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I.  Introduction

In many censuses and sample surveys, missing values commonly exist because some subjects contacted
do not respond to some items being asked. These missing values not only mean less efficient estimates
because of the reduced size of the database but also that standard complete-data methods cannot be
immediately used to analyze the data. Moreover, possible biases exist because the respondents are
often systematically different from the nonrespondents; of particular concern, these biases are difficult to
eliminate since the precise reasons for nonresponse are usually not known. 

Basically, there are four types of imputation procedures to handle missing values: superficial methods,
such as assigning the mean or mode for all missing cases; weighting methods, in which missing values
are implicitly filled in by increasing the weights assigned to similar cases that responded; single
imputation and multiple imputation, which are described below.
 
Single imputation, that is, filling in a value for each missing value, is probably the most common method
for handling item nonresponse in current survey practice. There are three major attractive features
supporting this practice. First, standard complete-data methods of analysis can be used on the filled-in
data set. Second, imputation will obviously be more accurate when close relations exist among
variables present and those missing. Variables with close relations can provide information for each
other. Third, imputation can incorporate data collector’s knowledge. Because the data collectors
usually have much better information about and understanding of the process that creates nonresponse
than the typical user, it is possible that data analysts, even those with a full arsenal of modern statistical
tools, might reach better inferences by trusting the data collector’s imputations than by applying
sophisticated statistical models to a less rich data base.

Just as these advantages are rather obvious and important, there are equally obvious and important
disadvantages of single imputation. When we apply complete-data methods to imputed data sets,
inferences based on the imputed data set will be too sharp since the extra variability due to the
unknown missing values is not being taken into account. Also, quantities such as correlations that
depend on variabilities can be badly biased. Furthermore, when nonreponse is not really understood,
no account is being taken of the uncertainty arising from not knowing which nonresponse models for
imputation are appropriate. These flaws can be corrected by multiple imputation.

Multiple imputation, replacing each missing value with two or more acceptable values representing a
distribution of possibilities, retains the virtues of single imputation and has three extremely important
advantages to multiple imputation over single imputation. First, when imputations are randomly drawn in
an attempt to represent the distribution of the data, multiple imputation increases the efficiency of
estimation. Second, when the multiple imputations represent repeated random draws under a model for
nonresponse, valid inferences—that is, ones that reflect the additional variability due to the missing
values under that model reflect the additional variability due to the missing values under that model—are
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obtained simply by combining complete-data. Third, by generating repeated randomly drawn
imputations under more than one model, multiple imputation allows the straightforward study of the
sensitivity of inferences to various models for nonresponse simply using complete-data methods
repeatedly. However, multiple imputation needs more work to produce multiple imputations and to
analyze the multiply-imputed data set, and more space to store a multiply-imputed data set.

This task evaluated two existing imputation software products: Proc Impute, created by Statistical
Analysis Group in Education (SAGE) and modified by Dr. Wise and Dr. McLaughlin of American
Institute for Research (AIR), and Schafer’s Multiple Imputation Software, created by Dr. Schafer of
Pennsylvania State University. The most recent version of Proc Impute is a stand-alone Fortran
program which can be run under a DOS environment. This version allows a user to generate multiple
imputations, but the results may not be “proper” in the sense of Rubin’s definition (see I (2)). Schafer’s
Multiple Imputation Software consists of three independent parts for multivariate normal variables,
categorical variables and mixed variables, respectively. This software is for a multiple imputation
purpose and cooperates with Rubin’s “proper” criterion if the sample is a simple random sample.

Detailed evaluations of these two software packages are described in section II and section III,
respectively, and a comparison of these two packages and some simulation results are given in section
IV. Different imputations for three variables from 1990-91 SASS administrator data file by NCES,
Schafer’s Multiple Imputation Software and Proc Impute are also attached in appendix 4. Section
V gives our suggestions for next steps.
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II.  Evaluation of Proc Impute

This subtask evaluated the Proc Impute imputation software in terms of its usability/performance in a
DOS or Windows 486 environment, its suitability for generating multiple imputations, its adaptability to
different surveys conducted by the National Center for Education Statistics (NCES), and its feasibility
to interface with SAS.

When we use the term “Proc Impute” in this report we are referring to the stand-alone FORTRAN
program (PC Impute) and not the SAS procedure. The stand-alone program is an improved version of
the SAS procedure1 developed by the Statistical Analysis Group in Education (SAGE) under contract
with NCES.

In this report all discussions about specific performance standards of Proc Impute are based upon runs
conducted on the NCES data set “National Survey of Postsecondary Faculty” (NSOPF);2 these runs
were performed in a Pentium (586) environment—90 MHZ clock speed, 16 megabytes of memory,
and 600 megabytes of hard disk space.

A. ALGORITHM AND ITS IMPLEMENTATION

Description of Algorithm

Proc Impute is a distributional estimation procedure that is believed to be more general and to produce
more accurate results than a standard “hot deck” procedure. Basically, this procedure assumes that
relations among variables are constant for observed cases and missing cases, and considers each
variable on the file in turn as a “target” variable whose missing values are to be filled in and uses
information on other variables to minimize the error in imputing each target variable. For each “target”
variable, regression analysis is used to find the best combination of predictors, and cases with the target
variable present are divided into subsets based on values of the regression function. All cases in a given
subset that are missing the target variable then are imputed with weighted averages of two values drawn
from that regression function value subset and an adjacent subset with probability proportional to the
distribution of reported values for that variable within these two subsets. The basic assumption of this
algorithm is that within these homogenous subsets, the missing value cases will have the same target
value distribution as the cases with reported values on the target variable. More specifically, Proc
Impute makes three passes through the data file.

During the first pass through the data, the program computes basic univariate and bivariate statistics,
such as the mean, standard deviation, minimum, maximum, and the number of missing values for each
variable, the intercorrelations among the variables, and the number of cases missing one variable but not
the other for each pair of variables. Then it determines the best linear predictor of each variable in terms
of the remaining variables and an optimal order for imputing missing values. In order to ensure that Proc
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Impute accurately reflects the strengths of relations among variables on the file, the program allows for
two imputation equations for variables—a first “ghost” imputation equation to provide values to use in
equations that produces the value to be included in the output data set. Predictors are allowed to enter
the equations only if they make significant contributions to reducing error variance.

During the second pass through the data, the bivariate frequency distributions of the regression function
values and their associated target variables are estimated by counting the number of cases in each
regression value subset at each level of the target variable. Then, each bivariate frequency distribution
converted to separate probability distributions of target variables for each regression subset. Moreover,
the mean regression function value in each subset is also computed to provide information for
interpolation between the distributions in adjacent regression subsets. 

During the final pass through the data, missing values are imputed for each case. For each missing value,
two subsets are identified: the regression value subset and the adjacent subset. One observed value
from each subset is selected with the probability proportional to the relative frequency of that value in
that subset. Then the two values drawn from the two adjacent subsets are averaged according to the
distance of the mean regression value in each subset from the regression value for the case being
imputed. This average value is rounded to an integer if the integer flag is set for the target variable. 

After all missing values have been imputed for a case, the case is written to the output file with all of the
missing values filled in. Missing data flags are also created and set for each variable with a value of “I”
corresponding to imputed values, “R” corresponding to real values and “A” corresponding to skip
missing values. 

Implementation of Algorithm
 
The original version of Proc Impute created by SAGE is used as a SAS procedure on a JCL
mainframe, but the recent PC version modified by Dr. Wise and Dr. McLaughlin of American Institutes
for Research is a stand-alone Fortran program which can only be run under a DOS environment. But it
is easy to interface with SAS for Windows (see B(4) for details). 
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B. EVALUATION 

Our evaluation consists of answering three main questions (1)-(4) described in the following
paragraphs. Answers to questions (3) and (4) are based on our own version of Proc Impute that has
been slightly modified. 
 
(1) Is it feasible to perform all imputations for a “typical” NCES survey with Proc Impute on

a 486 PC? 

Yes, it is. Proc Impute is a multiple-regression-based algorithm. It can impute all types of variables
by treating them as continuous, but the imputation values generated by this procedure are within the
range of observed values. Categorical variables are treated as if they were ordered, and it may be
desirable to recode categorical variables into a series of dichotomous indicators prior to use Proc
Impute.

Speed and storage are not serious problems to run this software on a 486 PC, but it should be
noted that it is less expensive to make a series of calls to Proc Impute on small blocks of variables
than a single call on a large number of variables, and it is more efficient to put highly correlated
variables into the same block and to include key predictor variables in every block. It is advisable
to include no more than 30 variables for each call. The user must construct a control file to run the
program just once to carry out all the imputations as a batch job.

More specific features about the feasibility of the software are described in the following five
questions (a)-(e).

 
     (a) How many runs would it take to impute all variables in a survey?

First, it should be noted that Proc Impute uses a regression-based imputation algorithm.
Second, in our experience, Proc Impute can effectively incorporate no more than 30 variables
into any one regression model. Therefore, any “large” data sets (i.e., data sets containing more
than 30 variables) must be partitioned into subsets containing no more than 30 variables each
before being processed by Proc Impute.

Given those considerations, how many runs does it take to impute all variables in a survey? In
short, one  run is all that is required to impute all missing values (for all variables) in any survey.
However, in the case of “large” data sets, one run would consist of the following four steps:

(i) First, the analyst must decide upon the specific regression models to use in partitioning the
variables. Let’s use the 1993 National Study of Postsecondary Faculty (NSOPF) data as an
example. If the strategy is to merely use “adjacent” variables in the regression models, then the
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analyst would partition the NSOPF data set into about 14 (i.e., 400/30 . 13.3) subsets. If the
strategy is to use key predictor variables (e.g., sex, race, and region) in every regression model
(in addition to the adjacent variable strategy), then the analyst would partition the NSOPF data
set into about 15 (i.e., 397/27 . 14.7) subsets. Obviously, how much the regression models
are customized determines not only the number of subsets to be processed by Proc Impute,
but also the amount of time devoted to the overall imputation process (see part (e) below).

(ii) Second, an ASCII data file must be created for each subset of variables (i.e., for each
regression model). This can be accomplished by running one SAS program.

(iii) The third step involves running Proc Impute on each data subset. To perform an
imputation, a control file must be constructed. Fortunately, one can specify all of the regression
models in the same control file and, thus, run Proc Impute on the entire data set as a single
batch job.

(iv) The final step in the process is combining the output (imputed) files into a single file that
contains both the original and the imputed values for all variables, with flags indicating imputed
values.

While Proc Impute will impute all missing values in any data (sub)set that is specified in the
control file in one  run and, thus, will impute all missing values for any data file in one run
(possibly processed as subsets of the file and run as a batch job), the amount of pre- and post-
processing of a given data file is dependent upon the size of the file, the number of variables in
the file, the relationships among the variables, etc.

      (b) Can Proc Impute handle all types of variables (i.e., continuous, ordinal, and 
categorical) correctly?

Proc Impute will only process “numerical” data; that is, it will only process variables that are
both coded and stored as strings of numbers—not variables whose coding and storage allows
for character strings. Any “character” variables in the data set must be either recoded to
“numeric” or removed from the data set. Once the data set holds the proper coding, each
variable will have a continuous, an ordinal, or a categorical distribution—categorical variables
can be either dichotomous or polytomous. Proc Impute’s ability to process each of the
distribution types is as follows:

Continuous: Because Proc Impute uses a regression-based algorithm, it assumes that each
variable is continuous, is distributed normally, and has homogeneous variance. A “standard”
linear regression that is run on continuous variables which violate the distribution or variance
assumptions often yields high probabilities of generating “out-of-range” predictions. However,
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in attempts to avoid imputing “out-of-range” values, Proc Impute uses knowledge about
conditional frequency distributions along with its regression algorithm when imputing missing
values.

Basically, Proc Impute considers each variable with missing values as a “target” variable, and
uses step-wise regression to identify the best combination of predictor variables for each
“target” variable based solely upon those cases where the value of the “target” variable is not
missing. Once the regression models are constructed and regression values are computed for
all cases, Proc Impute partitions the range of regression values into subsets. For each missing
value, two subsets are identified: the regression value subset and the adjacent subset. One
observed value from each subset is selected with probability proportional to the relative
frequency of that value in that subset. Then the two values obtained from the two adjacent
subsets are averaged according to the distance of the mean regression value in each subset
from the regression value for the case being imputed. This average value is rounded to an
integer if the integer flag is set for the target variable. Hence, all imputed values not only are
within the range of observed values but also exhibit distributions similar to the observed values.4

In short, Proc Impute encounters little difficulty in imputing a “reasonable” set of missing values
for continuous variables.

Ordinal: Proc Impute handles ordinal variables as if they were continuous. Therefore, all
imputed values are within the range of observed values, and all imputed values exhibit
distributional properties similar to those of the observed values. We experienced no difficulties
in Proc Impute’s handling of ordinal variables.

Dichotomous: Again, Proc Impute assumes that all variables are continuous—if the analyst is
willing to assume normality and homogeneous variance for dichotomous variables, then the set
of imputed values will have the “nice” properties listed above. We experienced no difficulties in
Proc Impute’s handling of dichotomous variables.

Polytomous: For each polytomous categorical variable, the analyst needs to create an
appropriate number of dummy (0/1) variables,5 and then run Proc Impute on the dummy
variables. Proc Impute handles the dummy variables in the same fashion that it handles
dichotomous variables. Since Proc Impute does not understand that the dummy variables are
grouped as sets of variables, the imputed values may be meaningless;6 however, since the
dummy variables in any set representing a given polytomous variable are highly correlated, that
should rarely happen. Fewer than four percent of the imputed values of our “reconstructed”
polytomous variables were bad.

In summary, once all “character” variables either have been converted to “numeric” or have
been removed from the data set, there exists no special pre- or post-processing for continuous,
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ordinal, or dichotomous categorical variables. Also, imputed values for all such variables are
reasonable—reasonable in the sense that the imputed values both fall within the range of the
observed values and mimic the distributional properties of the observed values.

Polytomous categorical variables are the only type that are potentially troublesome to Proc
Impute. Special pre- and post-processing is required for polytomous variables—the mapping
and inverse mapping of the polytomous variables to and from their associated sets of dummy
variables. And, although it is uncommon, Proc Impute may impute values into the dummy
variables that are meaningless after performing the inverse mapping to the original polytomous
variable. In such cases “hot-deck” procedures may be appropriate to impute any remaining
missing values.

      (c) How much special processing is required to handle skip patterns?

It is very easy for Proc Impute to handle skip patterns. The analyst only need to set the skip
missing values to “A” in the ASCII data file. If the ASCII data file is created from a SAS data
file, then the skip missing values should be set to “.A”.

      (d) How much memory and disk space is needed?

The amount of required disk space is predominantly a function of the size of your data file. It
requires about 480 Kb conventional memory to run Proc Impute. With a 586 Pentium PC (16
Mb of total memory and 636 Kb conventional memory), we did not experience memory
problems after we remove some programs to generate 488 Kb free conventional memory to
run Proc Impute. Considering the rate of technological developments, we do not foresee future
difficulties.

      (e) How fast is it?

For the actual imputation processing, speed is not a serious issue. For the NSOPF survey, a
run with 12,000 cases and 30 variables took less than 20 minutes—this translates into a
processing time of less than 280 minutes if the entire data set was run as a batch job (14
subsets multiplied by 20 minutes/subset—see question 1a(i)).

However, an analyst will devote the majority of his/her processing time to pre- and post-
imputation file management. This time will be spent performing a subset of the following tasks:
•    Changing “character” variables to “numeric” variables and/or removing “character”

variables from the file.
•    Creating ASCII flat file(s)—if working with data in some other format, and
•    Constructing control programs (IMPUTE.CON).
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For “large” data sets,
•    Determining the appropriate partitioning scheme (i.e., determining the regression model

subsets), and
• Combining the output (imputed) subsets into one overall completed file.
For polytomous variables, 
•     Creating dummy variables and then performing the mappings and inverse mappings

between the original polytomous variables and the associated dummy variables, and
• Using another method of imputation for individual cases where Proc Impute generated

“meaningless” values.
For cases with valid skips,
• Removing the cases from the data file before imputation processing, and
• Merging the removed cases with the imputed data file, and
• Using another method of imputation to generate outcomes for variables with “true” missing

values.

Working through this list of pre- and post-imputation tasks could easily consume more than a
full work-week’s worth of the analyst’s time. Hence, the non-imputation portion of the
processing is easily the most time-consuming part of generating a complete data set using Proc
Impute.

(2) Does Proc Impute perform “proper” imputations in the sense of Rubin?7 If not, can Proc
Impute be adapted to perform multiple imputations?

Multiple imputation involves imputing each missing value (in the incomplete data set) multiple times. 
Hence, in performing a multiple imputation, one creates multiple files of complete data, wherein
each of the multiple data files has a different set of imputed values. Once the multiple files have been
constructed, the analyst should replicate all subsequent analyses by using the information from all
of the multiple files to assess the impact of random variation (of missing values) on statistical
inferences.

Rubin listed three criteria to satisfy a Proper Multiple Imputation (PMI): (i) the multiple imputation
procedure provides randomization-valid inferences for the complete-data statistic Ô (the
conditional mean of the objective of the study O), (ii) the average of the multiple complete-data
variance is centered at U (the conditional variance of O) with variability of a lower order than that
of Ö (the variance of the posterior mean of O), and (iii) over repeated samples, the variability of B
(the variance of the posterior mean) is also centered at U and is of a lower order than that of Ô.
These criteria are based on m 6 4 (where m is the number of imputations on the data set).

Rubin’s PMI criteria are based on the asymptotic properties of the multiple imputation statistics;
hence, the concept of “proper” imputation is exclusively suitable to multiple imputation
approaches. Since Proc Impute uses a single imputation procedure based upon a (non-
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Bayesian) distributional estimation, Proc Impute cannot meet Rubin's criteria for “proper”
imputation. However, it is the case that Proc Impute is designed to assess the impact of random
variation (of missing values) on statistical inferences.

Even though the two methods cannot be compared in the “proper” sense (as introduced by Rubin),
we can still examine the criteria for the optimalities of these two methods—the randomization-valid
inferences for PMI are based on the concept of the Central Limit Theorem whereas the
distributional estimation method employed in Proc Impute is based on Pitman’s Closeness
Criterion.8

Proc Impute allows a user to generate m sets of imputations by setting the option “multiple=m” in
the control file (see (3) for details). Then the question arises: “as the number of imputations
increases, do these sets of imputed values adhere to Rubin’s PMI criteria?” The answer depends
upon the data, since Proc Impute uses regression to find the optimal combination of predictors. If
the involved errors agree with the Gauss-Markov assumption then the least-squares estimator gives
an optimal fit of the observations to theoretical models. It would not be difficult to verify that
multiple imputations generated by Proc Impute are “proper,” since both the observed “combination
of predictors” and the observed “distribution of the cases in the range” would converge to the true
“combination of predictors” and the true “distribution in the range,” respectively. It should also be
noted that the average of m estimators based on the m sets of imputed data is asymptotically
unbiased (conditionally on the observed data) if the multiple imputation procedure is randomization-
valid.9

Since the design and structure of Proc Impute are fixed, it would not be easy to incorporate
Rubin’s strategies into the program.

(3) How to use Proc Impute?

This PC version of Proc Impute is a stand-alone Fortran program and is invoked by calling the
executable file IMPUTE.EXE from DOS. Proc Impute expects to find a DOS ASCII control file
(the default control file name is IMPUTE.CON) which specifies the imputation problem and the
input and output data sets. So there are two steps to run this software: First, construct a control file;
then, call IMPUTE.EXE. The format of the control file is given below and an example of a control
file is given after the description. 

Format of the control file for version 2.0 of Proc Impute

PROC IMPUTE options;
TITLE statement;
BY statement (optional);
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  VAR statement;

If there are more than one data subsets which require imputation, we will repeat these statements in
the same control file such that all the imputation can be carried out as a single batch job. “PROC
IMPUTE” statement and “VAR” statement are required by every subset. It always starts with a
“PROC IMPUTE” statement and ends with a semi-colon. The program stops reading statements
when it comes to the end of the control file or encounters another “PROC IMPUTE” line, indicating
a new imputation request. Detailed description of the statements and the options follows.

