the complex survey design. The unconditional variance can 

be used when comparing sampling strategies before the sample is drawn. There is a growing belief, 

however, that inference should be made conditional on the known attributes of the sample. Holt and 

Smith (1979) gave compelling arguments in favor of conditional inference for the poststratification of a 

simple random sample. Rao (1985) emphasized the need for conditioning the inference on recognizable 

subsets of the population by using a number of real examples involving random sample sizes. Valliant 

(1993) studied the standard linearization variance estimator, BRR, and the jackknife variance estimator 
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to determine whether they estimate the conditional variance of the poststratified estimator of a finite 

population total under a super-population model. Yung and Rao (1996) studied the standard 

linearization variance estimator, jackknife, and the jackknife linearization variance estimators for both the 

poststratified estimator and the regression estimator. 

 

 Following Yung and Rao (1996), under a stratified multistage design with large numbers of 

strata, L, and relatively few primary sampling units (clusters), nh (≥ 2), sampled within each stratum, the 

clusters are treated as if they are selected with replacement to simplify the variance estimation. The 

standard linearization variance estimator for the ratio adjusted post-stratification estimator $Yps  is  

 $ ( $ )
( )

(~ ~ ), ,V Y
n n

e eL ps
h h

hi s h s
i

n

h

L h

=
−

−
==
∑∑

1
1

2

11
. 

Here ~ ( $ $ ), , ,e n y Y Mhi s h hik hik c HT c HT
k sc c

= −−

∈
∑∑ π 1  and ~ ~

, ,e e nh s hi si
n

h
h= =∑ 1 . The jackknife variance 

estimator of $Yps  is defined as 

 $ ( $ ) ( $ $ )( )V Y
n

n
Y YJ ps

g

g
ps gj ps

j

n

g

L g

=
−

−
==

∑∑
1 2

11
. 

Here $ ( )Yps gj  is obtained from the sample after omitting the data from the j-th sampled cluster in the g-th 

stratum (j = 1, ..., ng; g = 1, ..., L) and the reweighting is done each time a cluster is deleted. By 

linearalizing the jackknife variance estimator $ ( $ )V YJ ps , the jackknife linearization variance estimator of 

$Yps  is then obtained as 

 $ ( $ )
( )

(~ ~ ), ,V Y
n n

e eJL ps
h h

hi s h s
i

n

h

L h

=
−

−∗ ∗

==
∑∑

1
1

2

11
. 

Here ~ ( $ ) ( $ $ ), , , ,e n M M y Y Mhi s h hik c c HT hik c HT c HT
k sc c

∗ −

∈
= −∑∑ π 1  and ~ ~

, ,e e nh s hi si
n

h
h∗ ∗
== ∑ 1 . 

 

 $ ( $ )V YJL ps  and $ ( $ )V YJ ps  are asymptotically equal to higher order terms in the special case of 

nh=2 (Yung and Rao, 1996). $ ( $ )V YJL ps  also reduces to a conditionally valid variance estimator for 
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simple random sampling given the poststratum sample sizes while $ ( $ )V YL ps  does not (Rao, 1985). 

Therefore, $ ( $ )V YJL ps  might perform better as a conditional variance estimator of $Yps . 

 When quantitative auxiliary variables are used in the regression estimator, the meaning of the 

conditional variance is not clear. But still $ ( $ )V YL R , $ ( $ )V YJ R , and $ ( $ )V YJL R  have similar forms as 

$ ( $ )V YL ps , $ ( $ )V YJ ps , and $ ( $ )V YJL ps , except now  

 ~ ( $ ),e n yhi s h hik hik hikk= − ′−∑ π 1 x B  

 ~ [ ( $ ) ( ) ]( $ ), , ( )e n yhi s h hik X HT hik hik hik hikhik s hik hikk
∗ − − −

∈= + − ′ ′ − ′∑∑ π π1 1 11 t t x x x x BX . 

Yung and Rao’s (1996) simulation study suggests that the three variance estimators, $ ( $ )V YL R , $ ( $ )V YJ R , 

and $ ( $ )V YJL R  perform similarly under well balanced samples, while an incorrect jackknife procedure 

which does not recalculate the regression weights each time a cluster is deleted perform poorly.  

 

 When the sample size is not very large and the number of auxiliary variables is not small, Fuller 

et al. (1994) used  

 $ ( $ )
( )

(~ ~ ), ,V Y
n

n p n n
e eL R

h h
hi s h s

i

n

h

L h

=
− −

−
==
∑∑

1
1

2

11
 

to compensate for the lost degrees of freedom due to estimating the regression coefficients. It is also 

interesting to notice that  

 $ ( $ )
( )

(~ ~ ), ,V Y
n n

e eJL R
h h

hi s h s
i

n

h

L h

=
−

−∗ ∗

==
∑∑

1
1

2

11
 

is actually estimating 

 V e V e V
n

eh s
h

L

h s
h

L

h
hi s

i

n

h

L h

(~ ) ~ ~
, , ,
∗

=

∗

=

∗

==
∑ ∑ ∑∑=







=










1 1 11

1
 

 = V hik X X HT hik hik hik hikhik shik s( [ ( $ ) ( ) ], ( )( ) π π− − −
∈∈ + − ′ ′∑∑ 1 1 11 t t x x x ( $ )yhik hik− ′x B  

 = V g ehik hik s hik shik s( ), ,( ) π −
∈∑ 1 . 

Disregarding the fact that ghik s,  and ehik s,  depend on sample s, we can reproduce $ ( $ )V YR1  of section 3 

by estimating V g ehik hik s hik shik s( ), ,( ) π −
∈∑ 1 : 
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 ( / )( / )( / ), , , , , ,( )( ) ∆hik h i k hik h i k hik s hik s hik h i k s h i k s h i kh i k shik s g e g e′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′′ ′ ′ ∈∈ ∑∑ π π π . 

 

6. An Overview of NHES Sample Design and Weighting Procedure 

 

 We choose the National Household Education Survey (NHES:93) School Readiness (SR) 

component data for this study since both ratio adjustment and raking adjustment were performed in the 

weighting procedure. The jackknife variance estimation replicate weights were provided. In addition, the 

strata identification variable and the PSU identification variable are also included in the data file so that 

linearization method can be applied to calculate the variance. A clear description of the survey was 

given by Brick et al. (1994) and is paraphrased here. 

 

 The target population of the NHES:93 survey was children aged 3 through 7, or in second 

grade or below but at least age 3. The method of sampling used in NHES:93 is a variant of the random 

digit dialing method, which can be viewed as stratified multistage sampling. 

 

 The sampling procedure starts with stratifying a list of PSUs (a list of all possible first 8 digits of 

10-digit phone numbers) into low and high minority concentration strata. A random selection of PSUs 

was then made with an unequal sampling rate from each stratum. With each selected PSU, telephone 

numbers were generated by adding random two-digit numbers to the eight-digit PSU number. A sample 

of 129,813 telephone numbers was generated from 4,577 PSUs. Because of nonresidence and 

nonresponse, 63,844 households actually completed screening.  

 

 Based on data from the 63,844 Screener interviews, every household with children in the 

eligible age and grade ranges was sampled. Within each sampled household, if there were one or two 

eligible children in a household, each was selected with certainty. About 96.4 percent of households 

with any eligible children met this condition. If there were more than two eligible children in the 

household, two were randomly sampled from the household. The number of completed School 

Readiness (SR) interviews was 10,888.  
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 The first step of the weighting procedure was to create a household weight which accounted for 

the unequal PSU sampling rates, because some households had more than one telephone number and 

hence had more than one chance of being included in the sample. Then the household weights were 

adjusted for those children who were not chosen with certainty. This adjusted base weight was the 

inverse of inclusion probability for the children in the SR component. 

 

 Then the weights were adjusted for nonresponse to the extended interview. Six age categories 

from 3 to 8 and older were used to define the nonresponse adjustment cells. The nonresponse 

adjustment was the sum of the adjusted base weights for all sampled children in the cell divided by the 

sum of the adjusted base weights for the respondents in the same cell. The adjustment factors varied 

from 1.09 to 1.14 across the six cells. 

 

 The last stage of weighting was to rake the nonresponse-adjusted person weights to known 

totals computed from the October 1992 Current Population Survey (CPS). The marginal totals are 

given in table 1 from Brick et al. (1994). Three dimensions were used in the raking. The first dimension 

is defined by the cross-classification of home type (owned or not) and Census region. The second 

dimension is the cross of race/ethnicity and household income. The last dimension is defined by age and 

grade. 

 

 In order to help users to estimate standard errors, 60 jackknife replicate weights were created 

based on the sampling of clusters of telephone numbers. All 60 replicate weights were created using the 

same estimation procedures used for the full sample. Also included in the data file are stratum and PSU 

variables required by software using Taylor series approximation. 
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Table 1. NHES:93 control totals for School Readiness raking 
 

Control characteristics Control totals 
Home type Census region  
Owned or other........................ Northeast..................................  2,400,545 
Owned or other........................ Midwest...................................  3,202,557 
Owned or other........................ South........................................  4,116,866 
Owned or other........................ West.........................................  2,589,938 
Rented...................................... Northeast..................................  1,448,553 
Rented...................................... Midwest...................................  1,651,182 
Rented...................................... South........................................  2,764,945 
Rented...................................... West.........................................  1,938,053 
   
Race/ethnicity Household income  
Hispanic................................... Less than $10,000....................  818,994 
Hispanic................................... $10,000-$24,999......................  904,880 
Hispanic................................... $25,000 or more.......................  685,193 
Black, non-Hispanic................ Less than $10,000....................  1,360,091 
Black, non-Hispanic................ $10,000-$24,999......................  997,013 
Black, non-Hispanic................ $25,000 or more.......................  792,487 
Other........................................ Less than $10,000....................  1,514,364 
Other........................................ $10,000-$24,999......................  3,610,969 
Other........................................ $25,000 or more.......................  9,428,649 
   
Age Grade  
3............................................... All grades.................................  3,905,387 
4............................................... All grades.................................  3,806,845 
5............................................... All grades.................................  3,832,330 
6............................................... All grades.................................  3,763,999 
7............................................... All grades.................................  3,809,885 
8 and older............................... Second grade or less................  994,193 
NOTE: Details do not add to the same total due to rounding. 
SOURCE: U.S. Bureau of the Census, Current Population Survey, October 1992. 
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7. Variance Estimates Comparison 
 

 Rust (1987) investigated the effect of nonresponse and ratio weight adjustments on sampling 

error estimates by using the Title IV Quality Control Study survey data for two continuous variables. In 

his study, the differences between the variances estimated via the two approaches are small, which 

indicates the relationship between the variable of interest and the auxiliary variable was not a strong one. 

He also noticed, in another study undertaken by Lago et al. (1987), that when variables of interest 

(weight, height, and level of cholesterol) are highly correlated with the poststratification variables (age 

and sex), the use of poststratification gave rise to considerable reduction in sampling variance.  

 

In this section, we compare variance estimates which incorporate the raking ratio adjustments 

and nonresponse adjustment with the variance estimates which ignore these adjustments for the 1993 

NHES School Readiness component. 

 

We first used the jackknife replicate weights which incorporated the adjustments to calculate 

standard errors for two kinds of estimators—total and mean estimators. The replicate weights were 

created by Westat, Inc., and were provided with the public use data set. The calculation is implemented 

by WesVar PC; the standard errors calculated by this approach are denoted as steT  for total estimator, 

and steR  for ratio type estimator (this includes estimators of percentage, mean, and the ratio of two 

variables). 

 

Then we calculated the standard errors for the same estimators but ignored the adjustments. 

This was implemented in two ways. The first approach was to let WesVar PC generate the jackknife 

replicate weights and then use these replicate weights to calculate the standard errors with WesVar PC. 

In this approach, neither nonresponse adjustment nor raking ratio adjustment are performed when a 

replicate weight is created; therefore these adjustments were not incorporated. The second way was to 

use the stratum identification variable and PSU identification variable provided with the public use data 

file to calculate the standard errors with SUDAAN. This approach actually treats the adjusted full 

sample final weight (FWGT0—Final Raked Weight which incorporates the nonresponse adjustment 
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and the raking ratio adjustment) as a design weight (inverse of inclusion probability). And the variance 

estimator of the Horvitz-Thompson estimator was used. Also notice that the mean estimator in this study 

is actually a ratio of two raking ratio adjusted estimators. Although SUDAAN is used here, the 

underlying variance estimator is actually the variance estimator for the ratio of two Horvitz-Thompson 

estimators, not a genuine linearized variance estimator for the ratio of two raking ratio adjusted 

estimators. Therefore the adjustments were also ignored in this approach. The variance estimates 

calculated from these two approaches (from WesVar PC generated replicate weights and from 

SUDAAN) are identical. They are denoted by steT
∗  for the standard error of the total estimator and 

steR
∗  for the standard error for the ratio type estimator. 

 

 Table 2 shows standard errors for categorical variables. As we can see, in general, steT  is 

much smaller than steT
∗  while steR  is close to steR

∗  except for the last two variables (which were used 

as auxiliary variables in the raking ratio adjustment). It seems like the adjustments and the gain in 

precision cancel out for the ratio type estimator.  

 

 For the standard error of the total estimate for dichotomous variables (Hastory, Hncare, 

Birthord, Hlive, Gender), when the adjustments are incorporated in the calculation, the marginal total 

counts are a constant C = 20,112,639. So the estimated total number children in category one equals C 

minus the estimated total number of children in category two for each replicate weight. Therefore the 

estimated standard errors for both categories are the same. When the adjustments are ignored, 

however, the estimated marginal total varies from one replicate weight to another. The relationship does 

not hold anymore. This explains why we observe unstable estimates for the standard errors of total 

estimates. Hncare, for example, has standard errors 92,717 and 370,645 for “Yes” and “No” 

categories.  

 

 For the standard errors of the percentage and mean estimators, when the adjustments are 

incorporated, the denominator again becomes the constant C for all replicates. Therefore, the standard 

error equals ste CT . When the adjustments are ignored, the denominator varies. But since the 
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numerator is positively correlated with the denominator, the actual standard error is smaller than 

ste CT
∗ .  

 

 Hincmrng (household income) is one of the auxiliary variables used for the raking ratio 

adjustment (table 1) where it has three categories (“Less than $10,000”, “$10,000-$24,999”, 

“$25,000 or more”). In the public use data file, two categories, “Less than $10,000” and “$10,000-

$24,999”, were collapsed into one category, “Up To $25,000”. The marginal totals for all replicates are 

still the same. Therefore the standard errors are null.  

 

 Raceethn (race/ethnicity) was also used for the raking ratio adjustment where it was collapsed 

into three categories (“Hispanic”, “Black, non-Hispanic”, “Other”) but in the public data file it has the 

customary four categories (“White/Nonhisp”, “Black/Nonhisp”, “Hispanic”, “All O/Races”). Now the 

marginal totals for category “White/Nonhisp” and “All O/Races” are not constant anymore, so we 

observe standard errors for these two categories but no standard error for the other two. 