PROC IMPUTE Statement

PROC IMPUTE options;

The options that can appear in the PROC IMPUTE statement are given below. These options can
be in any order, and most options have default values and therefore need not to be specified. But
the input, output, and printout files must be specified through the options “DATA=filename,”
“OUT=filename,” and “PRINTOUT=filename,” respectively.

  DATA=filename
specifies the directory and the name of the input ASCII data file to be imputed by Proc
Impute. If no directory is specified, Proc Impute expects the file is located on the directory
where Proc Impute is installed.

OUT=filename
specifies the directory and the name of the output ASCII data file outputed by Proc Impute. If
no directory is specified, Proc Impute expects the file is located on the directory where Proc
Impute is installed.

PRINTOUT=filename
specifies the name of the printout file which reports missing data frequencies and univeriate
statistics, characteristics of cases with missing values, correlations between reported values,
regression equations, conditional distributions and error analysis.

EQNS=filename
specifies the name of the output file that contains more detailed information about the regression
equations than that given in the PRINTOUT file. But the file is not so readable. The default file
name is IMPUTE.EQN.

DISTS=filename
specifies the name of the output file that contains more detailed information about the
conditional distributions than that given in the PRINTOUT file. But the file is not so readable.
The default file name is IMPUTE.DIS.
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TERSE|VERBOSE
controls the PRINTOUT file. The default value is TERSE. VERBOSE will lead to a much
longer PRINTOUT file, and may be used when some unusual results occur.

 FLEVEL=number
sets a threshold for letting variables into the prediction equation. A higher FLEVEL will let in
more variables. Dr. McLaughlin, one author of Proc Impute, claims that the value 0.25 works
best with his experience.

HOTDECK|SIMPLE|REGRESS
specifies the method to impute the missing values. The default method is HOTDECK which
imputes values selected randomly from the empirical distribution as described in II(A).
SIMPLE method imputes the mean value for all missing cases. And REGRESS method imputes
the predicted values from the regression equation for the missing cases. 

SEED=number
sets random generator seed.

MULTIPLE=number
specifies the number of multiple imputation sets. The number can not be too big due to the
storage limitation. If MULTIPLE=4, say, is used as an option, and the output data file is
specified as OUTFILE.TXT, for example, then Proc Impute will create four sets of output files
named OUTFILE.TXT, OU2FILE.TXT, OU3FILE.TXT and OU4FILE.TXT. That is, for
imputations other than one, it replaces the third character in the file name by the index of the
multiple.

RECL=number
specifies the record length. RECL does not necessarily equal to the exact length of the records.
But it should be noted that the missingness flags are outputed at the position of RECL+2. If the
RECL is set to be too small, the missingness flags may overwrite the data. On the other hand, if
the RECL is set to be too large, it wastes storage space. 

BY Statement

BY var col len;

A BY statement can be used in the control file to allow selection of values for imputation from
different distributions for different subsets of the data defined by the BY variables. The syntax is
“BY var col len”, where “var” gives the variable name, “col” gives the starting column of a record
where the BY variable is located, and “len” gives the length of the BY variable. For example, if the
BY variable “school” is located in columns 11-15 of a record, we should use “BY school 11 5".
The input data file must be pre-sorted by the BY variable if this statement is used.
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TITLE Statement

TITLE ‘characters’;

A TITLE statement can be used in the control file to specify a title for the PRINTOUT file.

VAR Statement

VAR variablel col format
variable2 col format
......

;

A VAR statement must be used in the control file to specify the “target” variables to be imputed by
Proc Impute. Variables with no missing value may also be specified in this statement so that they
can be used in the regression model to provide information for predicting missing values of other
variables. The syntax is “VAR variable col format”, where “variable” gives the variable name, “col”
gives the starting column where the variable is located, and “format” specifies the format of the
values for that variable. None of these three elements can be omitted.

Here is an example of a control file that impute two data sets verif1.dat and verif2.dat, where 
verif1.dat has 4 variables for imputation and verif2.dat has 6 variables for imputation. 

An example of the control file

PROC IMPUTE DATA=a:\verif1.dat OUT=verif1.out
        PRINTOUT=verif1.prn  EQNS=verif1.eqn  DISTS=verif1.dis
        TERSE  HOTDECK  SEED=11111  FLEVEL=0.25
        MULTIPLE=1  RECL=66;
 TITLE 'Imputations for data set verif1 with 4 variables';
  VAR Y1  1 8.3
     Y2 9 8.3
     Y3     17 8.3
     Y4     25 8.3

;

PROC IMPUTE DATA=a:\verif2.dat OUT=a:\verift2.out
      PRINTOUT=verif2.prn EQNS=verif2.eqn DISTS=verif2.dis
        TERSE HOTDECK  SEED=11111  FLEVEL=0.25
        MULTIPLE=1 RECL=65;
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 TITLE 'Imputations for data set verif2 with 5 variables';
  VAR Y1 1 8.3
     Y2  9 8.3
     Y3     17 8.3
     Y4     25 8.3

Y5    33 8.3
;

(4) How to interface Proc Impute with SAS for Windows?

Proc Impute can be run from within SAS so that an analyst can do both imputation and analysis for
the imputed data within the same SAS session. Suppose that we want to impute an incomplete SAS
data file named incomp.sd2, and output a imputed SAS data file named comp.sd2, which keeps
the original variable names, labels, and formats, etc, as in incomp.sd2. We will need the following
five simple steps to do the job:

(i) Create an ASCII input file (named as a:\temp1.dat) for Proc Impute with SAS 
statements:

data tmp1; set incomp;
file “a:\tmp1.dat”; 
put variable list; (with fixed formats)
run;

(ii) Construct a control file as described in B(3) above. An easiest way to specify the 
control file is to open an old control file into SAS editor or somewhere else and 
modify it. Any convenient variable name (such as X1, X2, ..., etc) can be used in 
the VAR statement in the control file. They do not have to be the same as in 
incomp.sd2.

(iii) Use SAS File|Run pull-down menu to run Proc Impute from within SAS. Let us call
the output data file as a:\tmp2.dat.

(iv) Create a complete SAS data file from imputed data file a:\tmp2.dat. 
   data tmp; infile “a:\tmp2.dat”; 

input variable list; (the same variable names as in incomp.sd2)
run;

(v) Create the target SAS complete data file which keeps the variable names, labels, 
format, etc, as in the original SAS data file incomp.sd2:

data comp; merge incomp tmp; run;

For a “large” data set that has over 30 variables, we may have to divide the data set into several
subsets, and perform steps (i) once for each subset but we only need to perform steps (ii) and (iii)
once for all subsets. If the single imputation option is selected, we need to execute steps (iv) and (v)
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once for each subset, and then use another MERGE statement to combine all these complete SAS
data files into one complete SAS data file if necessary; if the multiple imputation option is selected,
we need to execute steps (iv) and (v) multiple times for each subset and use MERGE statement
multiple times to combine the corresponding data files (one file from each subset each time) to
generate multiple imputed data files.  

C. NOTES

1 PC Impute contains three refinements—McLaughlin, Donald H. (1991), “Imputation for Non-
Response Adjustment,” Internal Report. American Institutes for Research: Palo Alto, California.

2 NSOPF (faculty survey) contains approximately 12,000 cases and 400 variables.

3 We ran Proc Impute on a sample consisting of 872 cases and 31 variables on both a 486 machine
(33 MHZ speed, 16 Mb memory, 110 Mb storage) and the above 586 machine. The processing times
were 55 (± 1) seconds and 15 (± 1) seconds, respectively. These outcomes indicate that the 586 is 3.4
to 4 times faster than the 486 in processing a Proc Impute run. However, it should be noted that this
conversion factor is a function of many things: the number of cases, the number of variables, the number
of missing values, the pattern of missing values, the correlations among the variables, etc.

4 The basic assumption of this algorithm is that within these homogeneous subsets, the missing value
cases have “target” variable distributions identical to the “target” variable distributions of cases with
reported values—SAGE (1980), “Guidebook for Imputation of Missing Data,” prepared for NCES
(contract #300-78-150). American Institutes for Research: Palo Alto, CA.

5 For example, for a ten-category variable one needs to create nine 0/1 dummy variables, where for
each case either: (a) eight of the dummy variables are coded with the value 0 and the remaining dummy
variable is coded with the value 1 (indicating that the original polytomous variable case belongs to the
dummy category coded “1”) or (b) all nine of the dummy variables are coded with the value 0 and no
dummy variable is coded with the value 1 (indicating that the original polytomous variable case belongs
to the “missing” dummy category). In general, an n-category variable would be associated with (n-1)
dummy variables having coding schemes analogous to the above example.

6 In the above example, for a specific case, it may be the situation that more than one of the nine dummy
variables will be imputed with the value “1”—this would indicate that the original polytomous variable
case assumes multiple categories simultaneously!

7 Rubin, Donald B.(1987), Multiple Imputation for Nonresponse in Surveys. New York: John Wiley &
Sons.
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8 For an estimation problem with parameter space 1, an estimator *1 is said to be Pitman closer 
(to õ) than *2, if, for every õ01, Põ(**1(X)-õ*<**2(X)-õ*)>0.5. This criterion is called Pitman 
closeness or Pitman nearness or Pitman domination.  
 
9 Rubin, Multiple Imputation for Nonresponse in Surveys, 116. 
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  III. Evaluation of Schafer’s Multiple Imputation Software 
 
Schafer’s Multiple Imputation Software consists of three independent parts: the first part uses a 
multivariate normal model to impute continuous variables; the second part uses a saturated 
multinomial model and a constrained loglinear model (Bishop, Fienberg and Holland, 1975) to 
impute categorical variables; and the third part uses restricted and unrestricted general location 
models (Olkin & Tate, 1961) to impute mixed variables (include both categorical variables and 
continuous variables in one model). We implemented all three parts on a PC environment and 
evaluated them in terms of its usability/performance in a Windows 486 PC environment, and its 
adaptability to different surveys conducted by NCES. 
 
All discussions about specific performance standards of this software are based on runs 
conducted on the NCES data set “1993-94 School and Staffing Survey Administrator 
Component” (SASS.AS). These runs were performed in a Pentium (586) environment—90 MHZ 
clock speed, 16 megabytes of memory, and 520 megabytes of hard disk space. 
 
A. ALGORITHM AND ITS IMPLEMENTATION 
 
Description of the Algorithms 
 
Schafer’s multiple imputation software uses multivariate normal models, multinomial models 
and general location models to impute missing values for continuous variables, categorical 
variables and mixed variables, respectively. All models assume that the missing mechanism is 
ignorable; that is, missing values occur at random. Brief descriptions of the three types of models 
follow. Details about these models can be found in Schafer (1991).  
 
(1) Algorithms for Incomplete Continuous Data 
 
Suppose that a random vector X=(Y1, Y2, ..., Yp) has a multivariate normal distribution 
MN(µ,E), the prior distribution of µ, given G, is multivariate normal MN(µ0, J-1 G), and the prior 
distribution of G is normal-inverted Wishart W-1 (m, 7). Then the posterior distributions of µ and 
G are also multivariate normal MN (µ´0, (J´)-1 G), and normal-inverted Wishart W-1 (m´, 7´), 
respectively, where the updated hyperparameters are 
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Where n stands for the sample size and S stands for the sample variance. 
 
First, this software uses the EM algorithm (Dempster, Laird, and Rubin, 1977; Little and Rubin, 
1987) to find the Maximum Likelihood Estimates of µ and G, which may be used as the starting 
values in the iterative simulation step. Then, the software applies the iterative simulation method 
to simulate one or more iterations of a single Markov chain (Schafer, 1995). Each iteration 
consists of a random imputation of the missing data drawn from multivariate normal distribution 
with current parameter values (I-step), followed by a random draw from the posterior 
distributions of the parameters, multivariate normal distribution of µ and normal-inverted 
Wishart distribution of G, given the observed data and the imputed data (P-step).  
 
(2) Algorithms for Incomplete Categorical Data 
 
Let Y1, Y2, ..., Yp denote the p categorical variables recorded for n units (rows) in the n×p data 
matrix Y. Denote the possible values of Yj by the positive integers 1, 2, ..., dj for j=1, 2, ..., p. 
Each row of Y can be assigned to a unique cell of the p-dimensional contingency table that 
cross-classified the data by Y1, Y2, ..., Yp . Denote the total number of cells in this table by D=J 

dj, the cell probabilities by 2={2d: d=1, 2, ..., D}, and the cell counts by {xd: d=1, 2, ..., D}, after 
we re-index the cells by 1, 2, ..., D in such an order that the first variable varies the fastest, and 
the second variable varies the second fastest, and so on. The software considers two types of 
models for categorical data. 
 
(2.1) Saturated Multinomial Model 
 
Suppose Y has a multinomial distribution with a density function  
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where IS is the indicator for the simplex S={2: 2d >0, 32d=1 }. If a cell probability is 0, we call 
it structural zero and exclude it from any further calculation. Assume the priors for the cell 
probabilities 2 are Dirichlet distribution with hyperparameters {<d }(the natural conjugate prior), 
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then the posterior distribution for 2 is also Dirichlet with hyperparameters {xd +<d -1}, 
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To apply this saturated multinomial model to incomplete categorical data, the software first use 
the EM algorithm to find maximum likelihood estimate or posterior mode of cell probabilities 2, 
which may be used as the starting values in the iterative simulation step. Then, the software 
applies the iterative simulation method to simulate one or more iterations of a single Markov 
chain. Each iteration consists of an I-step and a P-step. The I-step draws a random imputation for 
the missing data from multinomial distribution with current parameter estimates, and the P-step 
draws parameter estimates of the cell probabilities 2 from the posterior Dirichelet distribution. 
Details about the implementation of I-step can be found in Schafer (1991, pp. 79-80). The P-step 
is very straightforward. 
 
(2.2) The constrained loglinear model 
 
The saturated multinomial model fits the full set of D-1 parameters in 2 and may be appropriate 
when the number of cases n is large relative to the number of cells D. As the number of variables 
p grows, however, D quickly becomes enormous, and it may be undesirable to estimate all D-1 
parameters. In such cases, it is customary to reduce the dimensionality of the problem by 
requiring 2 to satisfy a set of loglinear constraints. Now let 2ijk...t denote the cell probability for 
the cell where Y1= i, Y2= j, ..., Yp= t. We may impose the loglinear constraints  
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on the cell probabilities, where, for identifiability, the u-terms are constrained to sum to zero 
over any subscripts; for example,  
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By setting some of u-terms to zero, especially the higher order interactions, we can often capture 
the essential features of the data set without resorting to the estimation of all D-1 parameters. 
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The maximum likelihood estimates of 2 can be obtained through the algorithm of Iterative 
Proportion Fitting (Bishop, Fienberg and Holland, 1975). The GIBS algorithm, a stochastic 
version of IPF called Bayesian IPF by Gelman, Meng and Rubin (1991), is used to simulate the 
posterior distribution of 2 under this loglinear model. 
 
To apply this constrained loglinear model to incomplete categorical data, the software first use 
the ECM algorithm (Meng and Rubin, 1991) to find the maximum likelihood estimate or 
posterior mode of the cell probabilities, which may be used as the starting values in the iterative 
simulation step. Then, the software applies the iterative simulation method to simulate one or 
more iterations of a single Markov chain. Each iteration also consists of an I-step and a P-step. 
The I-step is identical to the I-step of the saturated multinomial model, while the P-step uses the 
Bayesian IPF algorithm to draw parameter estimates for the cell probabilities.  
 
(3) Algorithms for Incomplete Mixed Data 
 
Partition the complete data matrix Y as Y=(W, Z), where W is an n×p matrix of categorical 
variables, and Z is an n×q matrix of continuous variables. Let W1, W2, ..., Wp and Z1, Z2, ..., Zq 
denote the variables in W and Z, respectively. As in A(2) above, denote the possible values of Wj 
by the positive integers 1, 2, ..., dj, the total number of cells by D=A dj, the cell probabilities by 
B={Bd: d=1, 2, ..., D}, and the cell counts by {xd: d=1, 2, ..., D}, after we re-index the cells by 1, 
2, ..., D in such an order that the first variable varies the fastest, and the second variable varies 
the second fastest, and so on. Let U be the n×D matrix with rows ui

T , i=1, 2, ...n, where ui is a D-
vector containing a 1 in position d if the ith row of W falls into cell d, and 0’s in all other 
positions.  
 
(3.1) The general location model (Olkin and Tate, 1961) 
 
This model assumes that the marginal distribution of W is a multinomial distribution on the cell 
counts {xd: d=1, 2, ..., D},  
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where IS is the indicator for the simplex S={B: Bd >0, 3Bd=1 }. If a cell probability is 0, it will 
be excluded from any further calculation. Given W, the rows of Z are conditionally modeled as 
multivariate normal. Let Ed be a D-vector containing a 1 in position d, and 0's elsewhere. The 
conditional distribution of the ith row of Z, given ui =Ed (i.e., ith row falls in cell d), is assumed 
to be MN(µd, E), where µd is a q-vector of means corresponding to cell d. This model allows the 
means of Z1, Z2, ..., Zq to vary freely from cell to cell, but assumes a common covariance 
structure E for all cells.  
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Let 2=(B, µ, E) denote all the parameters in this model, where µ=(µ1, µ2,..., µD) T is a D×q matrix 
of means. Assume the prior of B is a Dirichlet distribution with hyperparameters <={<d }, and 
the prior distribution of (µ, E) is the diffuse Jeffreys prior B(µ, E) % |E|-(q+1)/2. Then the posterior 
distribution of B, P(B|W), is a Dirichlet distribution with hyperparameters {xd +<d-1}, and the 
posterior distribution of µ and E is multivariate normal and normal-inverted Wishart; that is, 
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for d=1, 2, ..., D, where  
 
 
 ZUUU TT 1)(ˆ −=µ  
 .ˆˆ µUZ −=∈  (A.3.3) 
 
 
If any cell count xd is zero, the matrices U and UTU will have deficient rank, and (A.3.3) will not 
be defined. In this case , the posterior distribution will be improper due to the inestimability of 
µd. When this occurs, an analysis under this prior may proceed by omitting the inestimable 
parameters µd from the model or by reducing the dimensionality of the parameter though a 
constrained model as described in section (3.2) below. 
 
To apply this unrestricted general location model to incomplete mixed data, the software first use 
the EM algorithm to find the maximum likelihood estimates of the cell probabilities, the cell 
means and the covariances, which may be used as the starting values in the iterative simulation 
step. Then, the software applies the iterative simulation method to simulate one or more 
iterations of a single Markov chain. Each iteration consists of an I-step and a P-step. The I-step 
draws a random imputation for the missing categorical data and missing continuous data from 
the predicted multinomial distribution and multivariate normal distribution, respectively, with 
current parameter estimates. Details about the implementation of this step can be found in 
Schafer (1991, pp. 111-115). The P-step simulates parameter estimates of cell probabilities B, 
cell means µ, and covariances E from their posterior distributions, which are Dirichelet, 
multivariate normal and Wishart (A.3.2), respectively. This step is very straightforward. 
 
(3.2) The restricted general location model 
 
The unrestricted general location model has (D-1)+Dq+q(q+1)/2 free parameters, and is useful 
when n is large relative to the number of the free parameters. D and then D×q become enormous  
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very quickly when the number of categorical variables p grows. A restricted model is more 
desirable in practice for mixed data. The same loglinear constrains can be applied to the cell 
probabilities as in section (2.2). Here we discuss the constrains on the within-cell means µ of the 
continuous variables. Let A be a D×r design matrix and µ=A$, where $ is a r×q matrix. We 
assume that rank(A)=r#D. So we only need to estimate rq parameters of $ instead of Dq 
parameters of µ. This constrained model still allow the means µd to vary from cell to cell, but 
now require that each of the q columns of the matrix µ lies in the r-dimensional linear subspace 
of RD spanned by the columns of A. By saturating the loglinear model for B and taking A=ID×D 
(identity matrix), we obtain the general location model as a special case. 
 