 

 Table 3 shows standard errors for continuous variables. The gain in precision to the total 

estimator is obvious. Age92 (Age) is an auxiliary variable used for raking ratio adjustment but was 

treated as a continuous variable here. Ratio Hbedrms/Hhtotal (Number of Bedrooms in Home/Total 

Number of Household Members) and Hhundr18/Hhtotal (Number of Household Members Under 

18/Total Number of Household Members) are ratios of two raking ratio adjusted estimators. 

Incorporating the adjustment results in standard error estimates of about 14 and 7 percent less. 

 

 Table 4 shows standard errors calculated within the nonresponse adjustment and raking ratio 

adjustment cells (Home type × Census region × Race/ethnicity × Household income × Age × Grade). 

Only two cells with comparatively large sample sizes were chosen. Within these cells, the adjustments 

are the same for all units, so the adjustment factors were canceled out for the ratio type estimator and 

hence steR  is about the same as steR
∗ . But still, a gain in precision due to the raking ratio adjustment to 

the total estimator is present. 
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Table 2. Standard errors for categorical variables 

Categorical Variables steT
 steT

∗  ste steT T
∗  steR

 steR
∗  ste steR R

∗  

Hastory         
Yes ……………………… 79375 217683 0.3646 0.395 0.507 0.7791 
No ………………………. 79374 230654 0.3441 0.395 0.507 0.7791 
       
Hncare         
Yes ……………………… 81658 92717 0.8807 0.406 0.413 0.9831 
No ………………………. 81658 370645 0.2203 0.406 0.413 0.9831 
       
Birthord         
Only/Oldest Kid …………. 109700 200995 0.5458 0.545 0.535 1.0187 
Later Born ………………. 109700 255680 0.4291 0.545 0.535 1.0187 
       
Hlive          
Yes ……………………… 152523 257797 0.5916 0.758 0.788 0.9619 
No ………………………. 152523 252258 0.6046 0.758 0.788 0.9619 
       
Gender         
Female ………………….. 104303 222735 0.4683 0.519 0.524 0.9905 
Male …………………….. 104303 231969 0.4496 0.519 0.524 0.9905 
       
Habooks       
None …………………….. 23347 25110 0.9298 0.116 0.124 0.9355 
1 Or 2 Books ……………. 35046 38619 0.9075 0.174 0.191 0.9110 
3 To 9 Books ……………. 73626 90597 0.8127 0.366 0.422 0.8673 
10 To 25 Books …………  94273 134211 0.7024 0.469 0.465 1.0086 
26 To 50 Books …………. 91039 126309 0.7208 0.453 0.469 0.9659 
More Than 50 …………… 124337 222669 0.5584 0.618 0.667 0.9265 
       
Hincome         
$5,000 Or Less …………. 58528 94562 0.6189 0.291 0.416 0.6995 
$5,001 - $10,000 ……….. 58528 101152 0.5786 0.291 0.434 0.6705 
$10,001 - $15,000 ……… 58980 79911 0.7381 0.293 0.383 0.7650 
$15,001 - $20,000 ……… 77404 98786 0.7835 0.385 0.456 0.8443 
$20,001 - $25,000 ……… 75325 99576 0.7565 0.375 0.455 0.8242 
$25,001 - $30,000 ……… 69972 80165 0.8729 0.348 0.379 0.9182 
$30,001 - $35,000 ……… 53173 63908 0.8320 0.264 0.295 0.8949 
$35,001 - $40,000 ……… 61437 70068 0.8768 0.305 0.319 0.9561 
$40,001 - $50,000 ……… 81543 96797 0.8424 0.405 0.422 0.9597 
$50,001 - $75,000 ……… 65695 89348 0.7353 0.327 0.375 0.8720 
Over $75,000 …………… 76787 87698 0.8756 0.382 0.407 0.9386 
       
Hincmrng         
Up To $25,000 ………….. 2 255420 0.0000 0 0.804 0.0000 
More Than $25,000 ……  0 260352 0.0000 0 0.804 0.0000 
       
Raceethn         
White/Nonhisp ………….. 52425 319287 0.1642 0.261 0.802 0.3254 
Black/Nonhisp …………… 1 123945 0.0000 0 0.518 0.0000 
Hispanic …………………. 0 110665 0.0000 0 0.522 0.0000 
All O/Races ……………… 52425 59301 0.8840 0.261 0.273 0.9560 
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Table 3. Standard errors for continuous variables 
 
Continuous Variables steT

 steT
∗  ste steT T

∗  steR
 steR

∗  ste steR R
∗  

         
Hbedrms ………….. 231137 1292940 0.1788 0.011 0.014 0.803 
         
Hhtotal ……………. 415720 1953781 0.2128 0.021 0.021 1.024 
         
Hhundr18 ………… 369884 1161715 0.3184 0.018 0.019 0.952 
         
Numsibs …………… 351823 747261 0.4708 0.017 0.018 0.944 
         
Tv8to3 …………….. 249661 426974 0.5847 0.012 0.014 0.889 
         
Tvafdin ……………. 250867 493058 0.5088 0.012 0.012 0.984 
         
Tvsat ………………. 520567 1516009 0.3434 0.026 0.027 0.974 
         
Tvsun ……………… 500809 1201840 0.4167 0.025 0.025 0.988 
       
Age92 ……………… 8698 2125447 0.0041 0.000 0.015 0.000 
       
Hbedrms/Hhtotal …    0.003022 0.003515 0.8597 
       
Hhundr18/Hhtotal ..    0.001987 0.002138 0.9294 
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Table 4. Standard errors calculated within the nonresponse adjustment and raking ratio 
adjustment cells 

 

  steT
 steT

∗  ste steT T
∗  steR

 steR
∗  ste steR R

∗  

CELL BIRTHORD     
1 Only/Oldest Kid …… 24014.32 26749.49 0.8977 4.637 4.599 1.0083 
1 Later Born …………. 22812.91 24063.16 0.9480 4.637 4.599 1.0083 
2 Only/Oldest Kid …… 18091.32 22370.59 0.8087 2.594 2.617 0.9912 
2 Later Born …………. 21688.37 24680.15 0.8788 2.594 2.617 0.9912 
         
CELL HASTORY        
1 Yes ………………… 5826.182 6005.819 0.9701 1.408 1.421 0.9909 
1 No …………………. 27764.57 33962.51 0.8175 1.408 1.421 0.9909 
2 Yes ………………… 26773.59 36412.67 0.7353 0.866 0.869 0.9965 
2 No ………………….. 5006.48 4970.37 1.0073 0.866 0.869 0.9965 
         
CELL HLIVE        
1 Yes ………………… 20932.59 23983.75 0.8728 4.007 4.003 1.0010 
1 No …………………. 22133.66 24012.56 0.9218 4.007 4.003 1.0010 
2 Yes ………………… 19193.92 22665.75 0.8468 2.503 2.523 0.9921 
2 No …………………. 20255.97 23877.39 0.8483 2.503 2.523 0.9921 
         
CELL HINCMRNG        
1 Up To $25,000 …….. 15329.57 16214.36 0.9454 3.46 3.49 0.9914 
1 More Than $25,000 .. 26211.87 30703.29 0.8537 3.46 3.49 0.9914 
2 Up To $25,000 …….. 18989.11 20553.96 0.9239 2.924 2.844 1.0281 
2 More Than $25,000 .. 24678.83 28751.11 0.8584 2.924 2.844 1.0281 
         
CELL STATISTIC ………..        
1 HHUNDR18 ………. 82555.12 92617.02 0.8914 0.104 0.103 1.0097 
2 HHUNDR18 ………. 70281.32 90818.96 0.7739 0.053 0.053 1.0000 
         
1 TVAFDIN …………. 34909.93 40125.09 0.8700 0.056 0.056 1.0000 
2 TVAFDIN …………. 41062.69 46779.49 0.8778 0.046 0.046 1.0000 
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BRR Variance Estimation Using VPLX Hadamard Procedure 

 

Stanley Weng 

 

1. Study Purpose 

 

 This study attempts to provide information on the use and performance of VPLX’s balanced 

repeated replicates (BRR) capability, the Hadamard procedure, by comparing it with variance 

estimation procedures using existing BRR replicates and those using a jackknife procedure. 

 

 Until now, variance estimation for NCES complex surveys using the BRR method has usually been 

performed when a set of BRR replicates has been created and included in the survey sample datafile. 

The application of BRR variance estimating has been limited because the creation of BRR replicates 

requires advanced statistical knowledge. However, when the replicates are created, calculating BRR 

variance estimates is a simple matter which can be performed using any statistical software. 

 

 VPLX (Fay, 1995) and WesVar (Westat, 1996) are two widely used statistical software 

packages which can create BRR replicates and then perform BRR estimation. However, these 

capabilities have not been in extensive use, perhaps due their limitations (e.g., WesVar cannot handle 

large numbers of strata) or lack of instruction (e.g., VPLX has not documented its BRR capability). We 

chose VPLX, not WesVar, for this study because VPLX’s Hadamard procedure has a more general 

design and greater capabilities. 

 

2. VPLX Hadamard Procedure 

 

 Documentation for the VPLX Hadamard procedure was not available when this study was 

conducted. The author provided an example for the Hadamard command (Fay, 1996). Since it was 
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made for a very small sample, it did not have complete syntax information, but we were able to figure 

out the syntax for a large dataset. 

 

3. VPLX Capability of Creating BRR Replicates: Grouped BRR Method 

 

 Originally, the BRR method applied to stratified multistage surveys for which each stratum 

contains two PSUs. The VPLX Hadamard procedure also applies only to such types of survey data. 

For handling sample with more than two PSUs in a stratum, the usual way is to randomly group the 

PSUs in each stratum into two groups—pseudo-PSUs—and then apply the BRR procedure to the 

pseudo-PSUs. This is the so-called grouped BRR (GBRR) or grouped balanced half-sample 

(GBHS) procedure. We wrote a SAS macro to perform the random grouping of PSUs within stratum. 

 

 Our study used the 1990 SASS Teacher Survey Public School sample. It was used in an earlier 

study (Weng, Zhang, & Cohen, 1995) which had found the jackknife variance estimates reliable. The 

1990 SASS Teacher Survey Public School sample has about 250 strata. We collapsed some small 

strata according to the stratification structure, making the total number of strata below 240, and a 

Hadamard matrix of dimension 240 was used. 

 

4. Analysis and Results 

 

 The following table lists the standard errors estimated by BRR using VPLX Hadamard 

procedure and using the existing BRR replicates in the data file. A column of jackknife (JK) estimates is 

added for reference. The same variables as used in the Weng et al. (1995) study were used in this 

study. 
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Table 1. Standard errors by BRR variance estimation 

Survey 
statistics 

Variable Estimate Standard error 

   BRR JK 
   VPLX 

Hadamard 
Existing 

replicates 
 

 
Percent 

 
Master degree 
  1.  YES 
  2:  NO 

 
 

46.980 
53.020 

 
 
.3499 
.3499 

 
 
.326 
.326 

 
 
.393 
.393 

  
Look forward to day 
  1:  ST AGREE 
  2:  AGREE 
  3:  DISAGREE 
  4:  ST DISAGREE 

 
 

51.37 
40.39 
6.23 
2.01 

 
 
.4537 
.4366 
.1435 
.1022 

 
 
.341 
.313 
.163 
.121 

 
 
.385 
.363 
.180 
.107 

 
Mean 
 

 
Salary 
Age 

 
30,751 

42.576 

 
115.32 

.0811 

 
93.494 

.0751 

 
102.849 

.0732 
 
Ratio 

 
School hours extra/hours required 
Other hours extra/hours required 

 
0.0886 
0.223 

 
.0010 
.0011 

 
.001 
.0013 

 
.001 
.0014 

 

5. Discussion and Future Steps  

 

 It was generally expected that the BRR procedure performed in this study would deliver better 

accuracy for the BRR variance estimates than using the existing BRR replicators, because a larger 

number of replicates were used. However, the results, as listed in table 1, do not show clear evidence of 

such improvement (if the jackknife variance estimates used as a reference are considered reliable). Of 

course, one application of the grouped BRR procedure might not reveal sufficient information on its 

behavior. Further investigation may be needed. Methodologically, the grouped BRR produces an 

inconsistent estimator. However, as described below, improvements can be made by repeating the 

procedure. 

 

 Rao and Shao (1996) explored the repeatedly grouped balanced half-sample (RGBHS) 

method as an improvement to the grouped balanced half-sample (GBHS) method. In GBHS, the 

sample in each stratum is first randomly divided into two groups, and then the balanced half-sample 

method is applied to the groups. A repeatedly grouped balanced half-sample method involves 
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independently repeating the random grouping T times and then taking the average of the resulting T 

GBHS variance estimators, say, vG
t ( $ )θ , t = 1, 2, ..., T: 

v
T

vRG G
t

t

T
( $ ) ( $ )θ θ= ∑

=

1
1

, 

where v RG ( $ )θ denotes the RGBHS variance estimator. 

 

 The RGBHS variance estimator retains the simplicity of the GBHS variance estimator, since the 

same Hadamard matrix is applied to the random groups generated at each repetition. Rao and Shao 

(1996) established the asymptotic consistency of the RGBHS estimator, that is, 

v RG ( $ )θ /Va p( $ )θ →  1 

where Va ( $ )θ  is the asymptotic variance of $θ . Their simulation study indicated that the RGBHS 

performs well for T as small as 15, thus providing flexibility in terms of the number of half-samples used. 

Intuitively, it is understandable since the RGBHS estimator is based on RT  half-samples, instead of R 

half-samples as in GBHS. 

 

 Computationally, the RGBHS method is easy to implement. 
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An Alternative Jackknife Variance Estimation for NAEP 

 

Stanley Weng, Sameena Salvucci 

 

1. Study Purpose 

 

 This empirical study explores an alternative method for performing jackknife variance estimation 

which makes better use of the sampling variation than the procedure currently used for the National 

Assessment of Educational Progress (NAEP), a periodic survey conducted by the National Center for 

Education Statistics (NCES). Better use of the sampling variation should improve the accuracy of the 

NAEP variance estimates. The alternative method should also make it possible to implement systematic 

computational procedures to conduct NAEP jackknife variance estimation. 

 

2. NAEP Sample Design 

 

 The basic primary sampling unit (PSU) sample design for the main NAEP assessment is a 

stratified probability sample with one PSU selected per stratum with probability proportional to the 

population. The sampling unit within the PSU is the individual school. Schools are selected 

systematically with probability proportionate to the assigned measure of size. The sample of students 

within sampled schools is systematically drawn from school-prepared lists of eligible students. 

 

3. Assignment of Sessions to Schools 

 

 All sampled students within a school are assigned to assessment sessions based on the following 

three age/grade eligiblity classes: 

 Age Class 1:  Age 9/Grade 4 

 Age Class 2:  Age 13/Grade 8 

 Age Class 3:  Age 17/Grade 12 
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Print administered reading, writing, and mathematics sessions and tape administered mathematics 

sessions were conducted at all age classes. The method of determining the number and type of sessions 

to be administered in a given school varied by age class. 

 

 Our study was limited to examining standard errors for grade 8 reading proficiency estimates in 

the 1992 NAEP main assessment. 

 

4. NAEP Jackknife Variance Estimation 

 

 The NAEP variance estimation procedure, as used for the 1992 and 1994 NAEP, uses a 

jackknife variance estimator. This method will be referred to as the original “paired” jackknife 

procedure.  

 

 For the purposes of variance estimation, pairs of first-stage sampling units (FSSUs) or of 

appropriate aggregates of them are defined in a manner that models the design as one in which two first-

stage units are drawn with replacement per stratum. The definition and pairing of the FSSUs are 

different for the certainty and noncertainty PSUs. Each noncertainty PSU constitutes a single FSSU 

while each certainty PSU contains two or more sampled FSSUs, each consisting of one or more 

schools. The 2N noncertainty PSUs are formed into N pairs of FSSUs, where the pairs are composed 

of PSUs from adjacent strata and are thus relatively similar on the sample stratification characteristics. 

Whereas, as described in section 2 above, the actual sample design was to select one FSSU with 

probability proportional to size from each of 2N strata, for variance estimation purposes the design is 

regarded as calling for the selection of two FSSUs with probability proportional to size with 

replacement from each of N strata. This alteration probably produces a positive bias to estimates of 

sampling error. 

 

 Although the two-PSU-per-stratum jackknife is a simple procedure, it may not perform 

satisfactorily. The formation of the jackknife replicates greatly changed the original sampling design, and 
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it ignored much of the sampling variation contained in the sample, with a considerable reduction of the 

degrees of freedom for the estimation space. 

 

5. NAEP Student Jackknife Replicates 

 

 The NAEP variances are bases on a set of student jackknife replicates (replicate weights) 

contained in each sample. Each main NAEP sample dataset contains a set of 56 jackknife replicates: 30 

replicates reflect the amount of sampling variance contributed by the noncertainty strata of PSUs, and 

26 reflect the variance contribution of the certainty PSU samples. The replicates were formed in the 

following way. The 60 noncertainty PSUs, drawn from 60 strata, were formed into 30 pairs, each pair 

composed of PSUs from adjacent strata within each subuniverse of sampling (thus the strata were 

relatively similar on the characteristics of stratification). The 26 replicates from the 34 certainty PSUs 

were created in a more complex way: the seven largest PSUs were assigned to ten replicates, the next 

five largest PSUs were assigned to one replicate each, and the remaining 22 were paired and assigned 

to 11 replicates. 

 

6. Alternative Jackknife Variance Estimation 

 

 We propose an alternative jackknife procedure to better incorporate the data sampling structure 

into jackknifing and hence to catch more of the sample variation, and to be able to implement systematic 

computational procedures. NAEP’s sample design has one PSU selected per stratum; therefore, there 

is no direct way to estimate sampling variance at the PSU level without collapsing strata. The alternative 

jackknife procedure performs jackknifing at the next sampling level, the school level; that is, the 

alternative procedure is a general stratified jackknife performed to schools within PSU. Since the 

sampling fraction of schools within PSU is small we assume they are independent. We expected the 

alternative to provide improved accuracy for the variance estimates. 

 

 In proposing the alternative jackknife procedure, we reviewed the jackknife variance estimation 

methodology (Shao and Tu, 1995, Shao and Wu, 1989).
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7. Analysis and Results 

 

 Data 

 The 1992 NAEP Main Assessment Reading Test Age 13/Grade 8 data were used to conduct 

the alternative jackknife variance estimation. A SAS data set was created from the raw data in the 1992 

NAEP National Assessment CD-ROM. The five composite variables for reading proficiency 

(“Plausible NAEP reading value”) were used as response variables to estimate average reading 

proficiency for the nation and for the domains defined by Region (Northeast, Southeast, Central, West) 

and Type of School (Public, Private, Catholic), respectively. Missing cases for the response variables 

were deleted.  

 

 Estimation 

 We performed jackknife variance estimation using (1) our alternative jackknife procedure and 

(2) the original “paired” jackknife procedure. Since the our alternative jackknife variance estimation 

does not include nonresponse, trimming, and poststratification adjustments, we calculated comparable 

“unadjusted” variances using the original “paired” jackknife procedure. Therefore, in implementing the 

original “paired” jackknife procedure we used WesVar PC to develop a set of jackknife replicate 

weights based on the NAEP final student weight instead of using the student jackknife replicate weights 

available on the NAEP file because these weights already included nonresponse, trimming, and 

poststratification adjustments. We used the VPLX software (Fay, 1995) for implementing our 

alternative procedure and as stated above WesVar PC for the original procedure. VPLX has been 

shown to produce reliable jackknife estimates in a previous study (Weng, Zhang, & Cohen, 1995). 

 

 The grade 8 national and domain average reading proficiency estimates and their associated 

standard errors from the two jackknife procedures in comparison are presented in tables 1, 2, and 3, 

respectively. 

 

 For reference, table 4 lists the grade 8 average reading proficiency and associated standard 

errors provided by Mullis, Campbell, & Farstrup (1993). However, note that these standard errors 
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were based on the NAEP student replicate weights which were created to include nonresponse, 

trimming, and poststratification adjustments. Thus, these standard errors are not directly comparable to 

the standard errors that we calculated in our analyses. 

 

 Discussion 

 It can be seen from tables 1 and 3 that the standard error for average reading proficiency using 

our alternative jackknife procedure is just a little greater than that from the original jackknife procedure 

(except in Catholic schools). In addition, in table 2, the variance for the Central region using our 

alternative method is almost one third higher than when using the original method. This result conforms 

with our belief that the alternative jackknife would catch sampling variation ignored by the original 

jackknife. In comparing variances across the other domains, it can be seen that the variances are very 

similar. Also, since the alternative method has more degrees of freedom than the original method, the 

variance estimate precision is improved. Also, Shao and Tu (1995) discuss that the jackknife has some 

robustness properties against the violation of the school independence assumption. 

 

 Note, however, that the alternative jackknife cannot estimate the sampling variation at the 

NAEP PSU level within strata: the variance estimates provided by this procedure would generally be 

underestimated. 

 

 The two-PSU-per-stratum “paired” version of the jackknife procedure, as implemented in the 

WesVar software (Westat, 1996) now available on the Internet, has almost been adopted as a standard 

version of jackknife. It is in wide use for NCES survey variance estimation. This study provides useful 

information on the performance of such a jackknife procedure. The results of this analysis may be 

interesting as NCES considers how to improve jackknife variance estimation practice. 
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8. Further Steps 

 

 The alternative jackknife procedure for NAEP variance estimation seems promising. This study 

is only the first step in exploring how to improve jackknife variance estimation for NAEP. Further steps 

may be taken according to the following methodological consideration: Shao and Wu (1989) and Wu 

(1990) discussed the more general delete-d version of jackknife procedure, which, with appropriately 

chosen d, can be used to improve the performance of the variance estimation and make the jackknife 

variance estimator more robust. 

 

Table 1. National grade 8 average reading proficiency and jackknife variance estimates 
          

   Standard error calculated by 
 

   Average  Alternative   Original  Alternative s.e./ 
Variable   proficiency  method  method  Original s.e. 
Reading proficiency 1  254.465  0.952  0.853  1.116 
Reading proficiency 2   253.995  0.976  0.912  1.070 
Reading proficiency 3  254.975  0.948  0.916  1.035 
Reading proficiency 4  254.383  0.938  0.902  1.040 
Reading proficiency 5  255.011  0.978  0.933  1.048 

          
 Average  254.566  0.958  0.903  1.062 
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Table 2. Domain grade 8 average reading proficiency and jackknife variance estimates, 
by region 

          
   Standard error calculated by 

 
   Average  Alternative   Original  Alternative s.e./ 

Domain   proficiency  method  method  Original s.e. 
Northeast          
Reading proficiency 1  257.226  2.341  2.013  1.163 
Reading proficiency 2  256.939  2.176  2.050  1.061 
Reading proficiency 3  257.660  2.142  1.985  1.079 
Reading proficiency 4  257.285  2.246  1.930  1.164 
Reading proficiency 5  258.033  2.273  2.108  1.078 

 Average  257.429  2.236  2.017  1.109 
          

Southeast          
Reading proficiency 1  247.418  2.111  2.265  0.932 
Reading proficiency 2  246.601  2.109  2.421  0.871 
Reading proficiency 3  247.707  2.059  2.458  0.838 
Reading proficiency 4  247.526  2.012  2.434  0.827 
Reading proficiency 5  247.524  2.178  2.331  0.934 

 Average  247.355  2.094  2.382  0.880 
          

Central          
Reading proficiency 1  259.105  1.605  1.195  1.343 
Reading proficiency 2  259.283  1.728  1.369  1.262 
Reading proficiency 3  260.425  1.543  1.261  1.224 
Reading proficiency 4  259.249  1.611  1.329  1.212 
Reading proficiency 5  260.392  1.651  1.459  1.132 

 Average  259.691  1.628  1.323  1.235 
          

West          
Reading proficiency 1  254.250  1.511  1.629  0.928 
Reading proficiency 2  253.350  1.681  1.715  0.980 
Reading proficiency 3  254.263  1.683  1.742  0.966 
Reading proficiency 4  253.691  1.575  1.754  0.898 
Reading proficiency 5  254.302  1.637  1.809  0.905 

 Average  253.971  1.617  1.730  0.935 
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Table 3. Domain grade 8 average reading proficiency and jackknife variance estimates, 
by type of school 

        
   Standard error calculated by 

 
   Average  Alternative   Original  Alternative s.e./ 

Domain   proficiency  method  method  Original s.e. 
Public          
Reading proficiency 1  252.219  1.042  0.937  1.112 
Reading proficiency 2   251.813  1.074  0.981  1.095 
Reading proficiency 3  252.783  1.037  0.986  1.052 
Reading proficiency 4  252.185  1.034  0.972  1.064 
Reading proficiency 5  252.800  1.075  1.036  1.038 

 Average  252.360  1.052  0.982  1.072 
          

Private          
Reading proficiency 1  280.323  2.853  2.817  1.013 
Reading proficiency 2  279.919  2.627  2.421  1.085 
Reading proficiency 3  280.862  2.812  2.538  1.108 
Reading proficiency 4  279.618  2.457  2.497  0.984 
Reading proficiency 5  281.336  3.037  2.800  1.085 

 Average  280.412  2.757  2.615  1.055 
          

Catholic          
Reading proficiency 1  272.527  1.683  1.723  0.977 
Reading proficiency 2  271.064  1.683  1.869  0.900 
Reading proficiency 3  272.209  1.742  1.846  0.944 
Reading proficiency 4  272.098  1.631  1.773  0.920 
Reading proficiency 5  272.262  1.635  1.633  1.001 

 Average  272.032  1.675  1.769  0.948 

 
Table 4. Grade 8 average reading proficiency and standard error 

        
Domain   Average proficiency Standard error  

        
Nation1   260  0.9   

        
Region2        

 Northeast   263  1.8   
 Southeast   254  1.7   
 Central   264  2.2   
 West   260  1.2   

        
Type of school3       

 Public   258  1   
 Private   283  3   
 Catholic   275  1.9   
SOURCE: Mullis et al. (1993), 1table 1, 2table 3, 3table 2.    
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On the Performance of Replication-based Variance Estimation  
Methods with Small Numbers of PSUs 

 

Ming-xiu Hu 

 

Most surveys conducted by the National Center for Education Statistics (NCES) apply 

complex designs. For a complex survey, there is often no easy way to find unbiased and design-

consistent variance estimates analytically. The standard statistical software packages, such as SAS and 

SPSS, provide inappropriate and usually too small variance estimates for survey statistics including 

totals, means, proportions. One solution to this difficulty is to use so-called replication-based variance 

estimation approaches, sometimes also called resampling variance estimation approaches. A 

number of replication methods have been proposed over years. Among them, the simple and stratified 

jackknife, bootstrap, balanced repeated replication, Fay’s method, and random group method 

have received broad attention. The basic idea behind the replication methods is to select subsamples 

repeatedly from the whole sample, to calculate the statistic of interest for each of these subsamples, and 

then use the variability among these subsample or replicate statistics to estimate the variance of the full 

sample statistics. 

 

This project is to evaluate the six replication-based variance estimation approaches mentioned 

above when only small numbers of primary sample units (PSU) are available. The problem of variance 

estimation with small numbers of PSUs happens most often with stratified multistage sampling, which is 

often adopted by NCES surveys. For example, in the 1993-94 Schools and Staffing Survey (SASS), 

private schools, which are considered the primary sample units (PSUs) in the private school teacher and 

student surveys, are stratified by association membership (19 groups), then by school levels (3 levels), 

and then by Census regions (4 regions), making a total of 228 strata in the private schools and staffing 

survey. Within each stratum, schools are further sorted by variables such as State, Highest grade in the 

school, Urbanicity, etc. After schools (PSUs) have been chosen, further sampling takes place to select 

the secondary units of teachers within each PSU. With this type of sampling design, although the total 

number of PSUs is very large, some strata (explicit and /or implicit) may only have small numbers of 
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PSUs but may contribute substantial numbers of secondary units to the sample. If we are interested in 

inferences on some subpopulation parameters, then we may encounter the problems of variance 

estimation with small numbers of PSUs since many subpopulations will only have small numbers of 

PSUs.  

 

In case when a large sample of secondary units are drawn from only a few PSUs, it may be able 

to provide a pretty close point estimator, but the unreliability of the estimated sampling variance makes it 

difficult to construct confidence intervals with the desired levels of coverage. This is because direct 

variance estimators must, explicitly or implicitly, estimate the between PSU component of variance. The 

precision of this between-PSU variance estimator will be low due to the small number of PSUs. Burke 

and Rust (1995) conduct a simulation study to examine the performance of two Jackknife variance 

estimation methods, the usual Jackknife method and a paired Jackknife method, for systematic samples 

with small numbers of PSUs. Their simulation population consist of 105 private schools (a subset) of 

1994 National Assessment of Educational Progress (NAEP) sample. 

 

In this project, we conducted a simulation study on a subset of 1993-94 Schools and Staffing 

Survey (SASS) to examine the performance of the six replication-based variance estimation approaches 

stated earlier. Our simulation population consists of 182 private schools of SASS sample. It differs from 

Burke and Rust (1995) in five aspects: (1) different variance estimation methods. We compared six 

replication-based methods, while they only compared two Jackknife methods; (2) different evaluation 

criteria (see section 3); (3) different software used. Burke and Rust used WesVar but we use VPLX 

(Fay, 1994) and Resampling Stat (Version  4.04) to calculate variance estimates; (4) different statistics. 

Burke and Rust only considered non-linear statistics (average reading proficiency in a school), whereas 

we considered both  linear statistics (totals of full-time equivalent teachers) and non-linear statistics 

(student-teacher ratios); (5) different simulation populations (as stated earlier). 

 

In section 1, we will first briefly describe the six replication-based variance estimation methods 

under study and available software packages for implementing these methods. Section 2 will present the 

criteria used in our evaluation. The simulation population and the sample design will be described in 
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section 3. The simulation results and some statistical arguments will be given in section 4. Section 5 

includes a summary of findings and our conclusions. 