In this restricted model, the same prior is assumed and the same posterior will be obtained for the 
cell probabilities as in section (2.2) above, since we apply the marginal distribution to cell 
probabilities which is a separate factor in the full likelihood in the model. For parameters ($, E), 
we still assume the Jeffreys prior; that is, B($, E)%|E|-(q+1)/2, and the posterior distributions are 
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where  
 
 

,1 ZUAV TT−=β    ,ˆˆ βUAZ −=∈    1)( −= UAUAV TT , 
 

and E¼V is the Kronecker product of E and V (Anderson, 1984, pp. 599-601).  
 
To apply this restricted general location model to incomplete mixed data, the software first use 
the ECM algorithm to find the maximum likelihood estimates or posterior modes of cell 
probabilities, the cell means and the covariances, which may be used as the starting values in the 
iterative simulation step. Then, the software applies the iterative simulation method to simulate 
one or more iterations of a single Markov chain. Each iteration also consists of an I-step and a P-
step. The I-step is identical to the I-step of the unrestricted general location model, while the P-
step draws parameter estimates for the cell probabilities B through the Bayesian IPF algorithm, 
and simulates parameter estimates for $ and E from their posterior distribution (A.3.4).  
 
Implementation of algorithm 
 
Dr. Schafer uses S-PLUS functions and Fortran subroutines, which support the S-PLUS 
functions, to implement the above algorithms. The software works in an S-plus environment. 
When we use the term “the software” in this report, we will usually refer to the S-plus functions 
rather than the Fortran subroutines. There are a total of twelve S-PLUS functions for dealing  
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with normal continuous variables, eighteen for categorical variables and nine for mixed variables. But
not all are needed for imputation purposes (see appendix 1-appendix 3 for details). These functions can
be classified into four categories: preliminary data manipulation functions, functions for EM or ECM
algorithm, simulation and imputation functions, and multiple imputation inference functions. 

Due to a problem with the random generators in the original version of the software, none of the
simulation and imputation functions works. We also need to fix some storage mode errors in the
Fortran subroutines in order that the WATCOM Fortran compiler can successfully compile the Fortran
source files in the software. Actually, fixing all these problems takes us more time than the evaluation
process. However, the software still has some problems with the constrained loglinear model for
categorical variables, and the constrained general location model for mixed variables. These two
constrained models try to increase the number of variables in one run by imposing constrains on the
parameters. But, because the programs for these two models work so slowly and still need the same
amount of space to store the parameters as their corresponding saturated models, we can only put one
or two more categorical variables in those constrained models. Furthermore, both models have variable
ordering problems. The variables stored in a particular order according to the missingness pattern after
the preliminary data manipulation, while users will usually specify the u-terms (interactions) in (A.2.4)
for the programs in the original order of the variables. Then the program will mis-match the variables
and therefore the results could be wrong. The results will be correct if the u-terms are symmetrically
designed; that is, if one interaction of a certain order in (A.2.4) is included in the model, all interactions
of that order must be included. The user may call those functions in the software for the constrained
loglinear model (ECM.CAT and DABIPF.CAT) if the u-terms are symmetrically selected, but the
functions in the software for the restricted general location model (ECM.MIX and DABIPF.MIX) are
not recommended in any circumstance because they work very slowly and some unexpected errors,
such as “overflow range error,” may happen for some specific priors. 

Dr. Schafer is working on a new version of the software which will not re-order the variables in the
preliminary data manipulation so that the variable ordering problems described here will not exist any
more in the coming new version.     

B. EVALUATION

Our evaluation consists of answering three main questions (1)-(3) described in the following
paragraphs.

(1) Is it feasible to perform all imputations for a "typical" NCES survey with this 
software on a 486 PC? 

Yes, it is. Combining all three parts of the software with five types of models as described in section
A, we can impute all types of variables for a “typical” NCES survey. A large data set may have to
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be divided into several subsets. The number of variables in each subset depend on the number of
cases and the number of free parameters in the models. Higher correlated variables with similar
scales should be put into the same subset. We may use the first part of the software to impute
continuous variables, and the second part to impute for the categorical variables. If some
categorical variables are highly correlated with some continuous variables, we may want to use the
third part of the software to impute the missing values for these mixed variables.

  
Speed and storage are not very serious problems to run this software on a 486 PC. Furthermore,
this software is easy to use and convenient to handle skip patterns. More specific features about the
feasibility of this software are discussed in the following five questions (a)-(e).

(a) How many runs would it take to impute all variables in a survey?

S-PLUS deals with a data set through a matrix: the rows represent cases and the columns represent
variables. Because object sizes and dynamic memory are limited in S-PLUS, a large data set must
be partitioned into several subsets. The partition strategy is to put highly correlated variables with
close scales (for continuous variables) into the same subset. This makes the convergence criterion
for the EM or ECM algorithms easier to set up and very likely produces more accurate results. The
number of variables in each subset depends on the number of cases and the number of free
parameters to be estimated in the model, which may include cell probabilities, cell means and
variance-covariances. On one hand, more cases can estimate more free parameters so that we can
include more variables in the model; on the other hand, more cases leads to a bigger S-PLUS
object (data matrix) so that we can have less variables in the model. The number of variables in
each subset should be determined such that (1) the size of the data matrix and the dynamic memory
requirement must be under S-PLUS limitation, and (2) the number of cases must be relatively large
to the number of free parameters. 

With the multivariate normal model for continuous variables, we do not have too many free
parameters, and the number of free parameters is not a crucial factor to decide the number of
variables in each subset. The software can incorporate with 30 variables in one subset if the number
of cases is less than 15,000. With all other four models (saturated multinomial model, constrained
loglinear model, unrestricted and restricted general location model), both factors, the number of
cases and the number of free parameters, are crucial to determine the number of variables in each
subset. Generally speaking, an analyst may want to include as many variables in a subset as the
software can correctly handle since more variables in the model will provide more information for
each other to predict the missing values, and including more variables in each subset will lead to less
subsets and therefore less runs. But we do not recommend more than 30 variables in any model
due to consideration of speed, storage and memory requirement, and the number of free
parameters which need to be estimated.     
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The SASS.AS data set has 9,415 observations, 15 categorical variables, and 56 continuous
variables, which are appropriate for imputation. There are a lot of ways to partition these variables.
For example, we may use three saturated multinomial models for the 15 categorical variables and
two multivariate normal models for the 56 continuous variables; or we may use two constrained
loglinear model without third or higher order interactions for the 15 categorical variables and two
multivariate normal models for the 56 continuous variables; or we may use three unrestricted
general location models with 5 categorical variables and 19 continuous variables apiece, etc. But
we do not recommend the user to use the restricted general location model because it works very
slowly and some unexpected errors, such as “overflow range error,” may happen for some specific
priors. We mean that the S-PLUS functions for this model in this version of the software do not
work so well.  

 
After the variables have been divided into a certain number of subsets and each subset of data has
been read into an S-PLUS data matrix, the following runs are required to impute the variables for
each subset:

(i) Call function prelim.norm for multivariate normal models, prelim.cat for saturated
multinomial models and constrained loglinear models, or prelim.mix for restricted and
unrestricted general location models, to perform some preliminary manipulations, such as
centering, scaling, and sorting by missingness patterns on a matrix of incomplete data.

(ii) Call function em.norm for multivariate normal models, em.cat for multinomial models,
ecm.cat for constrained loglinear models, em.mix for unrestricted general location models,
and ecm.mix for restricted general location models, to find the maximum-likelihood
estimates of the parameters with the incomplete data using the EM or ECM algorithm.
These parameter estimators of cell probabilities (if categorical variables are present),
means, and variance-covariances, will usually be used as starting values of parameters for
the iterative simulation functions da.norm, da.cat, dabipf.cat, da.mix and dabipf.mix.

(iii) Call function da.norm for multivariate normal models, da.cat for saturated multinomial
models, dabipf.cat for constrained loglinear models, da.mix for unrestricted general
location models, or dabipf.mix for restricted general location models, to simulate one or
more iterations of a single Markov chain under a normal-inverted Wishart prior. These
functions draws parameter estimates from their posterior distributions. These parameter
estimates will be used by step (iv) below to generate imputations for missing values.

(iv) Call function imp.norm for multivariate normal models, imp.cat for saturated multinomial
models and constrained loglinear models, or imp.mix for general location models (both
restricted and unrestricted), to impute the missing values of the data matrix under user-
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supplied values of the parameters (usually use the parameter estimates from step (iii)).
These functions will return a matrix of complete data.

Steps (iii) and (iv) can be performed multiple times to generate multiple imputations.

(b) Can it handle all types of variables?

Yes, it can. We may use multivariate normal models to impute continuous variables, saturated
multinomial models and/or constrained loglinear models to impute for categorical variables, and
restricted and/or general location models to impute mixed variables when categorical variables
are highly correlated with continuous variables. We believe that the models for categorical
variables and mixed variables in this software are more appropriate than Proc Impute which
fits usual regression models by treating all types of variables as continuous variables.

The multivariate normal assumption is crucial to the Schafer’s normal imputation models. If the
variables departure too far from normality, the imputations generated by Schafer’s software
could be very bad. Theoretically speaking, any continuous variable can be transferred to a
variable with a normal distribution. But we may not be able to do so in practice since the true
distribution of a variable rarely known to us, or the exact transformation may be too
complicated to perform even if we know the distribution of the variable. Therefore, in practice,
we may first use some common transformations (e.g., logarithm, exponential, square root,
square, etc.) to make the variables as close to normal variables as possible, then apply
Schafer’s multivariate normal imputation models to the transferred variables.

It should be noted that all four types of models which involve categorical variables do not take
explicit account of any ordering of the categories; that is, they regard the possible levels of each
categorical variable as unordered categories. In some case, incomplete ordinal data can
approximately be handled by pretending that they are normally distributed and applying the
multivariate normal model. In other cases, we may disregard the ordering and apply the
multinomial model. Although the multinomial model may result in some loss of information and
may be less satisfactory for the development of scientifically meaningful models, it may be a
perfectly reasonable approach if our goal is merely to produce plausible multiple imputations of
the missing data for future analyses (Schafer, 1991, p. 71).

(c) How much special processing is required to handle skip patterns?
 

It is very easy to handle skips in S-PLUS. For example, suppose that “NA” represents the real
missing values, “99999” represents” the valid skips, and x is the data matrix, then the following
four statements will do the job:
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(i) Record positions of valid skips: pos_(x==99999),
            (ii) Treat all valid skips as "true" missing values: x[pos]_NA
            (iii) Use Schafer's software to impute all missing values including real missing 

   values and valid skips.
            (iv) Remove all imputed values for valid skips: x[pos]_99999

Only one minute may be needed to handle all valid skips in this way. If the data set includes
several different “skip flags,” more statements will be needed, but they will be similar to (i), (ii),
and (iv). 

(d) How much memory and disk space would be required?
 

The amount of required memory and disk space depends on the size of the data matrix. Due to
the object size limitation and the dynamic memory limitation in S-PLUS for Windows, the PC
environment where Schafer’s software works, the number of variables in each run is limited.
For a 486 PC, we do not recommend more than 30 variables in any model. Otherwise, it may
run out of dynamic memory or exceed the object limitation. As the number of cases is 20,000
or more, we recommend 20 variables or less in one run. 

For a model involving categorical variables (saturated multinomial model, constrained loglinear
model, restricted/unrestricted general location models), the number of variables in each model
not only depends on the number of cases, but also depends on the number of free parameters in
the model. The number of cases must be relatively large to the number of free parameters. The
number of cells becomes enormous as the number of categorical variables grows. So the
saturated multinomial model and the unrestricted general location model can only include a few
categorical variables. Ten categorical variables will have at least 210 =1,024 cells (and therefore
at least 1,024 free parameters in the saturated models) if all variables have only 2 levels. In a
real survey, 10 variables usually have much more than 1,024 cells. For example, the first 10
categorical variables in the SASS.AS data set include 4 variables with 3 levels, 5 variables with
4 levels, and one variable with 5 levels, which will lead to 34×45×5=414,720 cells. Definitely
that is too much for one model. 

Theoretically, the constrained loglinear model and the restricted general location model can
include much more categorical variables in each run since we can control the number of the free
parameters as we want to. However, we actually can not put too much more variables into
these models due to two reasons: (1) the S-PLUS functions for these models in the software
work so slowly that we can not afford a big model (see next section for details about speed),
and (2) they require the same amount of space to store the parameters. The software store all
the parameters in one vector called “theta” in double precision. The size of “theta” grows as
twice fast as the number of cells when the number of categorical variables grows. It will exceed
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the object size limitation (default value is 5 MB) very quickly. Although we can increase the
maximum object size in S-PLUS to run Schafer’s software with a “theta” larger than 5 MB, it
will be very likely that the program runs out of dynamic memory if we do so. Even if we have
enough memory and space to run with such a big object, the processing time is un-affordable.
For example, it will take several hours to run the constrained loglinear model without third or
higher order interactions for those 10 categorical variables in the SASS.AS data set mentioned
in the previous paragraph. While it only takes about a minute to run two saturated multinomial
models with 5 categorical variables apiece, and merge the two imputed subsets back into one
subset. So it is really not a good idea to run this software with too many categorical variables in
terms of cost.

Here we try to give our recommendation on the number of variables that each model should
include in for data sets with 5,000 to 12,000 cases, but it should not be surprising if they are not 
appropriate for some situations. A user really should determine this issue on his/her own based
on the data set he/she got.

# of variables in one run 
Model (5,000 to 12,000 cases)

Multivariate normal model 30 continuous variables

Saturated multinomial model 5-8 categorical variables

Constrained loglinear model 7-10 categorical variables
(Without 3rd or higher interactions)

Unrestricted general location model about 5 categorical variables &
15-20 continuous variables

Restricted general location model better not use it with this version
(without 3rd or higher order interactions)

As mentioned earlier, a large data set must be partitioned into smaller subsets, and run the 
software on one subset at a time. We experienced that the second run was hung up when we
made two runs of the software in the same S session. It is advisable for a user to quit an S
session after running Schafer’s software for one subset in that session, and enter another S
session to run the software for the second subset if both subsets have more than 25 variables
and over 10,000 cases.
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(e) How fast is it?

The imputation processing time depends on the size of the data matrix, the number of iterations
specified for the iterative simulation algorithm and that for EM or ECM algorithms. Usually, 25
iterations will generate quite stable results for both algorithms.

We have run each model on one or two subsets for the SASS.AS survey data set with 9,415
cases. All runs are supposed to take 25 iterations for both iterative simulation algorithm and EM
or ECM algorithm. The imputation processing time for each model is given as follows. 

S-Functions Time Description 
  

Multivariate Normal Model (with 30 continuous variables)

prelim.norm: 1'10" preliminary data manipulations 
em.norm: 2'15" initial parameter estimates by EM algorithm
da.norm: 4'20" iterative simulation (data augmentation) 

 imp.norm:         1'55" imputation of the missing values
Total:             9'40"

Saturated Multinomial Model (6 variables with 4×5×3×4×3×4=2880 cells)

prelim.cat:    5" preliminary data manipulations 
em.cat:  10" initial parameter estimates by EM algorithm
da.cat:    5" iterative simulation (data augmentation) 

 imp.cat:            2" imputation of the missing values
Total:              22"

Constrained Loglinear Model (8 variables with 4×3×3×3×4×3×4×4=20736 cells 
and no higher than 2nd order interactions)

prelim.cat:    10" preliminary data manipulations 
ecm.cat: 3'35" initial parameter estimates by ECM algorithm
dabipf.cat: 3'38" Bayesian iterative proportional fitting  

 imp.cat:             5" imputation of the missing values
Total:             7'28"
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Unrestricted General Location Model (20 continuous variables and 5 categorical 
variables with 3×5×3×4×3=540 cells)

prelim.mix: 1'15" preliminary data manipulations 
em.mix: 2'15" initial parameter estimates by EM algorithm
da.mix: 1'20" iterative simulation (data augmentation) 

 imp.mix:         1'30" imputation of the missing values
Total:             6'20"

Restricted General Location Model (20 continuous variables and 5 categorical 
variable with no higher than 2nd order interactions and design matrix A=ID×D)

prelim.mix: 1'15" preliminary data manipulations 
ecm.mix: 6 hrs initial parameter estimates by ECM algorithm
dabipf.mix: forever Bayesian iterative proportional fitting

From these results, we can see that the actual imputation processing speed is fast for all models
except the restricted general location model. It is worth to point out that a model including one
more variable may cost a lot more running time. For example, for the constrained loglinear
model, a run (including all 4 steps) with 7 categorical variables takes 1 minute and 23 seconds,
with 8 variables takes 7 minutes and 28 seconds, while with 9 variables takes several hours (we
run DABIPF.CAT and ECM.CAT for a couple of iterations and estimate the total time for 25
iterations). The speed is really sensitive to the size of data set, especially the number of
categorical variables. We should not put too many variables into any single model, but we also
should not put too few variables into the model since more variables in the model will provide
more information for each other to generate more accurate imputations. In the above example,
it is appropriate to put 7 or 8 variables into the constrained loglinear model, while 9 are too
many and 6 are too few.

It should also be noted that the Bayesian Iterative Proportional Fitting Algorithm works very
slowly with this version of the software and it really can not increase too many variables in the
models than the saturated models due to the storage limitation of “theta”, the container for the
parameters (see (B.1.d) above for details). Moreover, the time is unaffordable to run a
constrained model with third order (or higher) interactions for a data set with a reasonable size. 

In summary, it will not take too much imputation processing time to impute all missing values for
a survey if we choose the “appropriate” models in Schafer’s software. However, an analyst will
devote the majority of his processing time to pre- and post- imputation file-management. This
time will be spent performing a subset of the following tasks:
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ò Checking the distributions of the variables, and the correlations between the variables;
ò Performing data transformations for those continuous variables with sever violation 

of the normality assumption; 
ò Re-coding the levels of the categorical variables with positive integers starting with 1

if necessary (may use function “categorize” provided by the software);
ò Partitioning the data set into subsets according to the rules of putting highly correlated

variables with close scales into the same subsets;
ò Performing inverse transformations and/or re-coding process to transfer the imputed

variables to the original variables with original scales (may use function “uncategorize” in the
software); 

ò  Combining the output (imputed) subsets into one overall complete file. 

Working through this list of pre- and post-imputation data file management may take much
more time than the actual imputation processing.

(2) How well documented is the software? Is it difficult to use?

How to install and use the software will be described before answering these questions. Installation
instructions provided by Schafer’s software are for a UNIX workstation and some are not
applicable to a PC system. Before performing the following installation steps for a PC environment,
a bunch of storage mode errors (over 60 places) in the FORTRAN subroutines have to be
corrected in order for them to be successfully compiled. 

Installation:

(i) Use WATCOM FORTRAN 77 compiler (WATCOM International Corporation, 
1993) to compile the FORTRAN source files “norm.for”, “cat.for” and “mix.for” 
to create object files “norm.obj”, “cat.obj” and “mix.obj”, respectively;

(ii) Copy files "norm.obj", "norm.s", “cat.obj”, “cat.s”, “mix.obj” and “mix.s” to the 
S-PLUS working directory "c:\spluswin\home" (if S-plus for Windows is installed 
on the C drive);

(iii) Create a subdirectory "_help" of "c:\spluswin\home\_data" and copy all the help files
into this subdirectory "c:\spluswin\home\_data\_help"; 

(iv) In an S session, define the function .First as follows:

              .First_function() {
                       dyn.load(“norm.obj”) # load file “norm.obj”

                           source(“norm.s”)   # load file “norm.s”
dyn.load(“cat.obj”) # load file “cat.obj”
source(“cat.s”) # load file “cat.s”
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dyn.load(“mix.obj”) # load file “mix.obj”
source(“mix.s”) # load file “mix.s”

                             rngseed(6534288)   # initialize the random generator seed
 }

      (v) Quit S session.
 

Then the next time we enter an S session, Schafer’s software will automatically be loaded into it.
Since the three parts of the software work independently, a user can load only part of the software
through the .First function if the other part is not needed for his/her purpose. 

Using the program:

After correctly installing the program, the 40 S-functions in the software (12 for continuous
variables, 19 for categorical variables and 9 for mixed variables) can be called just like any other S-
PLUS functions. See Appendix 1—Appendix 3 for brief descriptions of these functions. More
complete descriptions of these functions are found in the help files by typing "help(filename)" from
within S session.