 

1. Replication-based Variance Estimation Approaches 

 

Complex survey designs which combine sampling techniques such as sampling without 

replacement, stratification, multistage sampling, or unequal probability of selection, etc., induce a non-

independently identical distribution structure to the data. Conventional techniques for variance estimation 

are often difficult to extend to these complex survey data structures or are cumbersome to implement. It 

is desirable to have replication-based variance estimation approaches that reuse the existing estimation 

system repeatedly, using computing power to avoid theoretical work. In recognition of this need, various 

replication-based methods have been proposed in the literature. These include the method of random 

group, the Jackknife method, the balanced repeated replication method (half-sample replication 

method), the modified half-sample replication method (Fay’s method), and the bootstrap method. These 

methods have been implemented in a number of software packages, including WesVarPC (version 

2.02, Westat) and VPLX (version 94.06, Fay).  

 

We include a brief description of the six replication-based variance estimation approaches under 

study below. Details on these methods may be found in Wolter (1985), Fay (1989), Efron (1979, 

1982), Sitter (1992) and the references cited therein. 

 

1.1 Random Group Method 

In this method, the total sample is randomly divided into K parts, called random groups, in a manner 

designed to represent the major sources of variation arising from the sample design. Suppose the 

estimator of the statistic of interest for the r-th group is $θ r  (r=1, 2, ..., K), and the estimator based on 

the overall sample is $θ . The design-based estimators $θ r  and $θ  are obtained through standard 

estimating approaches. Then the random group variance estimator is given by 
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 is the average of the K estimators. It is apparent that (1) and (2) are identical for 

linear estimators. For non-linear estimators (1) is more conservative than (2) because  
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Actually, (2) is an estimator for the variance of $θ  instead of $θ , which is obtained based on the 

whole sample. However, in many complex surveys, the expectation of the squared difference ($ $ )θ θ− 2  

will be unimportant and therefore there should be little difference between (1) and (2). The software 

package VPLX (Fay, 1994) uses estimator (1). Wolter (1985), however, in his discussion on the 

properties of the random group estimators, focuses on estimator (2), which is easier to discuss 

theoretically. 

 

The random group method is perhaps the simplest replication method to understand, but its 

statistical properties make it one of the least attractive replication-based variance estimation methods 

(Fay, 1994). The random group method has been implemented in the following statistical software 

packages: 

(1)  VPLX V94.06 of Fay, U. S. Bureau of the Census (1994, public domain); 

(2)  OSIRIS IV of Kish et al., University of Michigan; 

(3)  CLUSTERS of Verma, University of Essex; 

(4)   PASS of Finch et al., U. S. Social Security Administration. 
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1.2 Jackknife Methods (Simple and Stratified) 

Here we consider both the simple jackknife method and the stratified jackknife method.  

 

The simple jackknife method creates replicate estimates based on all but one cluster in 

succession; that is, each replicate estimate omits one cluster while re-weighting the remaining K-1 

clusters by the factor K/(K-1), where K is the total number of the clusters in the sample. Suppose the r-

th replicate estimator of the interest parameter based on the sample which leaves r-th cluster out is $θ r  

(r=1, 2, ..., K), and the estimator based on the overall sample is $θ . Then the simple jackknife variance 

estimator used in our simulation is given by 

  $ ( $) ( $ $)v
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Similarly to (2), we may use $ $θ θ=
=

∑ r
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1

 instead of $θ  in (3), which will lead to smaller or 

equal jackknife variance estimates. For the jackknife approach, Efron and Stein (1981) show that even 

the later smaller jackknife estimates of variance tend to overestimate the variance of non-linear statistics 

on average. This implies that (3) will be worse in terms of positive bias. But VPLX implemented this 

form and we did not change it in our simulation. 

 

For linear statistics, the simple jackknife variance estimator (3) is identical to the random group 

variance estimator (1) if the same clusters (groups) are used in the variance computation. However, for 

non-linear statistics, the two estimators are different. 

 

Many complex designs employ stratification in which the universe is divided into distinct 

subpopulations and one subsample is independently drawn from each subpopulation. In these cases the 

stratified jackknife method generally has advantages over the simple jackknife procedure. To apply 

the stratified jackknife method, each stratum must have at least two clusters. 

 

Suppose that S strata have been formed in a survey, and the s-th stratum has Ks (s=1, 2, …, S) 

clusters. Within s-th stratum, one cluster is omitted in turn and the remaining Ks-1 clusters in that cluster 
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are re-weighted by the factor Ks/(Ks-1). Therefore, the stratified jackknife assumes that a given cluster 

represents the stratum from which it was drawn, not the population as a whole. Let $θrs  (r=1, 2, …, Ks, 

s=1, 2, …, S) denote the estimator obtained from the re-weighted sample which consists of all the 

clusters but the r-th cluster in the s-th stratum, while $θ  be the estimator based on the parent sample. 

Then, in our simulation, we will use  

$ ( $) ( $ $)v
K

Ksjk
s

s
rs

r

K

s

S s

θ θ θ=
−

−
==
∑∑ 1 2

11

  (4) 

as the stratified jackknife variance estimate.  

 

Further details on the jackknife methods may be found in Wolter (1985). 

 

The jackknife method has been implemented in the following software packages:  

 

(1) PLX V94.06 of Fay, U. S. Bureau of the Census (1994, public domain);  

(2) WesVarPC V 2.1 of Westat (1997, public domain); 

(3) OSIRIS IV of Kish et al., University of Michigan; 

(4) GES V4.0 of Statistics Canada (1997, commercial); 

(5) BOJA of Boomsma, The Netherlands (1991, commercial). 

 

1.3 Balanced Repeated Replication (BRR) Method 

The half-sample replication method forms replicates using half of the sample each time. It is 

usually applied to stratified sample designs in which the sample consists of two clusters from each 

stratum (to apply it to non-stratified samples, we may create artificial strata). If some strata have more 

than two clusters, we may either group them into two superclusters or divide those strata into smaller 

(artificial) strata such that each stratum consists of two and only two clusters. After the desired strata 

have been created, one cluster from each stratum will be selected to form one replicate. There is a total 

of 2S possible half-sample replicates, where S is the number of strata. The number of all possible half-
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sample replicates becomes enormous quickly as S increases. We may choose K half-sample replicates 

randomly from all 2S possible replicates with equal probabilities to calculate the variance estimates. 

 

The balanced repeated replication method is a special half-sample replication method in which 

orthogonal balanced half-sample replicates are chosen to obtain variance estimates through Hadamard 

matrix (Wolter, 1985). The information contained in the 2S replicates can be captured using K balanced 

replications. The minimum number of replicates needed to have full information is the smallest integer 

greater than or equal to S which is divisible by 4. For example, if there are 12 strata in the sample, then 

K=12 replicates are needed; if there are 15 strata, then 16 replicates are necessary. The BRR method 

is the most popular half-sample replication method. It gives the same variance estimates as that of the 

analytical procedure under simple random sampling design with replacement. 

 

Suppose that a total of K half-sample replicates are used in the BRR variance estimation 

method. $θ r  (r=1, 2, ..., K) is the estimator based on the r-th half sample replicate, and $θ  is the 

estimator based on the overall sample. Then the BRR variance estimator used in our simulation is given 

by  

$ ( $) ( $ $)v
Kbrr r

r

K

θ θ θ= −
=

∑1 2

1
.   (5) 

Again, the estimates of the statistics of interest, $θ r  and $θ , are design-based and obtained 

through standard survey estimating approaches. Similarly, we may use $ $θ θ=
=

∑ r
r

K

K
1

 instead of $θ  in 

(5), which will lead to smaller (or equal) BRR variance estimates. Fay (1989) shows that (5) generally 

tends to produce overestimates of variance on average although there exist some exceptions to this rule.  

 

More details on the BRR method can be found in Wolter (1985). 

 

The BRR method has be implemented in the following software packages: 

(1) VPLX V94.06 of Fay, U. S. Bureau of the Census (1994, public domain); 

(2) WesVarPC V2.1 of Westat (1997, public domain); 
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(3) OSIRIS IV of Kish at el., University of Michigan; 

(4) HESBRR of Jones, U. S. National Center for Health Statistics. 

 

1.4 Fay’s Method 

Fay’s method is a modified version of the BRR method. In the BRR method, half of the sample 

is zero-weighted while the other half is double-weighted. Fay’s method assigns weight  ρ (0≤ρ≤1) to 

one half sample and 2-ρ to the other half. If we use the same notations as in section 1.3, the variance 

estimator of Fay’s method is given by 

$ ( $)
( )

( $ $)v
KFay r

r

K

θ
ρ

θ θ=
−

−
=

∑1
1 2

2

1

.  (6) 

Similarly, $θ  may be replaced by $θ  in (6), which will lead to less conservative variance estimates. 

 

By choosing a value of ρ around 0.7, it is possible that Fay’s method may do better for medians 

than the jackknife, while still doing well for statistics like ratios that are often better estimated by the 

jackknife (Westat, 1997). More information on this method may be found in Judkins (1990). 

 

Fay’s method has been implemented in the following software: 

(1) VPLX V94.06 of Fay, U. S. Bureau of the Census (1994, public domain); 

(2) WesVarPC V 2.1 of Westat (1997, public domain). 

 

1.5 Bootstrap Method 

Efron (1979, 1982) originated the bootstrap method. Suppose a sample S is drawn from a 

population U with some certain sampling design. The population parameter θ is estimated by $θ , and 

our objective is to seek an estimator for the variance Var( $θ ) through the bootstrap method. The 

bootstrap method consists of the following three steps: 

 

(1) Using the sample data, construct an artificial population U*, assumed to mimic the real but 

unknown population U. 
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(2) Draw K independent samples, called resamples or bootstrap samples, from U* using a 

design identical to the one by which S was drawn from U. Independence implies that each 

sample must be replaced into U* before the next one is drawn. For each resample, 

calculate an estimate $θr  (r=1, 2, …, K) in the same way as $θ  is calculated. 

(3) The observed distribution of $ , $ ,..., $θ θ θ1 2 K  is considered an estimate of the sampling 

distribution of $θ , and the bootstrap method estimated V( $θ ) by 

$ ( $) ( $ $)v
Kbs r

r

K

θ θ θ= −
=

∑1 2

1
  (7) 

  or  

$ ( $ ) ( $ $ )v
Kbs r

r

K

θ θ θ=
−

−
=

∑1
1

2

1
.  (8) 

Here (8) is more like the usual sample variance estimate, while (7) is more like an MSE. In our 

simulation, we use (7) instead of (8) as bootstrap variance estimates since all the other replication 

methods implemented through VPLX software use the more conservative form. More information about 

the bootstrap method may be found in Efron and Tibshirani (1993). 

 

No software product has yet been developed for the general bootstrap method. Such a product 

would not only be required to simulate bootstrap samples using different types of complex sampling 

designs, but also required to cooperate with different types of estimates for different types of statistics. 

So far, BOJA which is written by Boomsma (1991) and reviewed by Dalgleish (1995) may be the best 

software for the bootstrap method. The built-in S-PLUS function “sample” in S-PLUS for Windows 

(Version 3.3) may be used to generate bootstrap samples for simple random sampling or PPS random 

sampling schemes with or without replacement, but extra effort is needed to do data manipulation and 

variance estimation after the resamples are obtained. Another S-PLUS function, written by Tibshirani 

and available in STATLIB, may be used for some confidence interval variance estimates with the 

bootstrap method. Resampling Stat for Windows (Version 4.0) can only be used for the simple 

random sampling design. This student-level software is not very convenient for programming and its 

capacity is severely limited. 
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1.6 Summary 

Replication variance estimates (1), (3), (5), (6), and (7) all take the form c ( $ $)θ θr
r

K

−
=

∑ 2

1
, where 

c is an adjusting constant which depends on the replication methods used. In the random group method, 

because only one cluster (or a supercluster) is used to estimate $θr  for each replication, we should 

expect more variation among the replicated estimates. Hence ( $ $)θ θr
r

K

−
=

∑ 2

1
 should be the largest among 

these methods, which implies the smallest adjusting constant c K K= −1 1/ ( ) should be used in (1). On 

the other hand, since the jackknife uses all but one cluster for each replication, the variation among $θr  

(r=1, 2, …, K) should be the smallest and therefore the largest adjusting constant c K K= −( ) /1  

should be used in the jackknife variance estimate (3). The BRR method uses half of the sample in each 

replication; its adjusting constant c K= 1 /  is between the 1/K(K-1) used for the random group and the 

(K-1)/K used for the jackknife. Fay’s method uses more clusters (in fraction) than the BRR method and 

therefore it has a larger adjusting constant c K= −1 1 2/ ( )ρ  than the BRR. The bootstrap method has 

the same adjusting constant as the BRR method. 

 

A very generalized replication variance estimation approach has also been proposed: 

$ ( $) ( $ $)v bg r r
r

K

θ θ θ= −
=

∑ 2

1
,  (9) 

where br is an adjusting coefficient, which will depend on the selection of replicate weights used for the 

estimates $θr . This method has been implemented in VPLX V94.06 of Fay, U. S. Bureau of the Census. 

With this method, the user has to determine the replicate weights and the coefficients br  for each 

replication. 
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2. Simulation Population, Sampling Scheme, and Implementation  

 

To study the behavior of the six replication-based variance estimates, we chose two 

estimates—the student-teacher ratio (a non-linear statistic) and the total number of full-time equivalent 

teachers (a linear statistic)—from the 1993-94 Schools and Staffing Survey (SASS) private school 

data. In the 1993-94 SASS, private schools were stratified by Affiliation (19 affiliations), School Level 

(3 levels), and Census Region (4 regions). Within each stratum, the schools were further sorted by six 

variables: State, Highest Grade, Urbanicity, First Two Digits of Zip Code, 1991-92 Enrollment, and 

PIN number. Then the schools were systematically selected with probabilities proportionate to their 

sizes (systematic PPS sampling) from each stratum. The measure of size used was the square root of the 

number of teachers obtained in the 1991-92 Private School Survey (PSS). In the SASS survey, schools 

serve as the primary sample units (PSU) for the SASS teacher and student surveys (Abramson et al., 

1996). 

 

Our artificial simulation population consists of 182 private schools from the four smallest 

affiliations in the 1993-94 SASS: 26 schools from the Association of American Military Colleges and 

Schools, 60 from the Friends Council on Education, 44 from the Solomon Schechter Day Schools, and 

50 from Other Lutheran affiliation. The original SASS design was projected to include all the schools 

from these affiliations, but not all of them responded. We included all the respondents of these four 

affiliations in our simulation population.  

 

 The 182 private schools in the artificial population were first divided into three strata by the 

school level variable: elementary, secondary, and combined. Within each stratum, the schools were 

further sorted by the same six sorting variables used in the original SASS design. Then the systematic 

PPS sampling algorithm was used to select the schools. The measure of size for each school was the 

same as in the original SASS sampling design. We studied the performance of the six replication 

variance estimation methods for sample sizes (number of PSUs) 2, 4, 6, …, 30. 
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In our simulation, we employed the systematic PPS sampling scheme used in the original SASS, 

but we did not exactly apply its stratification strategies. A stratified sampling scheme first allocates a 

sample size to each stratum, then draws a subsample from each stratum, and then combines all the 

subsamples into one overall sample. In our simulation, we needed to compute variance estimates for all 

possible samples. If we had applied the stratification strategy, the number of all possible samples would 

have become too large to implement. Therefore we decided not to pre-allocate the sample size to each 

stratum before performing systematic PPS sampling. 

 

Although we did not pre-allocate the sample sizes to the strata, the subsample sizes of the strata 

obtained through the non-stratified systematic PPS sampling scheme was almost identical to what a 

stratified sampling scheme would have allocated to the strata if we had employed a stratification 

strategy. For example, for sample size 20, the samples obtained via the non-stratified systematic PPS 

sampling scheme have 12 elementary schools, 3 secondary schools, and 5 combined schools, which is 

exactly the same allocation a stratified sampling scheme would produce. Therefore, we applied the 

stratified jackknife method anyway for sample sizes over 12 although we did not use the stratified 

sampling design to obtain our samples. 

 

For each sample size n (n=2, 4, …, or 30), there is a total of 182 possible systematic PPS 

samples, the same number as the artificial population size. This is the case for most systematic PPS 

sampling designs. An Excel spreadsheet was used to assist the implementation of the systematic PPS 

sample selection.  

 

We only chose even numbers as sample sizes to make it easier to implement the BRR and Fay’s 

method. For the BRR and Fay’s methods, every two adjacent PSUs were grouped into an artificial 

stratum. Full orthogonal balanced replicates were generated for the BRR method through the Hadamard 

matrix. 

 

For the bootstrap method, we used a non-systematic PPS sampling scheme to draw re-samples 

from the artificial population constructed by each possible sample. Suppose yk (k=1, 2, …, n) is a 
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sample S with size n, and πk is the inclusion probability of unit k under the systematic PPS sampling 

design. The artificial population U* for this sample may be formed by creating replicates of each element 

in the sample. For unit k (k=1, 2, …, n), 1/πk artificial elements (pretending that 1/πk is an integer) will 

be created for U*, all of which share the same value of yk. Then n+1 re-samples of size n will be drawn 

using the PPS sampling scheme from U*. Actually, this is equivalent to drawing n+1 simple random 

samples with replacement directly from the sample S instead of the artificial population U*. The re-

sample selection for the bootstrap was implemented by Resample Stat for Windows (Version 4.0). 

 

The random group and jackknife methods needed no special treatment to generate replicates. 

After all the possible systematic PPS samples had been selected for each sample size, we only needed 

to run VPLX once for each sample size to obtain variance estimates for all possible samples with that 

size. In order to use one run of VPLX to calculate the variance estimates for all samples, a sample 

indicator variable had to be created to distinguish different samples in the data set. This was true for all 

the replication methods except the bootstrap method for which we used Resampling Stat for Windows 

instead of VPLX for variance estimation. 

 

3.  Evaluation Criteria 

 

We employed the following criteria in our evaluation of the six replication-based variance 

estimation methods. 

 

(1)  Bias: As usual, bias of the variance estimates is defined as the difference between the  

expected variance and the true variance of $θ  

Bias Ev Var= −$( $) ( $)θ θ .    (10) 

Under our design, the true variance of $θ  is given by 

( )Var E E p Ei i
i

( $) ( $ ( $)) $ ( $)θ θ θ θ θ= − = −
=

∑2
0

2

1

182

,  (11) 
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where $θ0i  is the estimator of θ based on the i-th sample (i=1, 2, …, 182), pi is the inclusion probability 

of the i-th sample, and E pi i( $) $θ θ= ∑ 0  is the expectation of $θ  over all possible samples. While the 

expectation of the variance estimates is given by  

Ev p vi i i
i

$( $) $ ( $ )θ θ=
=
∑ 0

1

182

,    (12) 

where $ ( $ )v i iθ0  is the variance estimate for the i-th sample obtained through some replication method, 

which may be denoted by vi below for simplicity. 

 

(2)  MSE, variance, CV of the variance estimates: Under our design, the variance of the 

variance estimates is given by 

Var v E v Ev p v Evi i
i

( $) ( $ $) ( $ $)= − = −
=

∑2 2

1

182

,    (13) 

where Ev$  is given by (12). MSE of the variance estimates is 

( )MSE E v Var Var v Bias= − = +$ ( $) ( $)θ
2 2 ,  (14) 

and the CV of the variance estimates is defined as 

CV Var v Ev= ( $) $ .    (15) 

 

(3)  Coverage probability of covering the true value of θ: The primary interest in  

Burke and Rust (1995) is the coverage probabilities of the 95 percent confidence intervals. 

$ . $θ0 196i iv±   

and  

$ ( . , ) $θ0 0 975i it df v±  

covering the true value of θ, where t(0.975, df) is the 97.5 percentile of the t-distribution with a degree 

of freedom of df. $θ0i  is the estimator based on the i-th parent sample and does not depend on the 

replication methods, while $v i  varies from one replication method to another; that is, the above intervals 

have the same center but different widths for different replication methods. Larger variance estimates 

will lead to higher coverage probabilities. In our situation, this further implies that higher coverage 
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probabilities are almost equivalent to larger positive biases of variance estimates because all the 

replication variance estimation methods tend to overestimate the true variance. Therefore, a worse 

replication method will have higher coverage probabilities in most cases, which contradicts the usual 

sense of coverage probabilities. We do not think that this is an appropriate criterion for evaluating 

replication-based variance estimation methods, but we include it since Burke and Rust used it as the 

criterion of primary interest. 

 

We only considered intervals with t-coefficient; that is, $ ( . , ) $θ0 0 975i it df v± , since our sample 

sizes were small. In this type of confidence interval, we used K-1 as the degrees of freedom for all the 

replication methods except the stratified jackknife, where K is the number of replicates. For the 

stratified jackknife, the degrees of freedom is n n n1 2 3 3+ + − , where ns  (s=1, 2, 3) is the number of 

observations in the s-th stratum. 

 

(4)  Coverage probabilities of covering the true variance: We also compared the six 

replication methods in terms of the coverage probabilities that the intervals 

$ . ( $ )v Var vi i± 196  

cover the true value of variance, where Var v i( $ ) is given by (13). For different replication methods, not 

only the width 2 196× . ( $ )Var vi  but also the center $v i  of the interval vary. A method with higher 

coverage rates and shorter confidence intervals will be considered a better method.  

 

(5)  95 percent confidence interval estimates of the true variances: 95 percent  

confidence interval estimates for the variances were obtained directly from the distribution of the 

replication variance estimates based on all 182 possible PPS systematic samples. They did not depend 

on the standard deviation of the variance estimates. A better method is the one that provides shorter 

confidence interval estimates and covers the true variance.  
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4.  Analysis of Simulation Results 

 

In this section, we present our simulation results and compare the six replication variance 

estimation methods using the criteria presented above. As stated earlier, our simulation population 

consists of 182 private schools, and even-numbered sample sizes (number of PSUs) from 2 to 30 are 

considered. Three school levels, elementary, secondary, and combined, are used in the stratified 

jackknife method. VPLX was used to perform the variance estimation for the random group, both 

jackknife, BRR, and Fay’s methods, while Resampling Stat was used to carry out the calculation of 

variance estimates for the bootstrap method. In Fay’s method, ρ=0.5 was used; that is, one half sample 

was weighted by 0.5, and the other half by 1.5. 

 

4.1 Comparison of Bias 

Tables 1 and 2 present the biases of the variance estimates for the student-teacher ratio and the 

total number of the full-time equivalent teachers, respectively, for all the replication methods. The 

corresponding plots are given by figures 1 and 2. 

 

The first column of the two tables gives the true variances for all the sample sizes under study. 

Generally, we would expect the variance to decrease as sample size increases, but we have some cases 

which obviously violate this trend. For the student-teacher ratio, the true variance for sample sizes 18, 

22, and 24 are much smaller than we expected. This is probably because the systematic sampling 

scheme hits some pattern in the population so that the average variation among all possible systematic 

samples are much smaller than the average variation among all possible random samples. On the other 

hand, for sample size 26, the true variance is larger than we expect, which is probably because the 

average variation among all possible systematic samples is larger than the average variation among all 

possible random samples. We should keep in mind that we are trying to estimate the design-based 

variance; that is, the variance among all possible systematic samples, and have no interest in the variance 

among all possible random samples since our estimates of the student-teacher ratio and the total of the 

full-time equivalent teachers are based on systematic samples. 
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For the total of full-time equivalent teachers, the true variance for sample sizes 18, 22, 24 are 

again much smaller than we expected. For sample size 26, the true variance for the student-teacher ratio 

is too large, as we noticed earlier, but it is now too small for the total of full-time equivalent teachers. 

Similar reasons are responsible for the results. We should not be surprised if the replication methods 

encounter some problems with these four cases. 

 

From figure 1 and table 1, it is evident that all of the six replication methods on average tend to 

overestimate the variance of the student-teacher ratio. One reason for this phenomenon is that our 

samples are drawn without replacement (hereafter we call them WOR samples), while the replication 

methods assume that all the samples are drawn with replacement (hereafter we call them WR samples). 

A WOR sample generally has larger within-sample variation. If we treat a WOR sample as a WR 

sample, we will overestimate the true variance. 

 
Table 1. Bias of the variance estimates for the student-teacher ratio 
 
Sample 

size 
True 

variance 
Random 
group 

Simple 
jackknife 

Stratified 
jackknife 

 
BRR 

Fay’s 
method 

 
Bootstrap 

2  9.8274  1.0471  1.0471   1.0471  -3.9026  
4  5.0131  0.3858  -0.7350   -0.6642  -1.7992  -0.2499 
6  1.9082  2.0730  0.3682   0.5764  0.0081  0.5910 
8  1.2428  1.5924  0.6212   0.8209  0.5182  0.4587 
10  0.8926  1.4078  0.3443   0.4665  0.2888  0.3898 
12  0.7122  1.2238  0.3985  0.3123  0.5015  0.3138  0.3280 
14  0.7858  0.8275  0.1678  0.1014  -0.0369  -0.0704  0.1575 
16  0.6202  0.7896  0.2112  0.1341  0.0510  0.0112  0.2042 
18  0.3367  0.9215  0.4415  0.3249  0.3482  0.3009  0.4331 
20  0.5485  0.5757  0.0824  0.0206  -0.0199  -0.0489  0.1133 
22  0.2622  0.7571  0.4612  0.4185  0.2891  0.2657  0.3893 
24  0.2117  0.7186  0.3740  0.3165  0.3087  0.2785  0.3658 
26  0.7385  0.1009  -0.2443  -0.2978  -0.3197  -0.3304  -0.2518 
28  0.5227  0.2715  -0.0875  -0.1282  -0.1837  -0.2001  -0.1065 
30  0.4070  0.3329  0.0021  -0.0343  -0.0812  -0.0870  -0.0019 
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Figure 1.  Bias of the variance estimates for the student-teacher ratio 
(in the scale of the true variance) 
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Actually, as discussed by Efron and Stein (1981), and Fay (1989), even if the samples are 

drawn with replacement, the jackknife, random group, and half-sample methods still tend to 

overestimate the variance in most cases.  

 

For the student-teacher ratio, the random group method always has the highest positive bias, so 

is obviously the worst in terms of bias, while Fay’s method always has the lowest negative bias. Since all 

the replication methods tend to overestimate the variance, Fay’s method appears to be the best in terms 

of bias except for the sample sizes 2, 4, 26, 28, and 30. Actually, Fay’s method is good except when 

sample size equals 2 and 4, while for the other three cases all the methods except the random group are 

close in terms of bias. This probably means that Fay’s method breaks down for non-linear statistics 

when the sample size is too small (≤4). But it becomes the best or close to the best thereafter. 

 

In terms of bias, both the simple and stratified jackknife, BRR, and bootstrap are all 

comparable for non-linear statistics. All six methods have very large positive biases when sample size 

equals 18, 22, and 24. As we stated earlier, these cases have very small true variance. True variance 



On the Performance of Replication-based Variance Estimation Methods with Small Numbers of PSUs Page 53 

  

actually measures the variation among all possible parent samples, while each replication variance 

estimate is based on resamples from one parent sample. If the resamples mimic the parent samples well, 

we expect the replication variance estimate to be close to the true variance. However, if the within-

parent-sample variation is much larger than the between-parent-sample variation (which may be 

considered variation in the population), then the variation between the resamples will be much larger 

than the variation between the parent samples, and therefore the replication method will overestimate the 

true variance. This is what happens for sample sizes 18, 22, and 24. On the other hand, most methods 

have the largest negative biases when the sample size equals 26, which implies that the within-parent-

sample variation is smaller than the between-parent-sample variation for this case. 

 

Table 2. Bias of the variance estimates for the total of full-time equivalent teachers (in 
millions) 

 
Sample 

size 
True 

variance 
Random group/  

Simple jackknife 
Stratified 
jackknife 

BRR/ 
Fay’s method 

 
Bootstrap 

2  2.4807  -0.0694   -0.0694  
4  1.3399  -0.1559   -0.2031  -0.2745 
6  0.7288  0.1038   0.2236  0.1885 
8  0.5151  0.1102   0.0679  0.0496 
10  0.5776  -0.0982   -0.1594  -0.1210 
12  0.2512  0.1707  0.3725  0.1845  0.1858 
14  0.2417  0.1160  0.2146  0.1241  0.1084 
16  0.1756  0.1388  0.2108  0.1483  0.1383 
18  0.1168  0.1641  0.2481  0.1847  0.1655 
20  0.2493  -0.0049  0.0437  0.0024  0.0023 
22  0.1004  0.1278  0.1547  0.1197  0.1194 
24  0.1060  0.1021  0.1372  0.0976  0.1074 
26  0.1023  0.0893  0.1192  0.0913  0.0787 
28  0.1197  0.0571  0.0783  0.0718  0.0456 
30  0.1863  -0.0240  -0.0088  -0.0186  -0.0256 

 

For the total of full-time equivalent teachers, figure 2 and table 2 show that all methods except 

the stratified jackknife are comparable. The stratified jackknife always has the largest positive biases. 

Two reasons may be responsible for this phenomenon: (1) we did not actually use stratification in our 

sampling design, and therefore, when we used the stratified jackknife method to estimate the variance, 

we probably introduced extra variance; (2) the overall sample size is not large enough, and consequently 

some strata have too few clusters, which leads to large variance within those strata. 
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In summary, when the sample size equals 18, 22, and 24, all the methods have very large 

positive bias compared to the true variance, which implies that the within-sample variation is much larger 

than the population variation. This is very likely caused by the systematic sampling design since both 

linear and non-linear statistics have the largest positive biases. For the total of full-time equivalent 

teachers, we do not have any very large negative biases, but we have more cases with large positive 

biases such as the cases when the sample size equals 12, 16, and 26. As we mentioned earlier, most 

methods showed their largest negative bias for the non-linear statistic, the student-teacher ratio, for 

sample size 26. 