So the software is easy to use if the user is familiar with S language. 
 
To recapitulate, the question was “How well documented is the software?” By and large, the
software is well documented, and the algorithm for the software is especially well developed.
However, as the author said, the software is at its early stage and improvement will be made to its
future version. The most serious problem is with the constrained loglinear model and the restricted
general location model. The programs for these models have variable ordering problems, work very
slowly, and require a huge vector to store the parameters, which limits their capacity of dealing with
large number of categorical variables to the level of their corresponding saturated models. Actually,
no model in this software can deal with more than 8 categorical variables of the SASS.AS data set.
We believe that, if the parameters are stored in several vectors instead of one vector “theta”, those
constrained models may be able to deal with more categorical variables. Moreover, as already
mentioned, no simulation or imputation function work due to its random generator problems. Some
storage mode errors are also needed to be corrected. Figuring out these program problems took
much more time than the evaluation process.

As a close note for this section, we would like to quote some idiosyncrasies from Dr. Schafer as a
caution, although we did not experience these problems:

(i) These S-plus functions do not supply many error messages, so if something does not 
seem to work, it’s largely up to the user to figure out why.



1When a SAS or SPSS data file is transferred to an S-PLUS data frame through
DBMS/COPY, the output data frame has a “list mode”, original S-PLUS functions can be applied to
this type of data frame, while Schafer’s software can not because it requires a “single mode” of a data
matrix.
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           (ii) If the EM algorithm bombs, it could be that the ML estimate is on the boundary of the 
 parameter space. Similarly, if Data Augmentation under the default non-informative 

prior does not seem to work, it could be that the posterior distribution does not exit. These
problems may arise with data sets that are sparse; that is, having lots of missing values, or
having a number of observations not substantially larger than the number of variables. The
 remedy for sparse data is to supply a proper prior distribution, or simplify the model by
eliminating variables that are not crucial to the analysis. 

    
(3) Can the software be adapted to interface easily with SAS and SPSS?

 The immediate answer to this question is “no.” Schafer’s software is written in S language and run
under an S-PLUS environment, and S-PLUS and SAS (SPSS) can not interface with each other.
However, with the help of software DBMS/COPY (Conceptual Software, Inc. 1994), it is very
easy to make transformations between SAS (SPSS) data files and S-PLUS data matrices so that
an analyst can use Schafer’s software to impute the data under an S-PLUS environment and
analyze the imputed data under a SAS or SPSS environment. We may use S-PLUS “File” pull-
down menu to import and/or export SAS (SPSS) data files from within S sessions. In order to use
this S-PLUS “File” pull-down menu, we need to add a statement
“DBMSCOPY=C:\DBMSCOPY” to the S-PLUS initial file “SPLUS.INI” if the software
DBMS/COPY is installed on the C directory.

After we have correctly installed DBMS/COPY software and modified the S-PLUS initial file as
described above, we can use the following four simple steps to import a SAS or SPSS incomplete
data file for Schafer’s software to impute, and then output a complete SAS or SPSS data file for
SAS or SPSS to analyze:

(i) Click the “File” menu and select “import” from the S-PLUS tool bar to transfer the
incomplete SAS or SPSS data file to an S-PLUS data frame, say, X;

(ii) Change the storage mode of X to “single”1 with statements:
X_as.matrix(X); storage.mode(X)_ “single”; 

  (iii) Apply Schafer’s software to the data matrix X to impute the missing values;
(iv) Click the S-PLUS “File” menu again and select “export” to transfer the imputed 

S-PLUS data matrix to a SAS or SPSS data file.  
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In the case that DBMS/COPY is not available to the user, the following three steps can transfer a
SAS file to a S-PLUS data matrix (we may use similar steps for SPSS data files):
     (i) In a SAS environment, use a number to represent missing value '.', for example, '-1',

providing that there is no other value equal to -1.
(ii) Transfer the SAS file to an ASCII file (may use PUT statement in SAS), and send the

ASCII file to “c:\spluswin\home” (may use FILE statement in SAS).
(iii) In an S session, use function “scan” to read the data into an S object. Then let “NA”

stand for missing values and make a data matrix.

After all missing values have been imputed by the software, the complete data will be stored in a
matrix. The following statement can be used to transfer the imputed data matrix into an ASCII file
which can be read directly by SAS:

 write(t(x), “filename”, ncol=ncol(x))

where x is the imputed data matrix, t(x) is the transpose of x, and “filename” is the name of the
target ASCII file which will be located in the S-plus working directory “c:\spluswin\home”. 
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IV.  A Comparison of Proc Impute and Schafer’s Software

This section consists of three subsections. Subsection A describes a small simulation study which is
designed to compare the two imputation software packages in terms of generating more accurate
imputations for continuous data. Subsection B discusses some statistical arguments on theoretical
comparisons of the algorithms used in the software; Subsection C presents the imputations generated
by NCES, Proc Impute and Schafer’s Software for a few selected variables from 1990-91 School
and Staffing Survey Administrator Component. 

A. A SIMULATION STUDY FOR CONTINUOUS VARIABLES

We simulate three types of data sets: independent normal variables, correlated normal variables and
contaminated independent variables. Each data set has 8 variables and 2000 cases. The first 7 variables
have about 10% missing values apiece and the 8th variable has no missing value. Three types of missing
mechanisms are considered: (1) X is randomly missing; (2) X is missing when Z<c (a constant) and
corr(X, Z)=0.6; and (3) X is missing when Z<c and corr(X, Z)=0.9. Table 1-Table 3 compare Proc
Impute and Schafer’s Software in terms of average imputing error and mean bias for independent
normal data, correlated normal data and contaminated data, respectively. Here the average imputing
error is defined as

where Ii and Ri are the imputed value and the real value, respectively, for the ith missing case, and m is
the number of missing values. 

Table 1 shows that, when the variables (X1-X8) in the model are normal and independent, the
performance of Proc Impute and that of Schafer’s Software are very close in terms of average
imputing error and mean bias. It also shows that neither of imputation methods improves any mean bias
comparing to the un-imputed sample mean. This is supposed to be because the variables in the model
provide no information for each other for predicting the missing values if they are independent. In this
kind of situation, imputation methods may be used for the purpose of analytical convenience when some
statistical approaches can only be applied to complete data sets, or the statistical approaches become
too complicated for incomplete data sets. Of course, this kind of situation is rare in a real survey.
Variables are correlated with each other more or less.
   
When the variables in the model are normal and correlated (with correlation between 0.3-0.9), table 2
demonstrates that Schafer’s Software always has better performance than Proc Impute, whether the
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Table 1 A Comparison of Proc Impute and Schafer’s Software for Independent Normal
Variables through a Simulation with 2000 cases (std=1)

Variables: X1 X2 X3 X4 X5 X6 X7 X8

true mean (µ): -3 -2 -1 0 0.5   1  2     3

(1) Missing at random

# of missing values:    191 187 193 219 194 222 198 0
average imputing error: 

Schafer:      1.414  1.397 1.418 1.417 1.394 1.387 1.422 0
   Proc Impute: 1.414  1.437  1.419  1.383  1.414  1.472  1.324   0
µI -µ*:

Schafer: -.007  0.028 0.002   0.009  -.002 -.003 -.008 0.046 
Proc Impute:  -.012  0.029  -.002  - .009  0.005  -.001  0.004  0.046   

µM -µ*: -.012 0.033 0.001 0.001 0.006 -.004    -.004 0.046
   
(2) Xi is missing if Zi<ci and corr( Xi, Zi)=0.6

# of missing values: 202  198  199  202  208  198  195   0
average imputing error:

Schafer: 1.780  1.685  1.660  1.817  1.641  1.804  1.780   0
Proc Impute: 1.676  1.613  1.790  1.782  1.680  1.731  1.628   0

µI -µ:
Schafer: 0.107   0.133  0.110  0.130 0.117  0.133  0.120 0.046
Proc Impute: 0.105 0.133 0.119  0.121  0.118  0.130  0.099  0.046 

µM -µ: 0.107 0.135 0.118 0.120 0.116 0.138 0.103 0.046

(3) Xi is missing if Zi<ci and corr( Xi, Zi)=0.9

# of missing values: 204  199  186  207  200  200  175   0
average imputing error: 

Schafer: 2.023  2.102  2.001  2.115  2.072  2.108  1.986   0 
Proc Impute: 2.100  2.011  2.077  2.020  2.012  2.131  2.073   0

µI -µ:
Schafer: 0.169 0.203  0.163  0.191  0.175  0.194  0.148 0.046
Proc Impute: 0.176 0.197  0.169 0.179  0.180  0.197  0.151  0.046

µM -µ: 0.169 0.199 0.167 0.186 0.173 0.192 0.148 0.046
Note: * µI is the imputed sample mean; µM is the sample mean without any imputation; and µ is the true
mean. 
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Table 2 A Comparison of Proc Impute and Schafer’s Software for Correlated Normal Variables
through a Simulation with 2000 cases (std=1 and corr(X i, Xj)=1-0.1*|i-j| )

Variables: X1 X2 X3 X4 X5 X6 X7 X8

true mean (µ): -3 -2 -1 0 0.5   1  2     3

(1) Missing at random

# of missing values: 199  185  197  193  191  190  190   0
average imputing error:

Schafer: 0.635  0.426  0.464  0.456  0.443  0.450  0.467   0
Proc Impute: 0.760  0.537  0.449  0.487  0.599  0.654  0.657   0

µI -µ*:
Schafer: 0.000  -.003  0.002 -.006 -.004 0.002  0.002   0.000
Proc Impute: 0.005   -.001  0.002 -.001  0.002  0.003  0.009  0.000

µM -µ*: 0.002 0.003 -.012  0.000 0.001 0.007 0.004 0.000

(2) Xi is missing if Zi<ci and corr( Xi, Zi)=0.6

 # of missing values: 196  192  186  196  208  201  202   0
average imputing error:

Schafer: 0.915  0.673  0.544  0.513  0.491  0.510  0.488  0
Proc Impute: 0.947  0.784  0.804  0.836  0.617  0.740  0.542   0

µI -µ:
Schafer: 0.039   0.023  0.022 0.014  0.015  0.020  0.017 0.000
Proc Impute: 0.043   0.024  0.029  0.030  0.017  0.029  0.016  0.000

µM -µ: 0.117 0.113 0.110 0.113 0.109 0.122 0.124  0.000

(3) Xi is missing if Zi<ci and corr( Xi, Zi)=0.9

 # of missing values: 210  181  190  198  195  199  207   0
average imputing error:

Schafer: 1.143  1.013  0.892  0.804  0.730  0.688  0.566 0
Proc Impute: 1.453  1.354  1.102  0.896  0.938  0.835  0.627  0

 µI -µ:
Schafer: 0.079  0.059  0.059  0.046  0.043  0.036 0.035 0.000
Proc Impute: 0.114   0.084  0.074  0.051  0.060  0.048  0.043 0.000 

µM -µ: 0.183 0.158 0.164 0.168 0.169 0.175 0.181  0.000
Note: * µI is the imputed sample mean; µM is the sample mean without any imputation; and µ is the true
mean.
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Table 3 A Comparison of Proc Impute and Schafer’s Software for Contaminated Independent
Variables through a Simulation with 2000 cases (90% normal and 10% Cauchy)

Variables: X1 X2 X3 X4 X5 X6 X7 X8

complete sample mean (µC): -2.979 -2.044 -1.025 0.162  0.438 0.926 2.050 2.969 
complete sample std  (s C):    2.042 3.183 1.535 6.288  8.783  8.350  4.459  2.295 
   
(1) Missing at random

# of missing values:    208   203   202   188   197   206   193    0
average imputing error (in  s C):

Schafer: 1.169 1.014 1.163 1.066 1.162 1.148 1.047 0
      Proc Impute: 1.455 0.493 1.326 2.282 1.343 0.187 0.979 0
µI-µC

*: 
Schafer:   0.009 -.012 -.001 -.069 0.103 -.018 0.052 0
Proc Impute: 0.008 -.018 -.019 -.071 0.212 0.008 0.061 0

µM -µC
*
 : -.008 -.001 0.004 0.007 -.010 -.007 0.007 0

(2) Xi is missing if Zi<ci and corr( Xi, Zi)=0.6

# of missing value: 200   203   198   209   225   220   200    0
average imputing error (in  s C):

Schafer: 1.858 2.091 2.006 1.962 2.884 2.453 2.253 0
Proc Impute: 1.618 2.616 1.990 1.905 2.898 2.591 2.138 0

 µI-µC:
Schafer: 0.135 0.180 0.153 0.253 0.241 0.321 0.248 0
Proc Impute : 0.127 0.199 0.133 0.091 0.285 0.377 0.231 0

µM -µC: 0.126 0.167 0.150 0.158 0.260 0.322 0.238 0

(3) Xi is missing if Zi<ci and corr( Xi, Zi)=0.9

# of missing values: 200   192   209   202   202   206   196    0
average imputing error:

Schafer: 2.589 2.316 2.221 1.892 3.025 2.656 2.199 0
Proc Impute: 1.770 2.189 2.329 2.585 3.062 3.188 2.226 0

µI-µC:          
Schafer: 0.237 0.284 0.239 0.210 0.293 0.367 0.323 0
Proc Impute: 0.195 0.249 0.254 0.220 0.267 0.388 0.284 0

µM -µC: 0.200 0.242 0.238 0.199 0.295 0.362 0.299 0
Note: * µI is the imputed sample mean; µM is the sample mean without any imputation; and µM is the
complete sample mean.
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assumption of missing at random (MAR), which is required by Schafer’s Software, holds or not. This
may be because the more important assumption, normal distribution of X, is satisfied for Schafer’s
Software in this case. When missing values occur at random, neither of the two imputation methods
makes any improvement on the population mean estimates. However, when the missing values occur
with some patterns, both methods dramatically improved the population mean biases. The stronger the
correlation between the “target” variable and the predictors is, the more the improvement will be.
 
For the data set with 90% normal data and 10% Cauchy data, table 3 illustrates that Proc Impute is
better than Schafer’s Software in some cases, while it is the other way around in other cases. And the
performance of both methods are very unstable. With all three types of missing mechanisms, both
imputed sample means perform poorly because the correlation between variables are very small so that
little information can be borrowed from other variables to impute the missing values for the “target”
variables. In the case of missing at random, missing values cause no bias and the un-imputed sample
mean is much better than the imputed means, while the serious bias makes the un-imputed sample mean
evenly bad as the imputed mean when the missing values occur with some trend. 

Our findings of this small simulation study can be summarized as follows: (1) for independent data, the
biases caused by the missing values can not be corrected through any imputation approach; (2) for
normal correlated data, Schafer’s Software always perform better than Proc Impute no matter what
missingness mechanism is; (3) both imputation approaches can improve the estimator for the population
mean dramatically if the missing values occurred with some strong pattern and the variables have
moderately high correlations; (4) both imputation approaches are not so robust for the contaminated
data. 

More simulation studies are definitely needed to compare the two imputation approaches. For example,
it is necessary to compare them for all types of variables(continuous, ordinal, categorical, mixed), and
compare them with more criteria, such as coverage probabilities, variance estimates, etc; it is also
worthwhile to investigate their performance on multiple imputation inference (see section V for details).

B. THEORETICAL ARGUMENTS  

Proc Impute is based on an assumption that the relations between variables keep the same for the
observed cases and missing cases, and tries to predict the missing values of the “target” variables
through a probabilistic relationship between the “target” variables and predicting variables. This
assumption is more reasonable in practice than the assumption of missing at random (MAR), which is
required by Schafer’s Software. In other words, Schafer’s Software assume that the observed values
have the same distribution as the missing values. In practice, it is often the case that the distribution of
the missing cases has a different pattern from that of observed cases, but the relations among the
variables are usually similar for both observed part and missing part. Actually, MAR is a very strong
assumption. If data are missing at random, then imputation is useless for improving the statistical results,
and we may ignore the missing cases and base our inference on the observed cases only. However, our
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simulation study fortunately shows that the assumption of MAR is not so important to Schafer’s
Software. As long as the normal distribution assumption holds, Schafer’s Software always do better
than Proc Impute no matter what missingness mechanism is. Then the consequent question is, “Can we
just use Schafer’s Software and ignore this assumption?” We are not in a hurry to answer this question.
More simulation studies should be conducted to answer this question.

Schafer’s Software assumes normality for continuous variables, while Proc Impute assumes that the
conditional distribution of the “target” variables given the predictors are normal, or equivalently, the
residuals from the regression models are normal. It comes to our attention that Schafer’s Software is
more sensitive to its distributional assumption than Proc Impute. The reason is that Schafer’s Software
uses a Bayesian method to generate the imputations directly from the assumed distribution, while the
distributional assumption in Proc Impute is used only in the middle step to fit the regression models and
the imputations are not generated directly from the regression equations. Therefore we should be more
careful about the distribution of the data when we use Schafer’s Software to do the imputations. As
we mentioned before, theoretically, any continuous variable can be transferred into a variable with a
normal distribution. In practice, we may use common transformations (e.g., logarithm, exponential,
square root, square, etc) to make the variables as close to normal variables as possible, and then apply
Schafer’s Software to impute missing values for the transferred normal variable and then transfer back
to the original variables. As we see in our simulation, Schafer’s Software has much better performance
if the data are normal. So we recommend Schafer’s Software for the continuous data if they are
approximately normal, or a simple transformation is available to make them approximately normal.
Otherwise, we may try Proc Impute. It is possible that Proc Impute will show better performance than
Schafer’s Software if we use a data set which has further departure from normality, or in the cases that
the conditional distributions of the variables (or residuals) are normal but the variables themselves are
not.

For categorical variables, Schafer’s Software uses saturated multinomial models and constrained
loglinear models to impute missing values, while Proc Impute fits usual regression models by treating all
types of variables as continuous variables. The models used in Schafer’s Software are believed to be
more appropriate than those used in Proc Impute for categorical variables.

Another advantage of Schafer’s Software is about multiple imputation. Proc Impute is basically a
single-imputation algorithm. Although the newest version of Proc Impute allows the users to generate
multiple imputations, but the number of imputations for each case is very limited and it may not be
“proper” in the sense of Rubin’s definition. On the other hand, Schafer’s Software is originally created
for multiple-imputation purpose, it adheres to Rubin’s “proper” criterion if the sample is a simple
random sample.

However, Schafer’s Multiple Imputation Software draws imputation values for the missing cases
from a posterior distribution. The generated imputation values for continuous variables may be out of
the range of the observed values (or, say, the domain of the variables), while Proc Impute has made an
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effort to avoid this kind of problem. Another advantage of Proc Impute is its convenience to perform
imputations for large data sets. Proc Impute can carry out all imputations as one single batch job no
matter how large the data set is. But Schafer’s Software usually requires more than one S session and
much more runs to carry out all the imputations for a large data set due to the limitation of dynamic
memory of S-PLUS for Windows. An analyst may need to divide a large data set into more subsets to
apply Schafer’s Software, and, consequently, need to spend much more time on pre- and post-
imputation data file management. 

In summary, Schafer’s Software may generate more accurate imputations if its distributional
assumptions are approximately satisfied, but Proc Impute is much more convenient to use for a large
data set.