 

Figure 2.  Bias of the variance estimates for the total of full-time equivalent teachers  
(in the scale of true variance) 
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NOTE: The simple jackknife and Fay’s method have not been plotted in figure 2 since, for the linear estimator the 
total of full-time equivalent teachers, the simple jackknife is equivalent to the random group and Fay’s method is 
equivalent to the BRR. 
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4.2 Comparison of MSE of the Variance Estimates 

Table 3 and table 4 give the MSEs of the variance estimates for the student-teacher ratio and 

the total of full-time equivalent teachers, respectively.  

 

For the student-teacher ratio, table 3 shows that the random group provides much less accurate 

variance estimates than any other replication methods in terms of MSE of the variance estimates. In 

many cases, the MSEs of the variance estimates obtained from the random group are more than ten 

times larger than those from the other replication methods. The large biases of the variance estimates of 

the random group account for a major part of its large MSEs. 

 
Table 3. MSE of variance estimates for the student-teacher ratio 
 
Sample 

size 
Random 
group 

Simple 
jackknife 

Stratified 
jackknife 

 
BRR 

Fay’s 
method 

 
Bootstrap 

2  1699.344  1699.344   1699.344  163.612  
4  107.552  84.243   52.741  22.743  184.062 
6  43.312  5.530   13.912  4.092  10.013 
8  16.097  1.716   4.084  2.289  2.040 
10  5.732  0.429   1.668  0.763  0.902 
12  5.408  0.539  0.458  1.432  0.458  0.668 
14  2.985  0.358  0.340  0.291  0.245  0.305 
16  2.235  0.158  0.124  0.138  0.120  0.172 
18  1.949  0.329  0.191  0.207  0.169  0.378 
20  1.138  0.068  0.052  0.098  0.085  0.134 
22  1.142  0.660  0.541  0.166  0.139  0.498 
24  0.950  0.233  0.182  0.191  0.144  0.245 
26  0.480  0.113  0.130  0.133  0.136  0.140 
28  0.325  0.024  0.031  0.048  0.052  0.034 
30  0.371  0.024  0.018  0.026  0.024  0.033 

 

When the sample size is less than or equal to 12, the BRR behaves very poorly in terms of 

MSEs of variance estimates. However, when the number of PSUs is greater than or equal to 14, the 

BRR catches up with the other methods and sometimes does even better, which means there is a 

sample size breakdown point for the BRR method. For non-linear statistics, the BRR method should not 

be used if the number of PSUs is very small. 
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Overall, Fay’s method is the best in terms of MSE of the variance estimates. It almost always 

has smaller MSEs than the BRR method. Sample size 22 seems to be a breakdown point for all other 

methods except the BRR and Fay’s method. The stratified jackknife is among the best except for 

sample size 22. The simple jackknife is a little worse than the stratified jackknife but a little better than 

the bootstrap. The bootstrap catches up gradually with the other methods as the sample size increases. 

When the sample size is greater than or equal to 24, all the methods except the random group are 

comparable. 

 

Table 4 presents the MSEs of the variance estimates for the linear statistic, the total of the full-

time equivalent teachers. Here, the random group/simple jackknife has better overall performance than 

the other four replication methods in terms of MSE. The stratified jackknife method has the largest 

MSEs except the last case when the sample size is 30, in which it has the smallest MSE. This implies 

that, for linear statistics, it is not a good idea to use stratification in the replication variance estimation 

approaches if the sample size is not large enough. Based purely on this simulation, we believe that, in 

order to apply the stratification strategy to obtain more precise variance estimates, each stratum should 

have at least five clusters although the method requires only two or more clusters per stratum.  

 

Table 4. MSE of the variance estimates for the total of full-time equivalent teachers 
(×1010) 

 
Sample size Random group STR-jackknife BRR Bootstrap 

2  2236.48   2236.48  
4  253.43   202.33  243.84 
6  83.18   131.80  141.65 
8  33.91   28.36  45.65 
10  14.56   9.04  15.56 
12  13.51  30.08  21.70  18.55 
14  8.32  13.72  10.61  10.35 
16  5.59  7.56  5.76  6.98 
18  4.32  8.52  5.56  5.74 
20  2.58  3.57  2.92  3.47 
22  2.45  3.20  2.33  2.98 
24  2.78  3.77  3.58  3.61 
26  1.28  1.99  1.62  1.43 
28  1.14  1.31  1.29  1.03 
30  0.67  0.42  0.79  0.72 

NOTE: For the total of full-time equivalent teachers, the simple jackknife is identical to the random group, and Fay’s 
method is indistinguishable from the BRR. 
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For linear statistics, no obvious advantages or disadvantages have been found between the 

BRR/ Fay’s method and Bootstrap in terms of MSE. Overall, these two are a little worse than the 

random group/simple jackknife, but always better than the stratified jackknife except for sample size 30. 

As the sample size increases, the differences between these methods become smaller and smaller. As 

the sample size becomes large enough (s=30), we should expect that the stratified jackknife will have 

better performance and may be better than the other methods. 

 

4.3 Comparison of Coverage Probabilities of Covering the True Value of θ  

Table 5 presents the coverage rates of the intervals $ ( . , ) $θ0 0 975i it df v±  covering the true 

value of the student-teacher ratio, which is 10.454 in our simulation population.  

 

Most of the coverage rates in table 5 can be explained through our examination of biases earlier 

in section 4.1: (1) for sample sizes equal to 18, 22, and 24, all the methods overestimate the true 

variance by quite a large amount, and therefore the intervals $ ( . ) $θ0 0975i it v±  are too wide, which 

implies too high coverage rates for those cases (almost always 100%); (2) the random group always has 

the largest positive biases, which implies that it has wider intervals and higher coverage rates than any 

other method in most cases; (3) Fay’s method has the lowest bias, which implies that it has narrower 

intervals and lower coverage rates than any other method in most cases; (4) all the replication methods 

tend to overestimate the variance, and therefore most of the coverage rates are very high. 

 

Similarly, for the total of the full-time equivalent teachers, most of the coverage rates in table 6 

can be explained by the bias analysis presented in section 4.1: (1) Since the stratified jackknife method 

has the largest positive biases, it has the widest intervals, which (almost always) leads to the highest 

coverage rates; (2) for sample size 16, 18, 22, and 24, all the coverage rates are very large (over 96%) 

because the positive biases are very large at these points for all the methods; (3) since all the replication 

methods tend to overestimate the true variance, the coverage rates are always high. The coverage rates 

are all over 90 percent except for sample size 4. But even for sample size 4—the worst case, the 

coverage rate is still around 85 percent. 
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Table 5. Coverage rates of covering the true value of the student-teacher ratio  
 

Sample 
size 

Random 
group 

Simple 
jackknife 

Stratified 
jackknife 

 
BRR 

Fay’s 
method 

 
Bootstrap 

2 0.9602 0.9602  0.9602 0.9553  
4 0.9914 0.9335  0.9242 0.9034 0.9048 
6 0.9866 0.9554  0.9468 0.9370 0.9485 
8 1 0.9962  0.9784 0.9784 0.9872 
10 0.9768 0.9372  0.9588 0.9492 0.9525 
12 1 1 0.9982 0.9875 0.9817 0.9801 
14 0.9808 0.9861 0.9657 0.9475 0.9237 0.9749 
16 0.9871 1 0.9974 0.9943 0.9943 0.9935 
18 1 1 1 1 1 1 
20 1 0.9891 0.9891 0.9450 0.9445 0.9545 
22 1 1 1 1 1 0.9931 
24 1 1 1 1 1 1 
26 0.9677 0.9477 0.9428 0.9295 0.9365 0.9093 
28 0.9616 0.9483 0.9482 0.8928 0.8928 0.9492 
30 1 1 0.9851 0.9558 0.9517 0.9838 

 

Table 6. Coverage rates of covering the true value of the total of full-time equivalent 
teachers  

 
Sample 

size 
Random Group/  

Simple Jackknife 
Stratified 
Jackknife 

BRR/ 
Fay’s Method 

 
Bootstrap 

2 0.9275  0.9275  
4 0.8630  0.8455 0.8643 
6 0.9075  0.9132 0.8997 
8 0.9640  0.9663 0.9371 
10 0.9803  0.9207 0.9441 
12 0.9776 1 0.9521 0.9613 
14 0.9363 0.9638 0.9494 0.9193 
16 1 1 1 0.9984 
18 1 1 1 0.9949 
20 0.9272 0.9710 0.9584 0.9308 
22 0.9887 1 0.9887 0.9716 
24 0.9710 0.9902 0.9686 0.9662 
26 1 1 1 0.9957 
28 0.9822 0.9828 0.9822 0.9768 
30 0.9724 0.9708 0.9350 0.9578 

NOTE: For the total of full-time equivalent teachers, the simple jackknife is identical to the random group, and Fay’s 
method is indistinguishable from the BRR. 
 

This type of coverage rate is the primary interest in Burke and Rust (1995) when they compare 

the two jackknife methods. We doubt this is an appropriate criterion for the evaluation of the 

replication-based variance estimation approaches due to three reasons: (1) the replication methods tend 

to overestimate variance, and, therefore, this type of coverage rate is high and not worrisome as seen in 
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their simulations and our simulations; (2) in most cases, higher coverage rates imply worse variance 

estimation approaches, which contradicts the usual sense of coverage probabilities; (3) if the normality 

assumption of the estimates does not hold, it is not appropriate either to compare the coverage rates to 

95 percent, the nominal level. 

 

4.4 Coverage Rates of Covering the True Variance 

In this section, we discuss the coverage rates of the intervals $ . ( $ )v Var vi i± 196  covering the 

true variance. For different replication methods, both the widths and the centers of the intervals may be 

different. A method with higher coverage rates and narrower widths is considered better. To compare 

the widths of the intervals, we present the standard deviation of the variance estimates here. 

 

Table 7 shows that the standard deviations of the variance estimates for the random group 

method are often three times larger than those for other methods in most cases, which implies that the 

intervals corresponding to the random group will be 6 times wider than those corresponding to the other 

methods. With much wider intervals, the random group still does not show any sign of higher coverage 

rates, which means that the centers $v i  of the intervals are much farther away from the true variance. 

This again shows that the random group method provides very inaccurate variance estimates for the 

student-teacher ratio. 

 

In table 7, all non-highlighted coverage rates are over or close to 90 percent. The bootstrap has 

no alarmed values of coverage rates, while the simple jackknife only has one at sample size 26, which 

still has a coverage rate close to 80 percent. However, for sample sizes 26 and 28, Fay’s method, 

BRR, and stratified jackknife methods all break down in terms of coverage rate of covering the true 

variance. This is because, for these two cases, the three methods underestimate the true variance by 

considerable amounts (as shown by the largest negative biases in table 1) and the variation among the 

variance estimates is very small, which leads to too short confident intervals. For sample size 18, these 

three methods also have pretty low coverage rates, especially the BRR and Fay’s method. We can not 

blame inaccurate variance estimates this time because the bias analyses and MSE analyses both show 
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Table 7. Coverage rates of covering the true variance and standard deviation of 
variance estimates for the student-teacher ratio (upper entries are coverage 
rates and lower entries are standard deviations) 

 
Sample 

size 
Random 
group 

Simple 
jackknife 

Stratified 
jackknife 

 
BRR 

 
Fay’s method 

 
Bootstrap 

2 0.9916 
41.21 

0.9916 
41.21 

 0.9916 
41.21 

0.9832 
12.18 

 

 

4 0.9833 
10.36 

 

0.9758 
9.15 

 0.9694 
7.23 

0.9516 
4.44 

0.9784 
13.56 

6 0.9749 
6.25 

 

0.9667 
2.32 

 0.9730 
3.69 

0.9464 
2.02 

0.9483 
3.11 

8 0.9666 
3.68 

0.9123 
1.15 

 0.9178 
1.85 

0.9300 
1.42 

0.9239 
1.35 

 
10 0.9446 

1.936 
 

0.9058 
0.557 

 0.9544 
1.204 

0.9512 
0.825 

0.9128 
0.866 

12 0.9499 
1.977 

0.9443 
0.616 

0.9253 
0.602 

0.9474 
1.086 

0.8941 
0.600 

0.9477 
0.748 

 
14 0.9283 

1.517 
0.9387 
0.574 

0.9267 
0.578 

0.9332 
0.539 

0.9573 
0.490 

0.9433 
0.529 

 
16 0.9332 

1.270 
0.9070 
0.336 

0.9279 
0.326 

0.9596 
0.367 

0.9596 
0.346 

0.9384 
0.361 

 
18 0.9248 

1.049 
0.8819 
0.366 

0.8508 
0.292 

0.7658 
0.293 

0.7768 
0.279 

0.8916 
0.436 

 
20 0.9165 

0.898 
0.8966 
0.247 

0.9182 
0.228 

0.9450 
0.313 

0.9818 
0.288 

0.9253 
0.348 

 
22 0.8951 

0.754 
0.9037 
0.669 

0.9037 
0.605 

0.9037 
0.286 

0.9037 
0.261 

0.9158 
0.588 

 
24 0.8998 

0.659 
0.8949 
0.305 

0.8949 
0.286 

0.8949 
0.310 

0.8949 
0.257 

0.8894 
0.333 

 
26 0.8914 

0.686 
0.7996 
0.230 

0.5552 
0.202 

0.4788 
0.176 

0.4502 
0.164 

0.9230 
0.277 

 
28 0.8831 

0.501 
0.9077 
0.126 

0.7134 
0.122 

0.6950 
0.118 

0.5659 
0.110 

0.8935 
0.152 

 
30 0.8747 

0.510 
0.9241 
0.155 

0.9698 
0.130 

0.8867 
0.130 

0.8809 
0.126 

0.9353 
0.182 
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that these methods have smaller biases and smaller MSEs than the other methods. Therefore, for sample 

size 18, the BRR, Fay’s method, and the stratified jackknife have low coverage probabilities simply 

because the coverage intervals are too narrow. In this case, we have no reason to reject these three 

methods except that our primary interest is to construct confidence interval estimates for the true 

variance. 

 

The bootstrap does not have any low coverage rates, but never has very high coverage rates 

either (less than 95% for all the cases except for sample size 4 due to the widest interval). Based purely 

on this criterion, the bootstrap and the simple jackknife are among the best, which are mostly because 

they have moderately larger standard deviations at the points where Fay’s method, the BRR, and the 

stratified jackknife break down according to this criterion. The bootstrap and the simple jackknife are 

recommended over Fay’s method, the BRR, and the stratified jackknife only if we have more interest in 

the variance estimate than the estimate of the parameter itself. 

 
Table 8. Coverage rates of covering the true variance and standard deviation of the 

variance estimates (in millions) for the total of full-time equivalent teachers  
 
Sample Random group STR-Jackknife BRR Bootstrap 

size C-rate  SD-VE C-rate  SD-VE C-rate         SD-VE C-rate      SD-VE 
2 0.9553      4.729   0.9553      4.729   
4 0.9630  1.584   0.9354 1.408 0.9469 1.537 
6 0.9737  0.906   0.9441 1.126 0.9460 1.175 
8 0.9650      0.572   0.9682 0.528 0.9731 0.674 
10 0.9562      0.369   0.9447  0.255 0.9701 0.376 
12 0.9474      0.326 0.9474 0.402 0.9474 0.428 0.9404 0.389 
14 0.9387      0.264 0.8492 0.302 0.8730 0.301 0.9269 0.303 
16 0.9188      0.191 0.8261 0.177 0.8299 0.189 0.8985 0.225 
18 0.7501      0.128 0.6177 0.154 0.7016 0.147 0.8757 0.173 
20 0.9124      0.161 0.9124 0.184 0.9124 0.171 0.9484 0.186 
22 0.8495      0.091 0.7104 0.090 0.7824 0.095 0.8874 0.124 
24 0.8949      0.132 0.8949 0.137 0.8949 0.162 0.9135 0.157 
26 0.7336      0.069 0.6091 0.075 0.8044 0.089 0.8879 0.090 
28 0.8774      0.090 0.8774 0.084 0.8774 0.088 0.9194 0.091 
30 0.9046      0.078 0.9386 0.064 0.9397 0.087 0.9600 0.081 

NOTE: For the total of full-time equivalent teachers, the simple jackknife is identical to the random group, and Fay’s 
method is indistinguishable from the BRR. 
 

For the total of full-time equivalent teachers, table 8 shows that the stratified jackknife has very 

low coverage rates and thus is obviously worse than the other methods. It has only 61 percent coverage 
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rates for sample sizes 18 and 26, and 71 percent coverage rate for sample size 22, which are not 

acceptable. 

 

Seven out of 10 cases have lower than 90 percent coverage rates and all of them are lower than 

95 percent, the nominal level. But its standard deviations of variance estimates are not significantly 

smaller, and sometimes even larger, than the others, which implies that the widths of the intervals are not 

the main reasons for the low coverage rates. The main reason for the low coverage rates is that the 

stratified jackknife provides very inaccurate variance estimates, which agrees with the findings of the 

bias analyses and the MSE analyses. 

 

The random group/simple jackknife has two low coverage rates of 75 and 73 percent, 

respectively, when the sample size equals 18 and 26. But the random group has the smallest MSEs and 

almost smallest biases for these two cases. Therefore, the coverage rates are low mainly because the 

coverage intervals are too short.  

 

The BRR/Fay’s method has four low coverage rates, 83, 70, 78, and 80 percent, for sample 

sizes 16, 18, 22, and 26, respectively. Both poor variance estimates and short coverage intervals are 

responsible for the low coverage rates for these cases. 

 

In terms of coverage rates of covering the true variance, the bootstrap method and the random 

group/simple jackknife have the best performance. The bootstrap has no breakdown point (all coverage 

rates are over 87.5) and has more cases with higher coverage rates, while the random group (simple 

jackknife) almost always has shorter coverage intervals (except for sample size 4, in which they are 

close).  
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4.5 95 Percent Confidence Interval Estimates and Their Widths 

Table 9 presents 95 percent confidence interval estimates and their widths for the variances of 

the student-teacher ratio estimates which are obtained through the distribution of the variance estimates 

based on all possible PPS systematic samples. 

 

In table 9, the highlighted confidence intervals do not cover the true variances. In all of these 

cases, the true values sneak out of the intervals from the lower limits, which means that at least 97.5 

percent of variance estimates are larger than the true variance. They are seriously positively biased. The 

random group and the simple jackknife both have three such bad cases, with sample sizes 18, 22, and 

24, the stratified jackknife has two with sample sizes 22 and 24, and the bootstrap has one with sample 

size 24. For the three disturbing cases, the BRR and Fay’s method cover all the true variances with 

convincingly shorter intervals. Further, Fay’s method is consistently better than the BRR and the 

difference is considerable. 

 

For the student-teacher ratio, with this criterion, Fay’s method is the obvious choice. It provides 

sharp and robust interval variance estimates for the non-linear statistic. Both jackknife methods 

sometimes provide very sharp estimates, but they may break down when the variation among the 

design-based samples is very different from the variation among random samples in the population. The 

BRR is as robust as Fay’s method, but it is not sharp. The confidence interval estimates of the bootstrap 

are considerably wider than those of Fay’s method, but it does not break down as easily as the 

jackknife. The random group is not worth considering. It not only gives much wider interval estimates, 

but breaks down easily as well. 

 

For the total of full-time equivalent teachers, table 10 shows that Fay’s method/the BRR again 

has the best performance overall. Its 95 percent confidence intervals always cover the true variances, 

and it more likely provides shorter interval estimates than any other method, but the degree of 

dominance is much less overwhelming than it is in the estimation of variances for the student-teacher 

ratios. The random group/the simple jackknife sometimes provides very short interval estimates for the 

true variances, but it is not robust, as shown by the two seriously positive cases (sample size 18 and 24) 
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in which the 95 percent confidence intervals can not cover the true values. All confidence interval 

estimates of the bootstrap cover the true value, but, again, this method does not seem very sharp. 

 

The stratified jackknife obviously has the worst overall performance for the linear statistic. It has 

three seriously biased cases (sample sizes 18, 22, and 26) in which the 95 percent confidence interval 

estimates can not cover the true variances. Its lower confidence limits always have the highest values, 

but it never gives very short confidence intervals. This implies that it has a greater tendency to 

overestimate the variance, which agrees with our findings in the bias analyses. The random group (the 

simple jackknife) always has the second largest lower confidence limits, following the stratified 

jackknife. This may sometimes imply sharper interval estimates, but other times it may mean that this 

method more likely overestimates the variance compared to the BRR/Fay’s method, although this was 

not shown in our bias analyses. 
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Table 9. 95 percent true confidence interval and interval width for the true variance of 
the student-teacher ratio estimate 

 
Sample 

size 
True 

variance 
Random 
group 

Simple 
jackknife 

Stratified 
jackknife 

 
BRR 

Fay’s 
method 

 
Bootstrap 

2 9.8274 .011~38.4 
38.39 

.011~38.4 
38.39 

 .011~ 38.4 
38.39 

.011~28.2 
28.23 

 

 

4 5.0131 
 

.196~21.3 
21.03 

.158~21.7 
21.58 

 .077~20.0 
19.97 

.067~16.1 
16.02. 

.126~20.5 
20.39 

 
6 1.9082 .477~13.8 

13.33 
.366~7.11 

6.742 
 .138~9.55 

9.412 
.110~6.91 

6.796 
.283~10.2 

9.927 
 

8 1.2428 .368~13.7 
13.31 

.336~4.66 
4.326 

 .207~6.68 
6.475 

.205~5.68 
5.471 

.190~5.18 
4.985 

 
10 0.8926 .450~13.1 

12.63 
.407~2.80 

2.394 
 .245~3.51 

3.262 
.235~3.02 

2.787 
.331~3.46 

3.132 
 

12 0.7122 .482~10.0 
9.548 

.365~2.96 
2.595 

.326~2.64 
2.314 

.323~3.60 
3.277 

.308~2.33 
2.024 

.330~2.58 
2.250 

 
14 0.7858 

 
.387~7.16 

6.771 
.286~2.63 

2.342 
.258~2.55 

2.287 
.168~2.01 

1.843 
.167~1.85 

1.679 
.297~1.99 

1.696 
 

16 0.6202 .275~5.98 
5.701 

 

.354~1.82 
1.464 

.299~1.54 
1.238 

.257~1.74 
1.478 

.236~1.68 
1.440 

.280~1.94 
1.662 

18 0.3367 .345~4.71 
4.368 

.384~1.94 
1.551 

.236~1.38 
1.146 

.223~1.33 
1.102 

.254~1.21 
0.958 

.269~2.07 
1.796 

 
20 0.5485 .494~3.97 

3.473 
.338~1.31 

0.976 
.284~1.16 

0.877 
.163~1.19 

1.029 
.148~1.08 

0.929 
.197~1.55 

1.353 
 

22 0.2622 .315~3.12 
2.808 

.322~2.99 
2.664 

.274~2.66 
2.388 

.238~1.42 
1.186 

.229~1.29 
1.057 

.196~2.73 
2.529 

 
24 0.2117 .399~3.02 

2.624 
.307~1.51 

1.205 
.219~1.46 

1.238 
.204~1.53 

1.328 
.198~1.26 

1.065 
.247~1.49 

1.245 
 

26 0.7385 .294~2.91 
2.614 

.221~1.05 
0.826 

.225~.876 
0.651 

.134~.789 
0.655 

.134~.752 
0.618 

.137~1.13 
0.997 

 
28 0.5227 .299~2.11 

1.806 
.257~.672 

0.415 
.217~.616 

0.399 
.133~.589 

0.456 
.132~.568 

0.436 
.182~.743 

0.561 
 

30 0.4070 .282~1.70 
1.422 

.250~.785 
0.535 

.228~.746 
0.518 

.096~.669 
0.573 

.094~.643 
0.549 

.176~.908 
0.732 
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Table 10. 95 percent true confidence interval and interval width for the variance of the 
estimate of the total of full-time equivalent teachers (in millions)  

 
Sample 

size 
True 

variance 
Random 
group 

Stratified 
jackknife 

 
BRR 

 
Bootstrap 

2 2.4807 (.003,  14.9) 
14.847 

 (.003, 14.9) 
14.847 

 

 

4 1.3399 (.034,  4.94) 
4.902 

 

 (.013, 4.43) 
4.415 

(.006, 5.17) 
5.166 

6 0.7288 (.083,  3.50) 
3.418  

 (.034, 4.26) 
4.222 

(.048, 4.21) 
4.165 

 
8 0.5151 (.127,  2.90) 

2.776 
 

 (.054, 1.97) 
1.919 

(.058, 1.92) 
1.857 

10 0.5776 (.136,  1.87) 
1.737  

 (.073, .997) 
0.924 

(.129, 1.36) 
1.235 

 
12 0.2512 (.079,  1.51) 

1.432  
(.181,  1.99) 

1.808 
(.069, 2.01) 

1.939 
(.066, 1.61) 

1.547 
 

14 0.2417 (.098,  1.09) 
0.996  

(.166,  1.37) 
1.202 

(.051, .920) 
0.869 

(.064, 1.13) 
1.069 

 
16 0.1756 (.071,  .877) 

0.806  
(.141,  .925) 

0.784 
(.058, .743) 

0.685 
(.064, .931) 

0.867 
 

18 0.1168 (.137,  .618) 
 0.481 

(.154,  .732) 
0.578 

(.075, .611) 
0.536 

(.091, .685) 
0.594 

 
20 0.2493 (.086,  .708) 

 0.622 
(.128,  .823) 

0.695 
(.055, .726) 

0.671 
(.073, .781) 

0.708 
 

22 0.1004 (.105,  .468) 
0.363  

(.132,  .491) 
0.359 

(.096, .416) 
0.320 

(.088, .584) 
0.496 

 
24 0.1060 (.069,  .549) 

0.480  
(.105,  .601) 

0.496 
(.061, .684) 

0.623 
(.051, .658) 

0.607 
 

26 0.1023 (.088,  .319) 
0.231  

(.111,  .354) 
0.243 

(.073, .412) 
0.339 

(.061, .412) 
0.351 

 
28 0.1197 (.066,  .392) 

0.326  
(.085,  .393) 

0.308 
(.053, .357) 

0.304 
(.048, .399) 

0.351 
 

30 0.1863 (.070,  .297) 
0.227  

(.103,  .360) 
0.257 

(.059, .451) 
0.392 

(.056, .393) 
0.337 

NOTE: For the total of full-time equivalent teachers, the simple jackknife is identical to the random group, and Fay’s 
method is indistinguishable from the BRR. 
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5.  Summary and Recommendations 

 

All the replication methods tend to overestimate the true variance on average for both linear and 

non-linear statistics. When the systematic sampling design hits some underlying pattern in the population 

so that the average variation among all possible systematic samples is much smaller than the average 

variation among all possible random samples, the replication methods will produce variance estimates 

with very serious positive biases. For example, in our simulation population, sample sizes 18, 22, and 24 

are bad cases of this kind. 

 

Since the replication methods tend to overestimate the variance, the confidence intervals 

$ ( . ) $θ0 0 975i it v+  always have very high coverage rates for covering the true parameter. Since higher 

coverage rates in this case are almost equivalent to higher positive biases, we do not think that this is a 

good criterion for evaluating replication variance estimation methods. We included this criterion because 

Burke and Rust (1995) used it as the key criterion in their simulation to evaluate two jackknife methods. 

 

For non-linear statistics, the random group should not be considered a candidate for variance 

estimation. It always gives much larger biases, much larger MSEs, and much broader interval estimates 

for the variances which are sometimes still unable to cover the true values. Although our simulation is for 

small sample sizes, we do not recommend using this method even for large sample sizes since no 

evidence shows that the random group gets closer to the other methods. We believe that the random 

group will not perform so poorly if more PSUs are included in each random group, but it requires a 

large number of PSUs since each PSU is used only once by the random group method.  

 

For non-linear statistics, Fay’s method has the best overall performance for non-linear statistics 

in terms of bias, MSE, and confidence interval estimates for variance estimation. Although Fay’s method 

has very low coverage rates of the intervals $ . ( $)v Var vi + 196  covering the true variance for sample 

sizes 18, 26, and 28, this is mainly because the intervals are too short. Fay’s method is always 
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recommended, except when constructing this type of confidence interval estimates for the true 

variances. 

 

For non-linear statistics, Fay’s method is a modified version of the BRR method. According to 

the criteria used in our simulation, this kind of modification has considerably improved the BRR. The 

BRR performed poorly when the sample size is smaller or equal to 12. As the sample size increases, it 

becomes closer to Fay’s method. 

 

For non-linear statistics, the stratified jackknife produces very sharp variance estimates on some 

occasions, but sometimes it provides seriously positively biased estimates when the average variation 

among design-based samples is much smaller than the average variation among all possible random 

samples. On the other hand, the bootstrap method never gives very sharp variance estimates, but it 

never gives very bad variance estimates either. It has slightly larger MSE, slightly broader interval 

estimate for the true variance compared to the best method in most cases, but the three types of 

coverage rates are always high, even for the cases when the other replication methods break down.  

 

For non-linear statistics, the simple jackknife is slightly worse than the stratified jackknife in 

terms of bias, MSEs, and interval variance estimates, but slightly better in terms of coverage rate of 

covering the true variance. As the sample size increases, the stratified jackknife may have significant 

advantages over the simple jackknife. 

 

For linear statistics, the random group and the simple jackknife are identical, while the BRR and 

Fay’s methods are indistinguishable. The random group/simple jackknife have the overall best 

performance in terms of MSE, but they lose to the BRR/Fay’s methods in terms of confidence interval 

estimates for the true variance. 