C. AN APPLICATION TO NCES DATA

Appendix 4 shows the un-imputed data and the data imputed by NCES, by Schafer’s Software and
by Proc Impute for three variables: Year received bachelor’s degree (BS/BA), Years of
elementary/secondary teaching experience before becoming principal (Tch), and Year of birth
(Birth), from 1990-91 SASS Administrator data file. It is noticed that all the means and standard
deviations for the un-imputed data, NCES imputed data, two sets of imputed data by Schafer’s
Software, and Proc Impute imputed data, are very close, although the imputed values for each
individual missing case are quite different. One may argues that this is because the numbers of missing
cases, 142 for BS/BA, 82 for Tch, and 114 for Birth, are not big enough comparing to the sample
size 9054. In fact, we also used these methods to impute another variable with 898 missing cases; the
means and standard deviations for that variable are still very close. The distributions of BS/BA,Tch and
Birth are close to normal, so the imputations by Schafer’s Software may be good although it
generates a few negative values for Tch which are not acceptable for the variable. All imputation values
generated by Schafer’s Software are rounded up to integers because these variables are integer-
valued, while Proc Impute automatically generates the same type of values for the missing cases as
observed values.
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V.  Next Steps
 
As we mentioned earlier, Schafer’s Software will generate more accurate imputations than Proc
Impute if its distributional assumptions are approximately satisfied, and it also has the advantage over
Proc Impute for generating “proper” multiple imputations if the sample is a simple random sample. But
the programs for the two constrained models in Schafer’s Software has a variable ordering problem. If
the u-terms (or interactions) in the loglinear constrains (A.2.4) of section II are not symmetrically
designed, the results will not be right. Furthermore, each of the two constrained models is supposed to
fit more categorical variables than its saturated model, and allow any order interactions in the models.
However, we can usually put no more than 8 categorical variables and no higher than second order
interactions. Otherwise, either the vector “theta”, which stores all parameters of the model, will exceed
the object size limitation, or the run will take un-affordable time. Dr. Schafer is modifying the software
to fix these problems (at least the variable ordering problem). We think it is worthwhile for NCES to
obtain the new version of Schafer’s Software and implement it on a PC environment. Actually, we
know the whole software very well and it is not so difficult for us to fix these problems for NCES if Dr.
Schafer can not complete the modification in timely manner. 

We did a small simulation for continuous variables. A thorough simulation study will be necessary to
investigate the performance of both imputation software packages in terms of generating more accurate
imputations. The following questions will be answered by the simulation. Will Schafer’s Software still
perform better than Proc Impute in terms of other popular, important, and more complicated criteria
such as coverage probabilities, variance estimates, etc.? Can Schafer’s Software also generate more
accurate imputations for categorical variables, ordinal variables? Is the assumption of MAR really not
important to all five types of models in Schafer’s Software? Can Schafer’s Software really generate
more “proper” multiple imputations than Proc Impute?

Our simulation study shows that both Proc Impute and Schafer’s Software are very unstable for
contaminated data with outliers. It will be valuable for NCES to explore some more robust imputation
algorithms or implement some robust statistical approaches for imputation purposes and develop new
imputation software. It will be a huge project. If NCES is interested, we will propose it in detail. 
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Appendix 1: Twelve S-PLUS Functions for Continuous Variables 
in Schafer’s Multiple Imputation Software 

 
 
 1. prelim.norm(x) 
    

Performs preliminary manipulations for x—a matrix of incomplete continuous data. The 
data are centered, scaled, and sorted by missingness patterns. It returns a list of objects 
that summarizes various features of the incomplete data matrix.  

 
 2. em.norm(s, start, showits=T, maxits=1000, criterion=0.0001, prior) 
 

Performs maximum-likelihood estimation using the EM algorithm, or finds a posterior 
mode under a normal-inverted Wishart prior supplied by the user. It returns a vector of 
parameters representing the MLE. The parameter vector stores the means and variance-
covariance matrix in this order: -1, means, up-triangular rows of variance-covariance 
matrix. It is called packed storage by the author. 

   
 Brief descriptions of the arguments passed in “em.norm” follow:  
  s:   a summary list produced by “prelim.norm” 
  start:   optional starting value of the parameter 
  showits:  if “TRUE,” reports the iterations of EM 
  maxits:  maximum number of iterations performed 
  criterion: convergence criterion 
  prior:   optional prior distribution. This is a list of the hyperparameters of a 

 normal-inverted Wishart distribution. In order, the elements of the list are: 
 ' (a scalar), 
 m (a scalar), 
 µ0 (a vector of length p), 
 7-1 (a p×p matrix), 
 where p is the number of variables. If no prior is supplied, the default is 

usual noninformative prior for multivariate normal model: 
 '=0 
   m=-1 
  µ0=arbitrary 
 7-1=a matrix of zeros 
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3. getparam.norm(s, theta, corr=F)
 

Returns mean vector and variance-covariance matrix on their original scale and original form
from theta which is on packed storage.

Brief descriptions of the arguments passed in “getparam.norm” follow:
s: a summary list produced by “prelim.norm”
theta: parameter estimators in packed storage
corr: if "TRUE", returns standard deviations and correlation matrix; if "FALSE", 

variance-covariance matrix
    
 4. makeparam.norm(s, thetalist)

Does the opposite of "getparam.norm"—makes a parameter list in packed storage 

Brief descriptions of the arguments passed in “makeparam.norm” follow:
s: a summary list produced by “prelim.norm” 
thetalist: as the results produced by "getparam.norm"

5. da.norm(s, start, prior, steps=1, showits=F, return.ymis=F)

Simulates one or more iterations of a single Markov chain. Each iteration consists of a random
imputation of the missing data given the observed data and the current parameter value (I-step),
followed by a draw from the posterior distribution of the parameter given the observed data
and the imputed data (P-step). Returns a value of the parameter, the result of the final P-step.

 
Brief descriptions of the arguments passed in “da.norm” follow:

s: a summary list produced by “prelim.norm”
start: starting value of the parameter. One obvious choice is the estimator 

generated by "em.norm"
 prior: optional prior distribution—a list of the hyperparameters of a normal-inverted

Wishart distribution as in “em.norm”.
steps: number of data augmentation iterations 
showits: if "TRUE", reports the iterations 
return.ymis: if "TRUE", returns the output of the last I-step as the imputed values

of missing data in addition to the output of the last P-step.
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6. mda.norm: 

Monotone data augmentation which is supposed to converge more quickly than "da.norm" for
nearly monotone missingness data sets. Unfortunately this function does not work because of
some bad Fortran subroutines.

   
7. imp.norm(s, theta, x)

Draws missing elements of a data matrix under the multivariate normal model and a user-
supplied parameter. Returns a matrix of complete data. 

       
Brief descriptions of the arguments passed in “imp.norm” follow:

s: a summary list produced by “prelim.norm”
theta: a parameter vector in packed storage, such as one created by "em.norm"

or "da.norm".
x: the original data matrix

     8. rngseed(seed)

Initializes the random number generator seed. If this function has not been called in .First
function, it must be called at least once before the simulation functions (e.g., da.norm and
imp.norm) can be used. The argument “Seed” is preferred to be a large integer (must be
positive integer).

9. loglik.norm(s, theta)

Evaluates the observed-data loglikelihood function at a user-supplied value of the parameter.
This function is useful for monitoring the progress of EM and data augmentation.

The arguments passed in “loglik.norm” have the same meaning as in “da.norm”.

10. logpost.norm(s, theta, prior)
 

Similar to loglik.norm, except it evaluates the log of observed-data posterior density under a
normal-inverted Wishart prior (as in da.norm). If no prior is specified by the user, the usual
"noninformative" prior for the multivariate normal distribution is used. 

The arguments passed in “logpost.norm” have the same meaning as in “da.norm”.
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11. ninvwish(s, params)

Simulates a value from a normal-inverted Wishart distribution. This function may be useful for
obtaining values of the parameters of a multivariate normal distribution for multiple chains of
data augmentation.

Brief descriptions of the arguments passed in “ninvwish” follow:
 s: a summary list produced by “prelim.norm”
 params: a list of parameters of a normal-inverted Wishart distribution as in 

da.norm. When using this function to create starting values for data
augmentation, µ0 and ? -1 should be chosen in relation to the data matrix after
the columns have been centered and scaled to have mean zero and variance
one.

12. mi.inference(est, std.err, confidence=0.95)

Combines estimates and standard errors from m complete-data analyses performed on m
imputed data sets to produce a single inference. Uses the technique described in Rubin (1987)
for multiple imputation inference for a scalar estimand. 

  Brief descriptions of the arguments passed in “mi.inference” follow:
est: a list of m (at least 2) vectors representing estimates from complete-data

analyses performed on m imputed data sets
std.err: a list of m vectors containing standard errors from the complete-data analyses

corresponding to the estimates in 'est'
 confidence: desired coverage of interval estimates

This function returns a list with the following components:
est: the average of the complete-data estimates
std.err: standard errors incorporating both the between and the within imputation

uncertainty
df:  degrees of freedom associated with the t reference distribution used for

interval estimates
signif: p-values for the two-tailed hypothesis tests that the estimated quantities are

equal to zero
lower: lower limits of the confidence interval
upper: upper limits of the confidence interval
r: estimated relative increases in variance due to nonresponse
fminf: estimated fractions of missing information
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Appendix II: Eighteen S-PLUS Functions for Categorical
Variables in Schafer’s Multiple Imputation Software

1. categorize(x)

Recode the levels of categorical variables as consecutive positive integers starting with 1.

The only argument, x, in this function is a matrix of discrete data taking integer values. This function
will return a list with the following two components:

x: a matrix corresponding to x, but whose columns have been recoded as consecutive 
positive integers 1,2,...

levs: a list of length `ncol(x)' whose elements are character vectors giving the original levels
of the columns of `x'.

2. uncategorize(x, levs)

Does the opposite of “categorize”—change the categorical variables to their original levels after
imputation.

The two required arguments are:

 x: a matrix whose columns are categorical data taking values 1,2,...
levs: a list of character vectors of length `ncol(x)' giving the integer codes corresponding to 

the levels of the columns of `x'.

This function returns a matrix like `x', except recoded to correspond to `levs'.

3. prelim.cat(x, counts, levs)

Performs grouping and sorting operations on categorical data sets with missing values. It creates a
list that is needed for input to “em.cat”, “da.cat”, “imp.cat”, etc.

The three arguments are:

 x: categorical data matrix containing missing values. The data may be provided either in 
ungrouped or grouped format. In ungrouped format, the rows of x correspond to
individual observational units, so that nrow(x) is the total sample size. In grouped
format, the rows of x correspond to distinct covariate patterns; the frequencies are
provided through the “counts” argument. In either format, the columns correspond to
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variables. The categories must be coded as consecutive positive integers beginning with
1 (1,2,...), and missing values are denoted by NA.

counts: optional vector of length `nrow(x)' giving the frequencies corresponding to the
covariate patterns in x. The total sample size is `sum(counts)'. If `counts' is missing, the
data are assumed to be ungrouped; this is equivalent to taking `counts' equal to
`rep(1,nrow(x))'.

levs: optional vector of length `ncol(x)' indicating the number of levels for each categorical
variable. If missing, `levs[j]' is taken to be `max(x[,j],na.rm=T)'.

This function returns a list with 17 components. The key components are:

nmis: a vector of length `ncol(x)' containing the number of missing values for each variable in
x.

r:  matrix of response indicators showing the missing data patterns in x. Dimension is (m,p)
where m is number of distinct missingness patterns in the rows of x, and p is the number
of columns in x. Observed values are indicated by 1 and missing values by 0. The row
names give the number of observations in each pattern, and the columns correspond to
the columns of x.

d: vector of length `ncol(x)' indicating the number of levels for each variable. The 
complete-data contingency table would be an array with these dimensions. Identical 
to `levs' if `levs' was supplied. 

ncells: number of cells in the cross-classified contingency table, equal to `prod(d)'.

4. em.cat(s, start, prior=1, showits=T, maxits=1000, eps=0.0001)

Finds ML estimate or posterior mode of cell probabilities under the saturated multinomial model. If
zero cell counts occur in the observed-data table, the maximum likelihood estimate may not be
unique, and the algorithm may converge to different stationary values depending on the starting
value. Also, if zero cell counts occur in the observed-data table, the ML estimate may lie on the
boundary of the parameter space. Supplying a prior with hyper-parameters greater than one will
give a unique posterior mode in the interior of the parameter space. Estimated probabilities for
structural zero cells will always be zero.

The arguments are:

s: summary list of an incomplete categorical data set produced by the function `prelim.cat'.
start: optional starting value of the parameter. This is an array with dimensions `s$d' whose

elements sum to one. The default starting value is a uniform array (equal probabilities in
all cells). If structural zeros appear in the table, `start' should contain zeros in those
positions and nonzero (e.g., uniform) values elsewhere. 
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prior: optional vector of hyperparameters for a Dirichlet prior distribution. The default is 
a uniform prior distribution (all hyperparameters = 1) on the cell probabilities, which will
result in maximum likelihood estimation. If structural zeros appear in the table, a prior
should be supplied with `NA's in those cells.

showits: if `TRUE', reports the iterations of EM so the user can monitor the progress of the 
algorithm.

maxits: maximum number of iterations performed. The algorithm will stop if the parameter
still has not converged after this many iterations.

eps : convergence criterion. This is the largest proportional change in an expected cell count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cell probability (1/number of non-structural zero cells) is set to zero during
the iterations.

This function returns a array of dimension `s$d' containing the ML estimate or posterior mode,
assuming that EM has converged by `maxits' iterations.

5. ecm.cat(s, margins, start, prior=1, showits=T, maxits=1000, eps=0.0001)

Uses ECM algorithm to find ML estimate or posterior mode of cell probabilities under a
constrained loglinear model for incomplete categorical data. This is an iterative algorithm. At each
iteration, performs an E-step followed by a single cycle of iterative proportional fitting. If zero cell
counts occur in the observed-data tables, the maximum likelihood estimate may not be unique, and
the algorithm may converge to different stationary values depending on the starting value. Also, if
zero cell counts occur in the observed-data tables, the ML estimate may lie on the boundary of the
parameter space. Supplying a prior with hyperparameters greater than one will give a unique
posterior mode in the interior of the parameter space. Estimated probabilities for structural zero
cells will always be zero. 

The arguments are:

s: summary list of an incomplete categorical data matrix `x' produced by the function
`prelim.cat'.

margins: optional vector describing the sufficient configurations or margins in the desired 
loglinear model. A margin is described by the factors not summed over, and margins
are separated by zeros. Thus c(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and
(1,3) margins in a three-way table; that is, the model of no three-way association. The
integers 1,2,... in the specified margins correspond to the columns of the original data
matrix `x'. If no margins are given, `ecm.cat' performs EM for the saturated model with
no loglinear constraints, and the results will agree with those of ‘em.cat’. 
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start: optional starting value of the parameter. This is an array with dimensions `s$d' whose
elements sum to one. The default starting value is a uniform array (equal probabilities in
all cells). If structural zeros appear in the table, `start' should contain zeros in those
positions and nonzero (e.g., uniform) values elsewhere.

showits: if `TRUE', reports the iterations of ECM so the user can monitor the progress of 
the algorithm.

maxits: maximum number of iterations performed. The algorithm will stop if the 
parameter still has not converged after this many iterations.

eps : convergence criterion. This is the largest proportional change in an expected cell count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cell probability(1/number of non-structural zero cells) is set to zero during
the iterations.

prior: optional vector of hyperparameters for a Dirichlet prior distribution. The default is 
a uniform prior distribution (all hyperparameters = 1)on the cell probabilities, which will
result in maximum likelihood estimation. If structural zeros appear in the table, a prior
should be supplied with `NA's in those cells. 

This function returns an array of dimension `s$d' containing the ML estimate or posterior mode, 
assuming that ECM has converged by `maxits' iterations.

6. da.cat(s, start, prior=0.5, steps=1, showits=F)

Uses Markov-Chain Monte Carlo method to simulate draws from the observed-data posterior
distribution of underlying cell probabilities under a saturated multinomial model. At each iterations,
the missing data are randomly imputed under their predictive distribution given the observed data
and the current value of `theta' (I-step), and then a new value of `theta' is drawn from its Dirichlet
posterior distribution given the complete data (P-step). After a suitable number of steps are taken,
the resulting value of the parameter may be regarded as a random draw from its observed-data
posterior distribution.

This function is used in conjunction with `imp.cat' to create proper multiple imputations. It is very
IMPORTANT that the random number generator seed must be set at least once by the function
`rngseed' before this function can be used.

The arguments are:

s: summary list of an incomplete categorical data set created by the function `prelim.cat'.
start: starting value of the parameter. This is an array of cell probabilities of dimension `s$d',

such as one created by `em.cat'. If structural zeros appear in the table, starting values
for those cells should be zero.
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prior: optional vector of hyperparameters specifying a Dirichlet prior distribution. The default
is the Jeffreys prior (all hyperparameters =.5). If structural zeros appear in the table, a
prior should be supplied with hyperparameters set to `NA' for those cells.

steps : number of data augmentation steps to be taken. Each step consists of a imputation or
I-step followed by a posterior or P-step. 

showits: if `TRUE', reports the iterations so the user can monitor the progress of the
algorithm.

This function returns an array like `start' containing simulated cell probabilities.

7. mda.cat(s, start, steps=1, prior=0.5, showits=F)

Uses Markov-Chain Monte Carlo method to simulate draws from the observed-data posterior
distribution of underlying cell probabilities under a saturated multinomial model. At each iteration,
the missing data are randomly imputed under their predictive distribution given the observed data
and the current value of `theta' (I-step). Unlike `da.cat', however, not all of the missing data are
filled in, but only enough to complete a monotone pattern. Then a new value of `theta' is drawn
from its Dirichlet posterior distribution given the monotone data (P-step). After a suitable number of
steps are taken, the resulting value of the parameter may be regarded as a random draw from its
observed-data posterior distribution. For good performance, the variables in the original data
matrix `x' (which is used to create `s') should be ordered according to their rates of missingness
from most observed (in the first columns) to least observed (in the last columns). This function is
supposed to converge more quickly than `da.cat' when the pattern of observed data is nearly
monotone. 

This function may be used in conjunction with `imp.cat' to create “proper” multiple imputations. It is
very IMPORTANT that the random number generator seed must be set at least once by the
function `rngseed' before this function can be used.

The arguments are: 

s: summary list of an incomplete categorical data set created by the function `prelim.cat'.
start: starting value of the parameter. This is an array of cell probabilities of dimension `s$d',

such as one created by `em.cat'. If structural zeros appear in the table, starting values
for those cells should be zero.

steps : number of data augmentation steps to be taken. Each step consists of an imputation or
I-step followed by a posterior or P-step.

prior: optional vector of hyperparameters specifying a Dirichlet prior distribution. The default
is the Jeffreys prior (all hyperparameters =.5). If structural zeros appear in the table, a
prior should be supplied with hyperparameters set to `NA' for those cells.
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showits: if `TRUE', reports the iterations so the user can monitor the progress of the
algorithm.

This function returns an array like `start' containing simulated cell probabilities.

8. dabipf.cat (s, margins, theta, steps=1, prior=0.5, showits=F)

Performs data augmentation/Bayesian IPF algorithms. Produces a new draw of parameter
estimates via an iterative simulation approach. At each iteration, the missing data are randomly
imputed under their predictive distribution given the observed data and the current value of `theta'
(I-step), and then a new value of `theta' is drawn through Bayesian IPF algorithm (P-step).

The random number generator seed must be set at least once by the function `rngseed' before this
function can be used.

The arguments are:

s: summary list of an incomplete categorical data matrix `x' produced by the function
`prelim.cat'.

margins: vector describing the sufficient configurations or margins in the desired loglinear
model. A margin is described by the factors not summed over, and margins are
separated by zeros. Thus c(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and (1,3)
margins in a three-way table; that is, the model of no three-way association. The
integers 1,2,... in the specified margins correspond to the columns of the original data
matrix `x'. The same “margins” as in the function “ecm.cat” should be used if the
parameter estimate generated by “ecm.cat” is used as the starting value for “theta”.

theta: starting value of the parameter. This is an array of cell probabilities of dimension `s$d',
such as one created by `ecm.cat'.

steps : number of data augmentation steps to be taken. Each step consists of an imputation or
I-step followed by a cycle of Bayesian IPF or P-step.

prior: optional vector of hyperparameters specifying a Dirichlet prior distribution. The default
is the Jeffreys prior (all hyperparameters =.5). If structural zeros appear in the table, a
prior should be supplied with hyperparameters set to `NA' for those cells.

showits: if `TRUE', reports the iterations so the user can monitor the progress of the algorithm.

9. ipf(table, margins, start, eps=0.0001, maxits=50, showits=T)

Finds ML estimation for hierarchical loglinear models via iterative proportional fitting. This function
is essentially the same as the S-PLUS internal function `loglin', but results are computed to double
precision. See `help(loglin)' for more details.



57

The arguments are:

table: contingency table (array) to be fit by a log-linear model. All elements must be 
non-negative.

margins: vector describing the marginal totals to be fit. A margin is described by the factors
not summed over, and margins are separated by zeros. Thus c(1,2,0,2,3,0,1,3) would 

indicate fitting the (1,2), (2,3), and (1,3) margins in a three-way table; that is, the
model of no three-way association.

start: starting value for ipf algorithm. The default is a uniform table. If structural zeros appear
in `table', `start' should contain zeros in those cells and ones elsewhere.

eps : convergence criterion. This is the largest proportional change in an expected cell count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cell probability (1/number of non-structural zero cells) is set to zero during
the iterations.

maxits: maximum number of iterations performed. The algorithm will stop if the parameter
still has not converged after this many iterations. 

showits: if `TRUE', reports the iterations of IPF so the user can monitor the progress of the
algorithm.

This function returns an array like `table', but containing fitted values under the loglinear model. The
sum of the elements of this array equals `sum(table)'. 

10. bayesipf(table, margins, start, steps=1, showits=F)

Simulates parameter estimates of cell probabilities via Bayesian iterative proportional fitting. This
function performs stochastic relaxation on the expected cell counts of a contingency table under a
loglinear model. Given a starting value, it cycles through the sufficient configurations, performing the
Bayesian IPF algorithm (Gelman and Rubin, 1991). After a large number of steps, the resulting
table of counts approximates a draw from its posterior distribution under a Dirichlet prior subject to
the loglinear constraints.

The random number generator seed must be set at least once by the function `rngseed' before this
function can be used. The starting value should lie in the interior of the parameter space. Hence,
caution should be used when using a maximum likelihood estimate (e.g., from `ipf') as a starting
value. Random zeros in a table may produce MLE’s with expected cell counts of zero, and any
zero in a starting value is interpreted by `bayesipf' as a structural zero. This difficulty can be
overcome by using as a starting value calculated by `ipf' after adding a small positive prior count
(e.g., 1/2) to each cell. 



58

The arguments are:

table: contingency table (array) containing cell counts+prior counts. All elements should be 
positive, except for structural zeros, which should be zero.

margins: vector describing the sufficient configurations or margins in the desired loglinear
model. A margin is described by the factors not summed over, and margins are
separated by zeros. Thus c(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and (1,3)
margins in a three-way table; that is, the model of no three-way association.

start: starting value for the algorithm. If structural zeros appear in `table', `start' should 
contain zeros in the same positions. Otherwise, `start' should lie in the interior of the
parameter space. The default is a uniform array with zeros corresponding to the zeros in
`table'.

steps : number of complete cycles of Bayesian ipf to be performed.
showits: if `TRUE', reports the iterations so that the user can monitor the progress of the 

algorithm.

This function returns an array like the argument “table,” but containing simulated expected cell
counts.

11. imp.cat(s, theta)

Performs single random imputation of missing values in a categorical data set under a user-supplied
value of the underlying cell probabilities. It is very IMPORTANT that the random number
generator seed must be set by the function `rngseed' at least once in the current session before this
function can be used. 

The two required arguments are:

s: summary list of an incomplete categorical data set created by the function `prelim.cat'.
theta: parameter value under which the missing data are to be imputed. This is an array of 

cell probabilities of dimension `s$d' whose elements sum to one, such as produced by 
`em.cat', `ecm.cat', `da.cat', `mda.cat' or `dabipf'.

This function returns an imputed complete data set. If the original incomplete data set was in
ungrouped format (`s$grouped=F'), then is returns a matrix like `s$x' except that all `NA's have
been filled in. If the original data set was grouped, then it returns a list with the following
components:

x: Matrix of levels for categorical variables
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counts: vector of length `nrow(x)' containing frequencies or counts corresponding to the 
levels in `x'.

12. getparam.cat(s, theta)

Convert the sorted parameter vector to an array, which is easier to read.

The two required arguments are: 

s: summary list of an incomplete categorical data matrix `x' created by the function 
`prelim.cat'.

theta: parameter vector in sorted order, such as one produced by the function`ecm.cat'.

This function returns an array of cell probabilities whose dimensions correspond to the columns of
the categorical data matrix $x$. The dimension is`c(max(x[,1]),max(x[,2]),...)'.

13. makeparam.cat(s, theta)

Does the opposite of “getparam.cat”—Convert parameter array to sorted vector

The two arguments are:

s: summary list of an incomplete categorical data matrix `x' created by the function 
`prelim.cat'.

theta: array of cell probabilities or expected frequencies whose dimensions correspond to 
the columns of the categorical data matrix $x$. The dimension should be
`c(max(x[,1]),max(x[,2]),...)'.

This function returns a vector in sorted order, suitable for use as a starting value or prior for
`da.cat', `mda.cat', and `dabipf'.

14. g2.cat(s, theta)

Calculates G2 statistic for incomplete categorical data

The two required arguments are:

s: summary list of an incomplete categorical data matrix `x' created by the function 
`prelim.cat'.

theta: parameter vector in sorted order, such as one produced by the function `ecm.cat'.



60

This function returns the value of the G2 likelihood ratio goodness of fit statistic associated with
`theta'. When `theta' is the maximum likelihood estimate under the saturated model, this provides a
test for the missing data being missing completely at random (MCAR), and provides a standard for
testing the significance of models with loglinear constraints. 

15. logpost.cat(s, theta, prior)

Calculates the observed-data loglikelihood or log-posterior density for incomplete categorical data
under a specified value of the underlying cell probabilities; for example, as resulting from em.cat or
ecm.cat.

The arguments are:

s: summary list of an incomplete categorical data set created by the function `prelim.cat'.
theta: an array of cell probabilities of dimension `s$d'
prior: optional vector of hyperparameters for a Dirichlet prior distribution. The default is a 

uniform prior distribution (all hyperparameters = 1) on the cell probabilities, which will
result in evaluation of the loglikelihood. If structural zeros appear in the table, a prior
should be supplied with NAs in those cells and ones (or other hyperparameters)
elsewhere.

This function returns the value of the observed-data loglikelihood or log-posterior densityfunction at
`theta'. This is the loglikelihood or log-posterior density that ignores the missing-data mechanism.

16. loglik.cat(s, theta)

 Calculates loglikelihood for incomplete categorical data

The arguments are:

s: summary list of an incomplete categorical data matrix `x' created by the function 
`prelim.cat'.

theta: parameter vector in sorted order, such as one produced by the function`ecm.cat'.

The function returns the value of the loglikelihood function at `theta'.
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17. mi.inference(est, std.err, confidence=0.95)

Performs multiple imputation inference. Uses the method described on pp. 76-77 of Rubin (1987)
for combining estimates and standard errors from m complete-data analyses performed on m
imputed data sets to produce a single inference for a scalar estimand. Significance levels and
interval estimates are approximately valid for each one-dimensional estimand, not for all of them
jointly.

The arguments are:

est: a list of $m$ (at least 2) vectors representing estimates (e.g., vectors of estimated
regression coefficients) from complete-data analyses performed on $m$ imputed
data sets.

std.err: a list of $m$ vectors containing standard errors from the complete-data analyses
corresponding to the estimates in `est'.

confidence: desired coverage of interval estimates.

This function returns a list with the following components, each of which is a vector of the same
length as the components of `est' and `std.err':

est: the average of the complete-data estimates.
std.err: standard errors incorporating both the between and the within-imputation

uncertainty (the square root of the "total variance").
df: degrees of freedom associated with the t reference distribution used for interval

estimates.
signif: P-values for the two-tailed hypothesis tests that the estimated quantities are equal

to zero.
lower: lower limits of the (100*confidence)% interval estimates.
upper: upper limits of the (100*confidence)% interval estimates.
r: estimated relative increases in variance due to nonresponse.
fminf: estimated fractions of missing information.

18. rngseed(seed)

Initializes random number generator seed. The argument “seed” should be a positive number,
preferably a large integer. This function must be called at least once to set the random generator
seed before the simulation or imputation functions in this package, such as “da.cat”, “mda.cat”,
“dabipf.cat”, “imp.cat”, etc, can be used.
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Appendix III:  Nine S-PLUS Functions for Mixed Variables
in Schafer’s Multiple Imputation Software

1. prelim.mix(x,p)

Performs preliminary data manipulations for x—a matrix of incomplete mixed data. The continuous
variables will be centered, scaled, and sorted by missingness patterns and the categorical variables
will be grouped and sorted. It returns a list of objects that summarizes various features of the
incomplete data matrix. The list will be used by functions em.mix, ecm.mix, da.mix, imp.mix, etc. 

The arguments are:

x: data matrix containing missing values. The rows of x correspond to observational units,
and the columns to variables. Missing values are denoted by NA. The categorical
variables must be in the leftmost rows of x, and they must be coded with consecutive
positive integers starting with 1. For example, a binary variable must be coded as 1, 2
rather than 0,1.

p: number of categorical variables in “x”.

This function returns a list of twenty-nine components that summarize various features of x after the
data have been collapsed, centered, scaled, and sorted by missingness patterns. Components that
might be of interest to the user include:

nmis: a vector of length ncol(x) containing the number of missing values for each variable in x. 
r: matrix of response indicators showing the missing data patterns in x. Observed values 

are indicated by 1 and missing values by 0. The row names give the number of
observations in each pattern, and the columns correspond to the columns of x.

d: vector of length p indicating the number of levels for each categorical variable.
ncells: number of cells in the cross-classified contingency table, equal to `prod(d)'.

2. em.mix(s, start, prior=1, maxits=1000, showits=T)

Finds the ML estimate for incomplete mixed data under a unrestricted general location model
through EM algorithm. If zero cell counts occur in the complete-data table, the maximum likelihood
estimate may not be unique, and the algorithm may converge to different stationary values
depending on the starting value. Also, if zero cell counts occur in the complete-data table, the MLE
may lie on the boundary of the parameter space. Setting the prior counts greater than one will give a
unique posterior mode in the interior of the parameter space.
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The arguments are:

s: summary list of an incomplete data matrix produced by the function `prelim.mix'.
start: optional starting value of the parameter. This is a parameter list in packed storage, 

such as one returned by this function or by `da.mix'. If structural zeros appear in the
contingency table, `start$pi' should contain zeros in those positions and ones elsewhere.
If no starting value is supplied, `em.mix' regards all zeros as random zeros and chooses
its own appropriate starting value.

prior: Optional vector or array of hyperparameter(s) for a Dirichlet prior distribution. By
default, uses a uniform prior on the cell probabilities. EM algorithm finds the posterior
mode, which under a uniform prior is the same as a maximum-likelihood estimate. If
structural zeros appear in the table, prior counts for these cells should be set to one.

maxits: maximum number of iterations performed. The algorithm will stop if the parameter
still has not converged after this many iterations. 

showits: if `TRUE', reports the iterations of EM so the user can monitor the progress of the
algorithm.

This function returns a list representing the maximum-likelihood estimates (or posterior mode) of the
normal parameters. This list contains cell probabilities, cell means, and covariances. The parameter
can be transformed back to the original scale and put into a more understandable format by the
function ‘getparam.mix’.

3. ecm.mix(s,margins,design,start,prior=1,maxits=1000,showits=T)

Finds the ML estimate for incomplete mixed data under a unrestricted general location model
through EM algorithm. If zero cell counts occur in the complete-data table, the maximum likelihood
estimate may not be unique, and the algorithm may converge to different stationary values
depending on the starting value. Also, if zero cell counts occur in the complete-data table, the MLE
may lie on the boundary of the parameter space. Setting the prior counts greater than one will give a
unique posterior mode in the interior of the parameter space.

The arguments are:

s: summary list of an incomplete data matrix `x' produced by the function `prelim.mix'.
margins: vector describing the sufficient configurations or margins in the desired loglinear 

model. The variables are ordered in the original order of the columns of `x', so that 1
refers to `x[,1]', 2 refers to `x[,2]', and so on. A margin is described by the factors not
summed over, and margins are separated by zeros. Thus c(1,2,0,2,3,0,1,3) would
indicate the (1,2), (2,3), and (1,3) margins in a three-way table; that is, the model of no
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three-way association. See also the `loglin' function, which specifies margins in the same
manner. 

design: design matrix specifying the relationship of the continuous variables to the categorical
ones. The dimension is `c(D,r)' where $D$ is the number of cells in the contingency
table, and $r$ is the number of effects which must be less than or equal to $D$. The
order of the rows corresponds to the storage order of the cell probabilities in the
contingency table; see `getparam.mix' for details. 

start: optional starting value of the parameter. This is a list such as one created by `em.mix'. If
structural zeros appear in the table, `start$pi' should contain zeros in those positions and
ones elsewhere. If no starting value is supplied, `em.mix' regards all zeros as random
zeros and chooses its own appropriate starting value. 

prior: Optional vector or array of hyperparameter(s) for a Dirichlet prior distribution. By
default, uses a uniform prior on the cell probabilities. ECM finds the posterior mode,
which under a uniform prior is the same as a maximum-likelihood estimate. If structural
zeros appear in the table, prior counts for these cells should be set to one.

maxits: maximum number of iterations performed. The algorithm will stop if the parameter still
has not converged after this many iterations.

showits: if `TRUE', reports the iterations of ECM so the user can monitor the progress of the
algorithm.

This function returns a list representing the maximum likelihood estimates or posterior modes of the
cell probabilities, within means and variance-covariances under a restricted general location model.
This parameter can be put into a more understandable format by the function `getparam.mix'.

4. da.mix(s, theta, steps=1, prior=1.5, showits=F)

Performs data augmentation for the general location model without restrictions. Given a starting
value, it simulates a random walk through the posterior distribution of the parameter. At each step,
missing data are randomly imputed under the current parameter (I-step), and a new parameter
value is drawn from its posterior distribution given the completed data (P-step). After a suitable
number of steps are taken, the resulting value of the parameter may be regarded as a random draw
from its incomplete-data posterior distribution.

For structural zeros, both the starting value and the prior counts must be set to zero. A suitable
starting value is a table with zeros corresponding to structural zeros, and ones elsewhere. Suitable
starting values may also be obtained from `em.mix'. The starting value should lie in the interior of the
parameter space. Hence, caution should be used when using a maximum likelihood estimate (e.g.,
from `em.mix') as a starting value. Random zeros in the complete-data table may produce MLE's
on the boundary of the parameter space. This difficulty can be overcome by applying `em.mix' with
prior counts greater than one, ensuring a mode in the interior.
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The arguments are:

s: summary list of an incomplete data matrix created by the function `prelim.mix'.
theta: starting value of the parameter. This is a parameter list such as one created by the 

function `em.mix'.
steps : number of data augmentation steps to be taken.
prior: Optional vector or array of hyperparameter(s) for a Dirichlet prior distribution. The

default is a Dirichlet prior with all prior counts= .5. If structural zeros appear in the
table, prior counts for these cells should be set to zero.

showits: if `TRUE', reports the iterations so the user can monitor the progress of the 
algorithm. 

This function returns a list containing new parameter estimate. The parameter can be put into a
more understandable format by the function `getparam.mix'.

5. imp.mix(s, theta, x)

Imputes missing data under the unrestricted general location model with user-supplied values of
parameter. The random number generator seed must be set at least once by the function `rngseed'
before this function can be used.

The arguments are:

s: summary list of an incomplete data matrix `x' created by the function `prelim.mix'.
theta: value of the parameter under which the missing data are to be randomly imputed. This 

is a parameter list such as one created by `em.mix' or `da.mix'.
x: the original data matrix used to create the summary list `s'. If this argument is not 

supplied, then the data matrix returned by this function may disagree slightly with the 
observed values in `x' due to rounding errors.

This function returns a matrix of the same form as `x', but with all missing values filled in with
simulated values drawn from their predictive distribution given the observed data and the specified
parameter. 

6. dabipf.mix(s, margins, design, theta, steps=1, prior=1.5, showits=F)

Performs data augmentation/Bayesian IPF algorithm for the general location model with restrictions.
Given a starting value, it simulates a random walk through the posterior distribution of the
parameter. At each step, missing data are randomly imputed under the current parameter (I-step),
and a new parameter value is drawn via Bayesian IPF algorithm given the completed data. After a
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suitable number of steps are taken, the resulting value of the parameter may be regarded as a
random draw from its incomplete-data posterior distribution.

For structural zeros, both the starting value and the prior counts must be set to zero. A suitable
starting value is a table with zeros corresponding to structural zeros, and ones elsewhere. Suitable
starting values may also be obtained from `ecm.mix'. The starting value should lie in the interior of
the parameter space. Hence, caution should be used when using a maximum likelihood estimate
(e.g., from `ecm.mix') as a starting value. Random zeros in the complete-data table may produce
MLE's on the boundary of the parameter space. This difficulty can be overcome by applying
`ecm.mix' with prior counts greater than one, ensuring a mode in the interior.

The arguments are:

s: summary list of an incomplete data matrix created by the function `prelim.mix'.
margins: vector describing the sufficient configurations or margins in the desired loglinear 

model. The variables are ordered in the original order of the columns of `x', so that 1
refers to `x[,1]', 2 refers to `x[,2]', and so on. A margin is described by the factors not
summed over, and margins are separated by zeros. Thus c(1,2, 0,2,3,0,1,3) would
indicate the (1,2), (2,3), and (1,3) margins in a three-way table; that is, the model of no
three-way association. See also the `loglin' function, which specifies margins in the same
manner.

design: design matrix specifying the relationship of the continuous variables to the categorical
ones. The dimension is `c(D,r)' where $D$ is the number of cells in the contingency
table, and $r$ is the number of effects which must be less than or equal to $D$. The
order of the rows corresponds to the storage order of the cell probabilities in the
contingency table; see `getparam.mix' for details.

theta: starting value of the parameter. This is a parameter list such as one created by the 
function `ecm.mix'. 

steps : number of data augmentation/Bayesian IPF steps to be taken.
prior: Optional vector or array of hyperparameter(s) for a Dirichlet prior distribution. The

default is a Dirichlet prior with all prior counts= .5. If structural zeros appear in the
table, prior counts for these cells should be set to zero.

showits: if `TRUE', reports the iterations so the user can monitor the progress of the 
algorithm. 

This function returns a list containing new parameter estimates. The parameter can be put into a
more understandable format by the function `getparam.mix'. 
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7. getparam.mix(s, theta, corr=F)

Presents parameters of general location model in an understandable format

The parameters are:

s: summary list of an incomplete normal data matrix created by the function `prelim.mix'.
theta: list of parameters such as one produced by the function `em.mix'.
corr: if `FALSE', returns a list containing an array of cell probabilities, a matrix of cell means,

and a variance-covariance matrix. If `TRUE', returns a list containing an array of cell
probabilities, a matrix of cell means, a vector of standard deviations, and a correlation
matrix. 

If `corr=F', the function returns a list containing parameter estimates of cell probabilities, cell means
and variance-covariances; if `corr=T', it returns a list containing parameter estimates of cell
probabilities, cell means, standard deviations and correlation matrix. The list contains the following
components:

 pi: array of cell probabilities whose dimensions correspond to the columns of the 
categorical part of $x$. The dimension is `c(max(x[,1]),max(x[,2]),...,max(x[,p]))'
where $p$ is the number of categorical variables. 

mu: Matrix of cell means. The dimension is `c(q,D)' where $q$ is the number of 
continuous variables in $x$, and $D$ is 'length(pi)'. The order of the rows,
corresponding to the elements of `pi', is the same order we would get by vectorizing
`pi', as in `as.vector(pi)'; it is the usual lexicographic order used by S and Fortran, with
the subscript corresponding to `x[,1]' varying the fastest, and the subscript
corresponding to `x[,p]' varying the slowest.

sigma: matrix of variances and covariances corresponding to the continuous variables in `x'.
sdv: vector of standard deviations corresponding to the continuous variables in `x'.
r: matrix of correlations corresponding to the continuous variables in `x'.
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8. loglik.mix(s, theta)

Calculates loglikelihood for incomplete data under the general location model

The arguments are:

s: summary list of an incomplete data matrix `x' created by the function `prelim.mix'.
theta: parameter list, such as one produced by `ecm.mix' or `da.mix'.

This function returns the value of the loglikelihood function at `theta'.