 

For linear statistics, the stratified jackknife has the overall worst performance according to all 

the criteria used in the simulation. The bootstrap again does not have very sharp variance estimates, but 

has no very bad variance estimates either, which is similar to the behavior the bootstrap demonstrates 
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with the non-linear statistic. It has slightly larger MSEs and slightly broader interval estimates compared 

to the best ones, but it always gives pretty high coverage rates of covering the true variances, even for 

the cases when the other replication methods break down. The BRR and Fay’s methods are close to 

the bootstrap in terms of bias, MSE, and interval variance estimates, but they have two very low 

coverage rates for covering the true variance for sample sizes 18 and 22 when the average variation 

among all possible systematic samples is much smaller than the average variation among all possible 

random samples. 

 

Therefore, based on this simulation, we generally recommend Fay’s method for variance 

estimations for ratio estimates when the number of PSUs are more than 4; the random group should not 

be considered. For linear statistics, no replication method stands out as significantly better than another. 

The random group/simple jackknife, the bootstrap, and the BRR/Fay’s method all are possible choices. 

However, when the sample sizes are not large enough, it may not be a good idea to apply the stratified 

jackknife method in the variance estimation. 
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An Empirical Study of the Limitation of Using SUDAAN  
for Variance Estimation 

 

Fan Zhang 

 

1. Introduction 

 

 In most NCES surveys, complex sampling designs are employed to deal with the complexity of 

the problem and reduce the cost. These designs often combine techniques such as multistage sampling, 

stratification, clustering, systematic sampling, etc. Therefore, it is not always easy to track the variance 

estimators. For example, since the Schools and Staffing Survey (SASS) 1993-94 Public School 

component has a stratified systematic design, it is not possible to get an unbiased, or even consistent, 

estimator of the design variance. In other words, an analytic form of unbiased variance estimator does 

not exit for this type of design. 

 

 In practice, this problem is overcome by applying replication methods to calculate the variances. 

In replication methods (e.g., jackknife, BRR, Bootstrap) subsamples are selected repeatedly from the 

full sample, then the statistics of interest are calculated for each subsample, and the variability among 

these replicate statistics is used to estimate the variance of the full sample statistics. Therefore, 

replication methods do not require an analytic form of variance estimator for the complex design. Often 

replicate weights are created and attached to the data file for users to calculate the variances using 

replication methods. For example, the Bureau of the Census, as a contractor for the National Center for 

Education Statistics, included 48 sets of replicate weights corresponding 48 bootstrap subsamples on 

the SASS 1993-94 Public School sample data file. The subsamples were selected systematically 

without replacement to mimic the original sampling, so the bootstrap variance estimation should be close 

the true variance.  

 

 It is, however, fairly common for users to treat a complex design as a simpler design and use an 

analytic variance estimator for the simpler design as an approximation for the variance estimator under 
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the complex design. This approach is often seen in software applications such as SUDAAN or PC 

CARP, which apply the Taylor series method for variance estimation. The Taylor series method first 

substitutes a linear statistic for the non-linear statistic of interest and then uses an analytic textbook 

variance estimator for this linear statistic to calculate the variance estimate. Unfortunately, the design 

options available in these software applications are limited. Users who do not find the appropriate 

underlying complex design may select a similar option, subjecting their variance estimates to bias. 

Therefore, using SUDAAN, for example, to estimate the variances for the SASS 1993-94 Public 

School sample may result in greater bias than using the bootstrap variances described above.  

 

 This study uses SASS 1993-94 Public School component data to compare three different 

approaches to developing variance estimates: 

 

• Bootstrap method using the bootstrap replicate weights attached to the data file, performed 

by WesVar PC ; 

• Taylor series method under a stratified with replacement sampling design, with SUDAAN 

(design option = STRWR); and 

• Taylor series method under a stratified without replacement sampling design, with 

SUDAAN (design option = STRWOR). 

 

 Section 2 describes the SASS 1993-94 Public School sampling design. Section 3 discusses the 

variance estimation methods used in this study. Section 4 is an analysis of the results. 

 

2. SASS 1993-94 Public School Sampling Design 

 

 The SASS 1993-94 Public School Survey has a stratified one stage systematic design. The 

sample was selected with a probability proportionate to size algorithm. (See Abramson et al. 1996 for a 

detailed description.) 
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 Public schools were first stratified at three levels. The first level of stratification is by school type:  

 

(A) BIA (Bureau of Indian Affairs) schools 

(B) Native American schools 

(C) Schools in Delaware, Nevada, and West Virginia, and 

(D) All other schools.  

 

The second level of stratification was by states within the (B), (C), and (D) strata. The third level of 

stratification was performed within each second level stratum by grade level (elementary, secondary, 

and combined schools). 

 

 Then the non-BIA schools were sorted by the following variables:  

 

State, 

Local education agency (LEA) metro status, 

Recoded LEA Zip code, 

Common Code of Data (CCD) LEA ID number, 

Highest grade in school, 

School percent minority, 

School enrollment, and 

CCD school ID. 

 

All BIA schools were selected into the sample. Within each non-BIA stratum, schools were 

systematically selected using a probability proportionate to size algorithm. The measure of size that 

SASS used for the schools was the square root of the number of teachers in the school as reported on 

the CCD file. 
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3. Variance Estimation Methods  

 

Bootstrap Method 

 As mentioned above, Bureau of the Census statisticians included in the SASS Public School 

data file 48 replicate weights corresponding 48 bootstrap samples selected systematically without 

replacement to mimic the original sampling. They subsequently reweighted the bootstrap replicate basic 

weights (inverse of the probability of selection) by processing each set of replicate basic weights through 

the same weighting procedure used to create the full sample weights (Abramson et al. 1996). This 

should make the bootstrap variance estimation better reflect the true variance. In our study, we used 

these 48 bootstrap replicate weights to calculate variance estimates using WesVar PC .  

 

Let $θ  be the estimate of θ  based on the full sample and $θk  be the estimate of θ  based on the 

k-th bootstrap sample; the bootstrap variance estimator used in this study is (Westat, 1995) 

( ) ( )v k
k

$ $ $θ θ θ= −
=
∑

1
48

2

1

48
. 

 

Taylor Series Methods 

 Six specific design options are available in SUDAAN (Shah et al., 1995): 

 

1) With Replacement: DESIGN=WR 

• Sampling with replacement at the first stage 

• Sampling with or without replacement at subsequent stages 

• With equal or unequal probabilities of selection at both the first and subsequent 

stages 

 

2) Without Replacement: DESIGN=WOR 

• Sampling without replacement at the first stage 

• Sampling with or without replacement at subsequent stages 

• With equal probabilities of selection at both the first and subsequent stages 
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3) Unequal Probabilities Without Replacement: DESIGN=UNEQWOR 

• Sampling without replacement with unequal probabilities of selection at the first 

stage 

• Sampling with equal probabilities at subsequent stages, with or without replacement 

 

4) Stratified With Replacement: DESIGN=STRWR 

• A single-stage design 

• Stratified random sampling with replacement 

• Equal or unequal probabilities of selection within each stratum 

 

5) Stratified Without Replacement: DESIGN=STRWOR 

• A single-stage design 

• Stratified random sampling without replacement 

• Equal probabilities of selection within each stratum 

 

6) Simple Random Sampling: DESIGN=SRS 

• A single-stage design 

• Simple random sampling 

 

 Options 4 and 5, STRWR and STRWOR, are special cases of single stage WR and WOR, 

respectively, except they are more computationally efficient. Option 6, SRS, is equivalent to standard 

statistical software such as SAS. Thus SUDAAN accommodates three basic types of sample designs: 

WR, WOR, and UNEQWOR. However, Option 3, UNEQWOR, requires users to provide the joint 

probabilities of selection for each pair of PSUs within each first-stage stratum. As this information is 

rarely available, UNEQWOR is not often used. 

 

 Since there is no unbiased design variance estimator for systematic sampling design, a lot of 

approximate estimators have been proposed and studied (Wolter, 1985). In practice, two frequently 

used approaches to handling this problem are to treat the systematic sample as a with replacement 



An Empirical Study of the Limitation of Using SUDAAN for Variance Estimation Page 76 

  
 

sample from a finite population or a without replacement simple random sample from a finite population, 

corresponding to the WR (or STRWR for single stage design) and WOR (or STRWOR for single stage 

design) design options in SUDAAN. Under a simple random sampling with replacement design, the 

variance estimator of the population total estimator $ $Y Y N y nhh
H

hh
H

hkk
n

h
h= == = =∑ ∑ ∑1 1 1  is  

( )$ $V Y
N
n sWR

h

h
h

h

H
=

=
∑

2
2

1
 

Here ( ) ( )s y y nh hk hkk
n

h
h2

1
2

1= − −=∑ $ , $ /y y nhk hk hk
nh= =∑ 1 . Under a simple random sampling without 

replacement design, the variance estimator of the population total estimator $Y  is 

( ) ( )$ $V Y
N f

n sWOR
h h

hh

H

h=
−

=
∑

2

1

21
 

Here f n Nh h h= . 

 

 In general, ( )[ ] ( )[ ]E V Y E V YWOR WR
$ $ $ $< . Let ( )VSY

$θ  denote the variance of $θ  under systematic 

sampling design; then we hope ( )$ $VWOR θ  or ( )$ $VWR θ  are about the same or slightly conservative for 

( )VSY
$θ . But these are not true in general. If we actually consider the situation of no stratification for 

simplicity, assuming there are total a possible systematic samples represented by s r ar , , ,..., ,= 1 2  then 

the design effect of the total estimator $Y N y nkk
n= =∑ 1  under the systematic sampling design is 

( ) ( )
( )deff SY Y

V Y

V Y

n
f

SY

SRSWOR
, $

$

$= = +
−
−

1
1

1
δ  

Here ( ) ( )[ ]δ = − − −1 1N SSW N a SST , ( )SST y yk Uk
N= −=∑ 2

1  represents the total sum of squares, 

( )SSW y yk ssr
a

rr
= −∑∑ =1  represents the within systematic sample sum of squares, y y ns ksr r

= ∑  is 

the sample mean of the r-th systematic sample, and y y NU kk
N= =∑ 1  is the population mean. It can be 

shown that SST SSW SSB= + , where SSB =  ( )n y ys Ur
a

r
−

=∑
2

1
 represents the between systematic 

sample sum of squares. See, for example, Sarndal&& , Swensson, and Wretman (1992) section 3.4.  
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 Therefore, systematic sampling is more efficient than simple random sampling without 

replacement if δ < 0 . In other words, the more homogeneous the elements within systematic samples 

are, the less efficient the systematic sampling is. It can also be shown that systematic sampling is more 

efficient than simple random sampling with replacement if δ < 1 N . To create a situation where these 

conditions hold, users commonly strive for an ordering that entails a low degree of homogeneity among 

elements within the same systematic sample. However, an ordering which is suitable for one variable 

may not be good for another variable. Therefore, in large scale surveys, systematic sampling may not 

consistently more efficient or less efficient than simple random sampling.  

 

 To implement the STRWR approach in SUDAAN, we simply need the stratum variable (in this 

case STRATM, included in the public data file). This is probably the approach most public data users 

will adopt if they use SUDAAN. To implement the STRWOR approach in SUDAAN, we will also 

need the population counts for each stratum. We put all certainty PSUs together as a new stratum and 

recalculated the population counts for each stratum. This certainty PSU stratum does not contribute 

variance to the variance estimates. 

 

4. Variance Estimate Outputs 

 

 Standard errors for the total estimator are listed in table 1. The estimates from STRWOR and 

STRWR are quite different from the Bootstrap method estimates. In fact, the ratio of STRWOR and 

STRWR standard error estimates to the Bootstrap standard error estimates ranges from 44.21 percent 

to 134.58 percent. Variables DCNOST, DCNOTE, S0255, and S0455 are highly correlated with the 

measure of school size (the square root of total number of teachers), which is proportional to the 

selection probability. In table 2, the standard error estimates of proportions from STRWOR and 

STRWR are bigger than the Bootstrap method estimates.  

 

Variables DCNOST, DCNOTE, S0255, and S0455, which show big differences between 

standard errors in table 1, were also used to construct the ratio estimates in table 3. The ratio estimate 
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for DCNOST/DCNOTE has 13 percent and 16 percent smaller standard errors when calculated from 

STRWOR and STRWR than by the Bootstrap method, while S0455/S0255 shows about the same 

standard error estimates for all methods. 

 

5. Summary 

 This study demonstrates the limitation of software programs like SUDAAN when applied to 

more complex designs, such as systematic sampling. Software programs which apply Taylor series 

method often have limited design options available. When the underlying sample design is different from 

the design options available in the software, approximation is inevitable, which incurs bias.  
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Table 1. Standard errors of the totals 
 

  Estimate Standard error Ratio of standard error 
Variable Label total Bootstrap WOR WR WOR/Boots WR/Boots 
DCNOST Total Students* 41179175 401044 198855 206963 49.58% 51.61% 
DCNOTE Total Teachers* 2339065 21691 9589 9997 44.21% 46.09% 
S0255 Total Students 41621660 393746 208871 217536 53.05% 55.25% 
S0455 Male Students 21232672 209225 110167 114663 52.65% 54.80% 
S0405 American Indian Students 453042 10604 9931 11243 93.65% 106.03% 
S0410 Asian Students  1396638 62953 64242 66257 102.05% 105.25% 
S0415 Hispanic Students 4969062 178946 158454 161929 88.55% 90.49% 
S0420 Black Students 6781341 117841 153563 158594 130.31% 134.58% 
S0425 White Students  28021397 265950 226396 233813 85.13% 87.92% 
S1365 Students in Remedial Reading Program 4526677 102326 101468 103896 99.16% 101.53% 
S1375 Students in Remedial Math Program 2871518 92492 90021 92211 97.33% 99.70% 
S1385 Students in Program for Disabilities 2862212 36281 36009 37527 99.25% 103.43% 
S1395 Students in G. T. Program 2675964 57977 60313 62569 104.03% 107.92% 
* DCNOST and DCNOST are frame variables known to all units in the frame. 
 
 
Table 2. Standard errors of proportions 
 

  Estimate Standard error Ratio of standard error 
Variable Label proportion Bootstrap WOR WR WOR/Boots WR/Boots 
S1360 Remedial Reading Program Available 80.90% 0.535 0.569 0.588 106.4% 109.9% 
S1370 Remedial Math Program Available 60.95% 0.725 0.734 0.755 101.2% 104.1% 
S1380 Program for Disabilities Available 89.15% 0.463 0.516 0.532 111.4% 114.9% 
S1390 GT Program Available 70.73% 0.544 0.67 0.691 123.2% 127.0% 
S1435 Med. Health Care Service Available 58.73% 0.719 0.73 0.751 101.5% 104.5% 
S1440 Have a Library  95.64% 0.338 0.365 0.378 108.0% 111.8% 

 
 
Table 3. Standard errors of ratios 
 

  Estimate Standard error Ratio of standard error 
Statistics Label ratio Bootstrap WOR WR WOR/Boots WR/Boots 
DCNOST/DCNOTE Student/Teacher 17.6 0.052 0.0438 0.0454 84.2% 87.3% 
S0455/S0255 Male/Total 0.51 0.001 0.001 0.001 100.0% 100.0% 
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