9. rngseed(seed)

Initializes random number generator seed. The argument “seed” should be a positive number,
preferably a large integer. This function must be called at least once to set the random generator
seed before the simulation or imputation functions in this package, such as “da.cat”, “mda.cat”,
“dabipf.cat”, “imp.cat”, etc., can be used.
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Appendix IV.  Imputations by NCES, Schafer's Software, and Proc Impute

Degree 
BS/BA

NCES 
Impute

Schafer 
#1

Schafer 
#2

Proc 
Impute

Teaching 
Exper.

NCES 
Impute

Schafer 
#1

Schafer 
#2

Proc 
Impute

Birth 
Year

NCES 
Impute

Schafer 
#1

Schafer 
#2

Proc 
Impute

Mean 66.617 66.58 66.599 66.604 66.601 10.214 10.21 10.221 10.22 10.217 42.92 42.909 42.895 42.907 42.891
Std 6.833 6.855 6.846 6.839 6.851 5.659 5.67 5.662 5.656 5.659 7.11 7.125 7.118 7.111 7.127

#  Missing 142 - - - - 82 - - - - 114 - - - -
1 . 65 69 67 66 10 10 10 10 10 43 43 43 43 43
2 . 63 67 71 72 23 23 23 23 23 41 41 41 41 41
3 . 61 65 62 62 7 7 7 7 7 39 39 39 39 39
4 . 70 79 69 71 13 13 13 13 13 48 48 48 48 48
5 . 69 71 69 70 4 4 4 4 4 47 47 47 47 47
6 . 51 56 53 50 8 8 8 8 8 29 29 29 29 29
7 . 70 67 69 70 12 12 12 12 12 46 46 46 46 46
8 . 65 67 65 67 11 11 11 11 11 43 43 43 43 43
9 . 71 74 73 73 6 6 6 6 6 49 49 49 49 49

10 . 71 72 72 76 9 9 9 9 9 49 49 49 49 49
11 . 71 74 67 72 13 13 13 13 13 49 49 49 49 49
12 . 61 60 57 59 4 4 4 4 4 39 39 39 39 39
13 . 52 51 49 50 0 0 0 0 0 30 30 30 30 30
14 . 66 69 67 68 5 5 5 5 5 44 44 44 44 44
15 . 68 67 77 67 6 6 6 6 6 46 46 46 46 46
16 . 69 66 72 70 5 5 5 5 5 47 47 47 47 47
17 . 52 54 57 74 8 8 8 8 8 30 30 30 30 30
18 . 56 58 62 61 12 12 12 12 12 34 34 34 34 34
19 . 76 75 79 78 8 8 8 8 8 54 54 54 54 54
20 . 72 72 73 71 7 7 7 7 7 50 50 50 50 50
21 . 53 52 61 56 5 5 5 5 5 31 31 31 31 31
22 . 55 61 58 53 10 10 10 10 10 33 33 33 33 33
23 . 58 61 60 59 2 2 2 2 2 36 36 36 36 36
24 . 59 62 62 60 9 9 9 9 9 37 37 37 37 37
25 . 57 55 61 56 15 15 15 15 15 35 35 35 35 35
26 . 55 59 55 68 11 11 11 11 11 33 33 33 33 33
27 . 68 68 71 67 1 1 1 1 1 46 46 46 46 46
28 . 70 72 74 69 10 10 10 10 10 48 48 48 48 48
29 . 67 65 70 70 5 5 5 5 5 45 45 45 45 45
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30 . 66 62 64 64 3 3 3 3 3 44 44 44 44 44
31 . 78 76 75 77 10 10 10 10 10 56 56 56 56 56
32 . 69 74 71 67 11 11 11 11 11 47 47 47 47 47
33 . 54 54 58 55 18 18 18 18 18 32 32 32 32 32
34 . 60 62 63 60 8 8 8 8 8 38 38 38 38 38
35 . 80 69 64 68 10 10 10 10 10 47 47 47 47 47
36 . 65 69 73 65 7 7 7 7 7 43 43 43 43 43
37 . 69 74 64 67 17 17 17 17 17 47 47 47 47 47
38 . 59 58 63 56 20 20 20 20 20 37 37 37 37 37
39 . 67 67 68 67 15 15 15 15 15 45 45 45 45 45
40 . 63 61 65 63 5 5 5 5 5 41 41 41 41 41
41 . 72 70 70 72 6 6 6 6 6 50 50 50 50 50
42 . 62 68 63 62 4 4 4 4 4 40 40 40 40 40
43 . 66 72 70 66 14 14 14 14 14 44 44 44 44 44
44 . 63 62 62 67 6 6 6 6 6 41 41 41 41 41
45 . 53 55 57 60 14 14 14 14 14 31 31 31 31 31
46 . 70 68 67 62 13 13 13 13 13 48 48 48 48 48
47 . 69 72 71 69 13 13 13 13 13 47 47 47 47 47
48 . 72 73 72 71 9 9 9 9 9 50 50 50 50 50
49 . 76 56 58 57 4 4 4 4 4 35 35 35 35 35
50 . 73 74 75 76 11 11 11 11 11 51 51 51 51 51
51 . 67 68 68 67 21 21 21 21 21 45 45 45 45 45
52 . 64 68 67 67 4 4 4 4 4 42 42 42 42 42
53 . 64 66 67 68 18 18 18 18 18 42 42 42 42 42
54 . 76 76 75 76 12 12 12 12 12 54 54 54 54 54
55 . 65 66 64 70 7 7 7 7 7 43 43 43 43 43
56 . 75 73 73 79 5 5 5 5 5 47 47 47 47 47
57 . 64 63 71 63 24 24 24 24 24 42 42 42 42 42
58 . 46 49 51 47 24 24 24 24 24 24 24 24 24 24
59 . 56 60 59 58 7 7 7 7 7 34 34 34 34 34
60 . 58 61 63 56 30 30 30 30 30 36 36 36 36 36
61 . 76 78 77 76 13 13 13 13 13 54 54 54 54 54
62 . 58 60 59 73 20 20 20 20 20 36 36 36 36 36
63 . 67 73 68 68 14 14 14 14 14 45 45 45 45 45
64 . 58 55 62 58 10 10 10 10 10 36 36 36 36 36
65 . 47 51 51 50 15 15 15 15 15 25 25 25 25 25
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66 . 75 76 78 76 3 3 3 3 3 53 53 53 53 53
67 . 59 62 67 60 4 4 4 4 4 37 37 37 37 37
68 . 76 77 73 75 14 14 14 14 14 54 54 54 54 54
69 . 74 53 61 57 13 13 13 13 13 35 35 35 35 35
70 . 69 73 68 70 10 10 10 10 10 47 47 47 47 47
71 . 59 63 62 74 22 22 22 22 22 37 37 37 37 37
72 . 62 64 64 71 5 5 5 5 5 40 40 40 40 40
73 . 63 68 68 64 9 9 9 9 9 41 41 41 41 41
74 . 49 54 56 56 3 3 3 3 3 27 27 27 27 27
75 . 69 69 69 69 15 15 15 15 15 47 47 47 47 47
76 . 71 73 62 63 10 10 10 10 10 40 40 40 40 40
77 . 69 74 68 68 13 13 13 13 13 47 47 47 47 47
78 . 56 56 57 63 6 6 6 6 6 34 34 34 34 34
79 . 62 64 59 61 3 3 3 3 3 40 40 40 40 40
80 . 68 69 69 73 9 9 9 9 9 46 46 46 46 46
81 . 66 69 71 67 4 4 4 4 4 44 44 44 44 44
82 . 53 61 58 51 0 0 0 0 0 31 31 31 31 31
83 . 61 64 66 61 7 7 7 7 7 39 39 39 39 39
84 . 68 62 68 82 9 9 9 9 9 46 46 46 46 46
85 . 49 54 52 49 13 13 13 13 13 27 27 27 27 27
86 . 79 72 83 78 7 7 7 7 7 57 57 57 57 57
87 . 60 58 65 58 15 15 15 15 15 38 38 38 38 38
88 . 66 65 67 64 21 21 21 21 21 44 44 44 44 44
89 . 65 68 69 63 17 17 17 17 17 43 43 43 43 43
90 . 67 66 64 67 6 6 6 6 6 45 45 45 45 45
91 . 72 75 71 70 9 9 9 9 9 50 50 50 50 50
92 . 72 72 78 71 7 7 7 7 7 50 50 50 50 50
93 . 69 71 74 70 3 3 3 3 3 47 47 47 47 47
94 . 63 67 64 64 10 10 10 10 10 41 41 41 41 41
95 . 51 59 58 54 12 12 12 12 12 29 29 29 29 29
96 . 69 67 70 73 12 12 12 12 12 47 47 47 47 47
97 . 69 70 71 69 10 10 10 10 10 47 47 47 47 47
98 . 62 60 64 70 21 21 21 21 21 40 40 40 40 40
99 . 68 70 72 67 3 3 3 3 3 46 46 46 46 46

100 . 56 62 61 57 17 17 17 17 17 34 34 34 34 34
101 . 64 67 62 68 7 7 7 7 7 42 42 42 42 42
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102 . 61 63 63 62 16 16 16 16 16 39 39 39 39 39
103 . 61 67 64 60 12 12 12 12 12 39 39 39 39 39
104 . 68 74 68 70 13 13 13 13 13 46 46 46 46 46
105 . 56 52 56 57 3 3 3 3 3 34 34 34 34 34
106 . 73 70 69 75 15 15 15 15 15 51 51 51 51 51
107 . 64 64 68 67 7 7 7 7 7 42 42 42 42 42
108 . 53 58 54 56 19 19 19 19 19 31 31 31 31 31
109 . 59 62 62 63 5 5 5 5 5 37 37 37 37 37
110 . 78 76 77 77 6 6 6 6 6 56 56 56 56 56
111 . 54 58 58 59 5 5 5 5 5 32 32 32 32 32
112 . 58 63 61 56 9 9 9 9 9 36 36 36 36 36
113 . 63 72 61 63 14 14 14 14 14 41 41 41 41 41
114 . 73 73 74 72 3 3 3 3 3 51 51 51 51 51
115 . 69 70 70 72 6 6 6 6 6 47 47 47 47 47
116 . 50 55 53 49 11 11 11 11 11 28 28 28 28 28
117 . 61 63 63 62 8 8 8 8 8 39 39 39 39 39
118 . 61 59 64 64 19 19 19 19 19 39 39 39 39 39
119 . 62 65 63 67 9 9 9 9 9 40 40 40 40 40
120 . 70 63 73 73 15 15 15 15 15 48 48 48 48 48
121 . 68 68 70 70 9 9 9 9 9 46 46 46 46 46
122 . 60 64 57 60 25 25 25 25 25 38 38 38 38 38
123 . 60 63 61 59 17 17 17 17 17 38 38 38 38 38
124 . 68 71 70 73 10 10 10 10 10 46 46 46 46 46
125 . 67 64 69 66 6 6 6 6 6 45 45 45 45 45
126 . 65 61 72 68 5 5 5 5 5 43 43 43 43 43
127 . 76 81 81 76 6 6 6 6 6 54 54 54 54 54
128 . 72 78 74 73 10 10 10 10 10 50 50 50 50 50
129 . 66 68 64 60 0 0 0 0 0 44 44 44 44 44
130 . 53 61 49 54 10 10 10 10 10 31 31 31 31 31
131 . 54 63 58 57 15 15 15 15 15 32 32 32 32 32
132 . 58 62 57 71 3 3 3 3 3 36 36 36 36 36
133 . 88 89 88 88 0 0 0 0 0 66 66 66 66 66
134 . 45 49 50 59 0 0 0 0 0 23 23 23 23 23
135 74 74 74 74 74 . 10 14 8 13 53 53 53 53 53
136 69 69 69 69 69 . 0 13 12 18 47 47 47 47 47
137 75 75 75 75 75 . 14 11 1 15 53 53 53 53 53
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138 69 69 69 69 69 . 3 -1 6 5 47 47 47 47 47
139 74 74 74 74 74 . 16 12 19 8 49 49 49 49 49
140 74 74 74 74 74 . 9 1 9 9 54 54 54 54 54
141 71 71 71 71 71 . 5 5 13 5 46 46 46 46 46
142 63 63 63 63 63 . 16 24 15 12 38 38 38 38 38
143 60 60 60 60 60 . 20 13 11 18 38 38 38 38 38
144 57 57 57 57 57 . 2 11 17 16 34 34 34 34 34
145 64 64 64 64 64 . 4 8 10 5 42 42 42 42 42
146 57 57 57 57 57 . 4 13 14 17 35 35 35 35 35
147 70 70 70 70 70 . 9 8 9 16 46 46 46 46 46
148 71 71 71 71 71 . 0 12 8 7 49 49 49 49 49
149 60 60 60 60 60 . 0 15 6 8 34 34 34 34 34
150 62 62 62 62 62 . 0 1 -2 4 27 27 27 27 27
151 72 72 72 72 72 . 17 4 8 7 50 50 50 50 50
152 80 80 80 80 80 . 15 6 7 7 58 58 58 58 58
153 70 70 70 70 70 . 13 11 6 12 48 48 48 48 48
154 67 67 67 67 67 . 14 20 15 5 43 43 43 43 43
155 66 66 66 66 66 . 15 16 10 18 45 45 45 45 45
156 73 73 73 73 73 . 19 11 20 17 51 51 51 51 51
157 70 70 70 70 70 . 12 17 11 10 47 47 47 47 47
158 70 70 70 70 70 . 12 1 16 14 48 48 48 48 48
159 68 68 68 68 68 . 16 7 8 11 43 43 43 43 43
160 66 66 66 66 66 . 13 13 13 20 49 49 49 49 49
161 68 68 68 68 68 . 9 5 10 9 45 45 45 45 45
162 72 72 72 72 72 . 14 10 13 12 49 49 49 49 49
163 55 55 55 55 55 . 20 10 7 3 22 22 22 22 22
164 71 71 71 71 71 . 15 16 9 19 48 48 48 48 48
165 65 65 65 65 65 . 10 9 10 14 44 44 44 44 44
166 62 62 62 62 62 . 15 18 18 10 27 27 27 27 27
167 57 57 57 57 57 . 0 7 3 7 34 34 34 34 34
168 65 65 65 65 65 . 9 14 10 14 43 43 43 43 43
169 66 66 66 66 66 . 17 6 20 17 44 44 44 44 44
170 68 68 68 68 68 . 2 20 7 10 46 46 46 46 46
171 57 57 57 57 57 . 0 11 4 0 32 32 32 32 32
172 60 60 60 60 60 . 5 20 14 18 36 36 36 36 36
173 58 58 58 58 58 . 30 15 19 19 33 33 33 33 33
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174 68 68 68 68 68 . 10 2 7 7 42 42 42 42 42
175 62 62 62 62 62 . 19 14 13 7 40 40 40 40 40
176 71 71 71 71 71 . 12 15 11 13 49 49 49 49 49
177 69 69 69 69 69 . 10 12 6 12 47 47 47 47 47
178 64 64 64 64 64 . 10 18 16 6 41 41 41 41 41
179 59 59 59 59 59 . 13 10 14 12 34 34 34 34 34
180 62 62 62 62 62 . 16 18 9 27 41 41 41 41 41
181 69 69 69 69 69 . 16 5 9 13 46 46 46 46 46
182 72 72 72 72 72 . 8 -5 13 10 47 47 47 47 47
183 80 80 80 80 80 . 14 3 11 10 57 57 57 57 57
184 59 59 59 59 59 . 19 21 21 7 32 32 32 32 32
185 63 63 63 63 63 . 0 4 8 0 40 40 40 40 40
186 63 63 63 63 63 . 21 15 11 4 37 37 37 37 37
187 58 58 58 58 58 . 12 7 5 7 29 29 29 29 29
188 69 69 69 69 69 . 5 9 5 0 47 47 47 47 47
189 69 69 69 69 69 . 0 9 11 19 47 47 47 47 47
190 68 68 68 68 68 . 8 11 19 17 47 47 47 47 47
191 71 71 71 71 71 . 10 9 15 3 49 49 49 49 49
192 72 72 72 72 72 . 10 17 17 13 46 46 46 46 46
193 59 59 59 59 59 . 12 15 16 20 37 37 37 37 37
194 71 71 71 71 71 . 9 6 11 7 47 47 47 47 47
195 58 58 58 58 58 . 6 12 14 9 35 35 35 35 35
196 78 78 78 78 78 . 0 6 10 4 54 54 54 54 54
197 59 59 59 59 59 . 2 8 15 17 37 37 37 37 37
198 67 67 67 67 67 . 11 12 19 13 41 41 41 41 41
199 68 68 68 68 68 . 17 10 4 4 45 45 45 45 45
200 52 52 52 52 52 . 16 13 7 14 22 22 22 22 22
201 59 59 59 59 59 . 5 13 11 3 35 35 35 35 35
202 57 57 57 57 57 . 25 6 19 2 24 24 24 24 24
203 57 57 57 57 57 . 0 8 14 7 35 35 35 35 35
204 60 60 60 60 60 . 0 23 4 9 38 38 38 38 38
205 73 73 73 73 73 . 7 13 16 8 51 51 51 51 51
206 70 70 70 70 70 . 11 19 9 17 36 36 36 36 36
207 71 71 71 71 71 . 11 15 14 17 43 43 43 43 43
208 72 72 72 72 72 . 12 22 7 9 50 50 50 50 50
209 69 69 69 69 69 . 6 10 12 17 47 47 47 47 47
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210 62 62 62 62 62 . 1 18 14 5 40 40 40 40 40
211 73 73 73 73 73 . 10 15 14 8 52 52 52 52 52
212 61 61 61 61 61 . 0 15 -3 7 38 38 38 38 38
213 . 60 62 64 58 . 0 9 19 5 38 38 38 38 38
214 72 72 72 72 72 7 7 7 7 7 . 55 49 45 47
215 75 75 75 75 75 5 5 5 5 5 . 52 53 56 45
216 68 68 68 68 68 5 5 5 5 5 . 48 46 49 46
217 70 70 70 70 70 4 4 4 4 4 . 48 44 44 45
218 78 78 78 78 78 6 6 6 6 6 . 56 48 51 52
219 62 62 62 62 62 13 13 13 13 13 . 38 34 40 33
220 64 64 64 64 64 6 6 6 6 6 . 43 38 43 43
221 72 72 72 72 72 4 4 4 4 4 . 52 48 47 52
222 67 67 67 67 67 20 20 20 20 20 . 36 45 48 46
223 60 60 60 60 60 21 21 21 21 21 . 27 37 38 33
224 69 69 69 69 69 5 5 5 5 5 . 42 43 42 45
225 70 70 70 70 70 8 8 8 8 8 . 41 42 43 45
226 63 63 63 63 63 4 4 4 4 4 . 40 37 42 40
227 68 68 68 68 68 11 11 11 11 11 . 46 47 41 47
228 55 55 55 55 55 10 10 10 10 10 . 33 30 30 32
229 61 61 61 61 61 15 15 15 15 15 . 39 41 39 37
230 62 62 62 62 62 10 10 10 10 10 . 40 44 39 33
231 62 62 62 62 62 6 6 6 6 6 . 40 39 39 39
232 61 61 61 61 61 8 8 8 8 8 . 39 42 38 35
233 74 74 74 74 74 15 15 15 15 15 . 51 50 46 49
234 65 65 65 65 65 16 16 16 16 16 . 45 39 42 47
235 68 68 68 68 68 11 11 11 11 11 . 46 45 44 36
236 60 60 60 60 60 6 6 6 6 6 . 38 36 38 33
237 65 65 65 65 65 18 18 18 18 18 . 42 38 47 40
238 62 62 62 62 62 6 6 6 6 6 . 37 41 37 33
239 73 73 73 73 73 12 12 12 12 12 . 33 41 51 49
240 55 55 55 55 55 20 20 20 20 20 . 33 30 36 30
241 58 58 58 58 58 4 4 4 4 4 . 36 32 38 34
242 71 71 71 71 71 15 15 15 15 15 . 51 44 49 41
243 72 72 72 72 72 8 8 8 8 8 . 54 43 51 51
244 66 66 66 66 66 15 15 15 15 15 . 45 48 44 41
245 57 57 57 57 57 4 4 4 4 4 . 35 36 36 30
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246 69 69 69 69 69 5 5 5 5 5 . 45 43 44 35
247 55 55 55 55 55 6 6 6 6 6 . 33 36 34 21
248 65 65 65 65 65 11 11 11 11 11 . 43 44 46 43
249 62 62 62 62 62 8 8 8 8 8 . 42 44 36 39
250 63 63 63 63 63 9 9 9 9 9 . 44 40 38 41
251 50 50 50 50 50 18 18 18 18 18 . 26 27 33 26
252 52 52 52 52 52 14 14 14 14 14 . 30 31 31 21
253 60 60 60 60 60 7 7 7 7 7 . 33 39 35 35
254 60 60 60 60 60 8 8 8 8 8 . 36 35 33 37
255 73 73 73 73 73 5 5 5 5 5 . 51 46 51 52
256 63 63 63 63 63 4 4 4 4 4 . 37 44 42 36
257 59 59 59 59 59 8 8 8 8 8 . 34 36 42 38
258 60 60 60 60 60 7 7 7 7 7 . 38 38 40 36
259 60 60 60 60 60 7 7 7 7 7 . 38 36 39 35
260 57 57 57 57 57 9 9 9 9 9 . 35 33 36 33
261 72 72 72 72 72 13 13 13 13 13 . 51 49 47 51
262 53 53 53 53 53 18 18 18 18 18 . 31 30 31 34
263 68 68 68 68 68 0 0 0 0 0 . 46 46 46 47
264 70 70 70 70 70 15 15 15 15 15 . 46 48 48 47
265 65 65 65 65 65 21 21 21 21 21 . 44 45 43 44
266 69 69 69 69 69 21 21 21 21 21 . 29 44 41 44
267 58 58 58 58 58 18 18 18 18 18 . 36 39 31 41
268 75 75 75 75 75 11 11 11 11 11 . 53 49 47 48
269 75 75 75 75 75 13 13 13 13 13 . 51 47 54 51
270 59 59 59 59 59 7 7 7 7 7 . 37 38 39 33
271 68 68 68 68 68 17 17 17 17 17 . 48 42 44 46
272 60 60 60 60 60 11 11 11 11 11 . 41 37 40 37
273 70 70 70 70 70 14 14 14 14 14 . 49 44 47 49
274 46 46 46 46 46 7 7 7 7 7 . 24 28 20 32
275 70 70 70 70 70 20 20 20 20 20 . 43 44 48 47
276 50 50 50 50 50 7 7 7 7 7 . 28 25 31 34
277 75 75 75 75 75 13 13 13 13 13 . 49 53 54 53
278 49 49 49 49 49 23 23 23 23 23 . 27 25 30 31
279 58 58 58 58 58 2 2 2 2 2 . 36 35 34 39
280 79 79 79 79 79 8 8 8 8 8 . 53 52 51 56
281 63 63 63 63 63 5 5 5 5 5 . 45 40 42 28
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282 73 73 73 73 73 7 7 7 7 7 . 53 44 47 51
283 70 70 70 70 70 3 3 3 3 3 . 48 48 45 47
284 82 82 82 82 82 2 2 2 2 2 . 62 58 56 48
285 61 61 61 61 61 7 7 7 7 7 . 44 36 41 39
286 57 57 57 57 57 27 27 27 27 27 . 38 31 35 28
287 58 58 58 58 58 5 5 5 5 5 . 34 31 39 41
288 64 64 64 64 64 14 14 14 14 14 . 43 39 40 40
289 69 69 69 69 69 15 15 15 15 15 . 47 47 45 29
290 58 58 58 58 58 19 19 19 19 19 . 41 37 37 38
291 73 73 73 73 73 11 11 11 11 11 . 52 46 61 55
292 60 60 60 60 60 6 6 6 6 6 . 38 31 38 38
293 65 65 65 65 65 5 5 5 5 5 . 43 47 42 39
294 76 76 76 76 76 28 28 28 28 28 . 34 52 53 44
295 72 72 72 72 72 12 12 12 12 12 . 54 44 52 51
296 67 67 67 67 67 16 16 16 16 16 . 48 44 40 40
297 51 51 51 51 51 10 10 10 10 10 . 29 23 31 27
298 77 77 77 77 77 11 11 11 11 11 . 54 48 49 54
299 65 65 65 65 65 13 13 13 13 13 . 45 43 42 42
300 62 62 62 62 62 13 13 13 13 13 . 40 45 40 42
301 53 53 53 53 53 12 12 12 12 12 . 31 31 28 25
302 70 70 70 70 70 5 5 5 5 5 . 48 43 40 48
303 57 57 57 57 57 13 13 13 13 13 . 35 36 35 25
304 69 69 69 69 69 31 31 31 31 31 . 23 51 45 45
305 73 73 73 73 73 5 5 5 5 5 . 50 51 51 48
306 65 65 65 65 65 14 14 14 14 14 . 43 36 41 44
307 72 72 72 72 72 3 3 3 3 3 . 50 50 50 50
308 70 70 70 70 70 15 15 15 15 15 . 47 45 51 47
309 55 55 55 55 55 14 14 14 14 14 . 33 32 39 31
310 61 61 61 61 61 9 9 9 9 9 . 39 39 37 33
311 72 72 72 72 72 16 16 16 16 16 . 50 54 44 43
312 77 77 77 77 77 11 11 11 11 11 . 56 55 54 48
313 71 71 71 71 71 3 3 3 3 3 . 51 50 49 48
314 59 59 59 59 59 14 14 14 14 14 . 40 35 30 33
315 50 50 50 50 50 5 5 5 5 5 . 30 23 23 28
316 72 72 72 72 72 10 10 10 10 10 . 49 44 48 47
317 67 67 67 67 67 10 10 10 10 10 . 49 48 45 40
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318 . 66 80 70 79 9 9 9 9 9 . 44 55 42 55
319 . 77 56 69 76 10 10 10 10 10 . 55 35 44 50
320 . 56 68 72 77 15 15 15 15 15 . 34 40 50 53
321 . 62 50 62 56 10 10 10 10 10 . 40 24 40 36
322 . 70 65 62 54 6 6 6 6 6 . 48 41 38 30
323 . 60 58 61 64 7 7 7 7 7 . 38 36 41 42
324 . 69 61 67 62 10 10 10 10 10 . 47 33 46 42
325 63 63 63 63 63 . 0 3 4 4 . 28 38 35 35
326 66 66 66 66 66 . 11 3 -2 10 . 44 42 38 35
327 70 70 70 70 70 . 9 2 8 8 . 52 47 41 47

Notes: (1) The three variables compared from 1990-91 SASS Administrator data file are:
BS/BA: Year received bachelor's degree
Teaching Experience: Years of elementary/secondary teaching experience before becoming principal
Birth: Year of birth

(2) Schafer's imputations are rounded up.
(3) In each five-column section, the first column represents un-imputed data, the second NCES imputed data, the third and fourth Schafer's software
      imputed data (set1 and set 2), the fifth Proc Impute imputed data, respectively, for the cases in which at least one of the three variables has a missing 
      value.
(4) Mean and standard deviation are calculated for the whole sample with sample size 9054.
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2000–07 “How Much Literacy is Enough?” Issues in Defining and Reporting Performance 
Standards for the National Assessment of Adult Literacy 

Sheida White 

2000–08 Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses 
with Recommendations for Revisions 

Sheida White 

2000–09 Demographic Changes and Literacy Development in a Decade Sheida White 
2001–08 Assessing the Lexile Framework: Results of a Panel Meeting Sheida White 

   
 
National Assessment of Educational Progress (NAEP) 

 

95–12 Rural Education Data User’s Guide Samuel Peng 
97–29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes? Steven Gorman 
97–30 ACT’s NAEP Redesign Project: Assessment Design is the Key to Useful and Stable 

Assessment Results 
Steven Gorman 



No. Title NCES contact 
97–31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational 

Progress 
Steven Gorman 

97–32 Innovative Solutions to Intractable Large Scale Assessment (Problem 2: Background 
Questionnaires) 

Steven Gorman 

97–37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items Steven Gorman 
97–44 Development of a SASS 1993–94 School-Level Student Achievement Subfile:  Using 

State Assessments and State NAEP, Feasibility Study 
Michael Ross 

98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 
1999–05 Procedures Guide for Transcript Studies Dawn Nelson 
1999–06 1998 Revision of the Secondary School Taxonomy Dawn Nelson 
2001–07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third 

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme 
for International Student Assessment (PISA) 

Arnold Goldstein 

2001–08 Assessing the Lexile Framework: Results of a Panel Meeting Sheida White 
 
National Education Longitudinal Study of 1988 (NELS:88) 

 

95–04 National Education Longitudinal Study of 1988: Second Follow-up Questionnaire Content 
Areas and Research Issues 

Jeffrey Owings 

95–05 National Education Longitudinal Study of 1988: Conducting Trend Analyses of NLS-72, 
HS&B, and NELS:88 Seniors 

Jeffrey Owings 

95–06 National Education Longitudinal Study of 1988: Conducting Cross-Cohort Comparisons 
Using HS&B, NAEP, and NELS:88 Academic Transcript Data  

Jeffrey Owings 

95–07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS&B and 
NELS:88 Sophomore Cohort Dropouts 

Jeffrey Owings 

95–12 Rural Education Data User’s Guide Samuel Peng 
95–14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used 

in NCES Surveys 
Samuel Peng 

96–03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and 
Issues 

Jeffrey Owings 

98–06 National Education Longitudinal Study of 1988 (NELS:88) Base Year through Second 
Follow-Up: Final Methodology Report  

Ralph Lee 

98–09 High School Curriculum Structure: Effects on Coursetaking and Achievement in 
Mathematics for High School Graduates—An Examination of Data from the National 
Education Longitudinal Study of 1988 

Jeffrey Owings 

98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 
1999–05 Procedures Guide for Transcript Studies Dawn Nelson 
1999–06 1998 Revision of the Secondary School Taxonomy Dawn Nelson 
1999–15 Projected Postsecondary Outcomes of 1992 High School Graduates Aurora D’Amico 

 
National Household Education Survey (NHES) 

 

95–12 Rural Education Data User’s Guide Samuel Peng 
96–13 Estimation of Response Bias in the NHES:95 Adult Education Survey Steven Kaufman 
96–14 The 1995 National Household Education Survey: Reinterview Results for the Adult 

Education Component 
Steven Kaufman 

96–20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early 
Childhood Education, and Adult Education 

Kathryn Chandler 

96–21 1993 National Household Education Survey (NHES:93) Questionnaires: Screener, School 
Readiness, and School Safety and Discipline 

Kathryn Chandler 

96–22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early 
Childhood Program Participation, and Adult Education 

Kathryn Chandler 

96–29 Undercoverage Bias in Estimates of Characteristics of Adults and 0- to 2-Year-Olds in the 
1995 National Household Education Survey (NHES:95) 

Kathryn Chandler 

96–30 Comparison of Estimates from the 1995 National Household Education Survey 
(NHES:95) 

Kathryn Chandler 

97–02 Telephone Coverage Bias and Recorded Interviews in the 1993 National Household 
Education Survey (NHES:93) 

Kathryn Chandler 

97–03 1991 and 1995 National Household Education Survey Questionnaires: NHES:91 Screener, 
NHES:91 Adult Education, NHES:95 Basic Screener, and NHES:95 Adult Education 

Kathryn Chandler 

97–04 Design, Data Collection, Monitoring, Interview Administration Time, and Data Editing in 
the 1993 National Household Education Survey (NHES:93) 

Kathryn Chandler 



No. Title NCES contact 
97–05 Unit and Item Response, Weighting, and Imputation Procedures in the 1993 National 

Household Education Survey (NHES:93) 
Kathryn Chandler 

97–06 Unit and Item Response, Weighting, and Imputation Procedures in the 1995 National 
Household Education Survey (NHES:95) 

Kathryn Chandler 

97–08 Design, Data Collection, Interview Timing, and Data Editing in the 1995 National 
Household Education Survey 

Kathryn Chandler 

97–19 National Household Education Survey of 1995: Adult Education Course Coding Manual Peter Stowe 
97–20 National Household Education Survey of 1995: Adult Education Course Code Merge 

Files User’s Guide 
Peter Stowe 

97–25 1996 National Household Education Survey (NHES:96) Questionnaires:  
Screener/Household and Library, Parent and Family Involvement in Education and 
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement 

Kathryn Chandler 

97–28 Comparison of Estimates in the 1996 National Household Education Survey Kathryn Chandler 
97–34 Comparison of Estimates from the 1993 National Household Education Survey Kathryn Chandler 
97–35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996 

National Household Education Survey 
Kathryn Chandler 

97–38 Reinterview Results for the Parent and Youth Components of the 1996 National 
Household Education Survey 

Kathryn Chandler 

97–39 Undercoverage Bias in Estimates of Characteristics of Households and Adults in the 1996 
National Household Education Survey 

Kathryn Chandler 

97–40 Unit and Item Response Rates, Weighting, and Imputation Procedures in the 1996 
National Household Education Survey 

Kathryn Chandler 

98–03 Adult Education in the 1990s: A Report on the 1991 National Household Education 
Survey 

Peter Stowe 

98–10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks 
and Empirical Studies 

Peter Stowe 

 
National Longitudinal Study of the High School Class of 1972 (NLS-72) 

 

95–12 Rural Education Data User’s Guide Samuel Peng 
 
National Postsecondary Student Aid Study (NPSAS) 

 

96–17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report  Andrew G. Malizio 
2000–17 National Postsecondary Student Aid Study:2000 Field Test Methodology Report Andrew G. Malizio 

 
National Study of Postsecondary Faculty (NSOPF) 

 

97–26 Strategies for Improving Accuracy of Postsecondary Faculty Lists Linda Zimbler 
98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 

2000–01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report Linda Zimbler 
 
Postsecondary Education Descriptive Analysis Reports (PEDAR) 

 

2000–11 Financial Aid Profile of Graduate Students in Science and Engineering Aurora D’Amico 
 
Private School Universe Survey (PSS) 

 

95–16 Intersurvey Consistency in NCES Private School Surveys Steven Kaufman 
95–17 Estimates of Expenditures for Private K–12 Schools Stephen Broughman 
96–16 Strategies for Collecting Finance Data from Private Schools Stephen Broughman 
96–26 Improving the Coverage of Private Elementary-Secondary Schools Steven Kaufman 
96–27 Intersurvey Consistency in NCES Private School Surveys for 1993–94 Steven Kaufman 
97–07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary 

Schools: An Exploratory Analysis 
Stephen Broughman 

97–22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman 
98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 

2000–04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and 
1999 AAPOR Meetings 

Dan Kasprzyk 

2000–15 Feasibility Report: School-Level Finance Pretest, Private School Questionnaire Stephen Broughman 



No. Title NCES contact 
 
Recent College Graduates (RCG) 

 

98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 
 
Schools and Staffing Survey (SASS) 

 

94–01 Schools and Staffing Survey (SASS) Papers Presented at Meetings of the American 
Statistical Association 

Dan Kasprzyk 

94–02 Generalized Variance Estimate for Schools and Staffing Survey (SASS) Dan Kasprzyk 
94–03 1991 Schools and Staffing Survey (SASS) Reinterview Response Variance Report Dan Kasprzyk 
94–04 The Accuracy of Teachers’ Self-reports on their Postsecondary Education: Teacher 

Transcript Study, Schools and Staffing Survey 
Dan Kasprzyk 

94–06 Six Papers on Teachers from the 1990–91 Schools and Staffing Survey and Other Related 
Surveys 

Dan Kasprzyk 

95–01 Schools and Staffing Survey: 1994 Papers Presented at the 1994 Meeting of the American 
Statistical Association 

Dan Kasprzyk 

95–02 QED Estimates of the 1990–91 Schools and Staffing Survey: Deriving and Comparing 
QED School Estimates with CCD Estimates 

Dan Kasprzyk 

95–03 Schools and Staffing Survey: 1990–91 SASS Cross-Questionnaire Analysis Dan Kasprzyk 
95–08 CCD Adjustment to the 1990–91 SASS: A Comparison of Estimates Dan Kasprzyk 
95–09 The Results of the 1993 Teacher List Validation Study (TLVS) Dan Kasprzyk 
95–10 The Results of the 1991–92 Teacher Follow-up Survey (TFS) Reinterview and Extensive 

Reconciliation 
Dan Kasprzyk 

95–11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of 
Recent Work 

Sharon Bobbitt & 
John Ralph 

95–12 Rural Education Data User’s Guide Samuel Peng 
95–14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used 

in NCES Surveys 
Samuel Peng 

95–15 Classroom Instructional Processes: A Review of Existing Measurement Approaches and 
Their Applicability for the Teacher Follow-up Survey 

Sharon Bobbitt 

95–16 Intersurvey Consistency in NCES Private School Surveys Steven Kaufman 
95–18 An Agenda for Research on Teachers and Schools: Revisiting NCES’ Schools and 

Staffing Survey 
Dan Kasprzyk 

96–01 Methodological Issues in the Study of Teachers’ Careers: Critical Features of a Truly 
Longitudinal Study 

Dan Kasprzyk 

96–02 Schools and Staffing Survey (SASS): 1995 Selected papers presented at the 1995 Meeting 
of the American Statistical Association 

Dan Kasprzyk 

96–05 Cognitive Research on the Teacher Listing Form for the Schools and Staffing Survey Dan Kasprzyk 
96–06 The Schools and Staffing Survey (SASS) for 1998–99: Design Recommendations to 

Inform Broad Education Policy 
Dan Kasprzyk 

96–07 Should SASS Measure Instructional Processes and Teacher Effectiveness? Dan Kasprzyk 
96–09 Making Data Relevant for Policy Discussions: Redesigning the School Administrator 

Questionnaire for the 1998–99 SASS 
Dan Kasprzyk 

96–10 1998–99 Schools and Staffing Survey: Issues Related to Survey Depth Dan Kasprzyk 
96–11 Towards an Organizational Database on America’s Schools: A Proposal for the Future of 

SASS, with comments on School Reform, Governance, and Finance  
Dan Kasprzyk 

96–12 Predictors of Retention, Transfer, and Attrition of Special and General Education 
Teachers: Data from the 1989 Teacher Followup Survey 

Dan Kasprzyk 

96–15 Nested Structures: District-Level Data in the Schools and Staffing Survey Dan Kasprzyk 
96–23 Linking Student Data to SASS: Why, When, How Dan Kasprzyk 
96–24 National Assessments of Teacher Quality Dan Kasprzyk 
96–25 Measures of Inservice Professional Development: Suggested Items for the 1998–1999 

Schools and Staffing Survey 
Dan Kasprzyk 

96–28 Student Learning, Teaching Quality, and Professional Development: Theoretical 
Linkages, Current Measurement, and Recommendations for Future Data Collection 

Mary Rollefson 

97–01 Selected Papers on Education Surveys: Papers Presented at the 1996 Meeting of the 
American Statistical Association 

Dan Kasprzyk 

97–07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary 
Schools: An Exploratory Analysis 

Stephen Broughman 

97–09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman 
97–10 Report of Cognitive Research on the Public and Private School Teacher Questionnaires 

for the Schools and Staffing Survey 1993–94 School Year 
Dan Kasprzyk 



No. Title NCES contact 
97–11 International Comparisons of Inservice Professional Development Dan Kasprzyk 
97–12 Measuring School Reform: Recommendations for Future SASS Data Collection Mary Rollefson 
97–14 Optimal Choice of Periodicities for the Schools and Staffing Survey: Modeling and 

Analysis 
Steven Kaufman 

97–18 Improving the Mail Return Rates of SASS Surveys: A Review of the Literature Steven Kaufman 
97–22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman 
97–23 Further Cognitive Research on the Schools and Staffing Survey (SASS) Teacher Listing 

Form 
Dan Kasprzyk 

97–41 Selected Papers on the Schools and Staffing Survey: Papers Presented at the 1997 Meeting 
of the American Statistical Association 

Steve Kaufman 

97–42 Improving the Measurement of Staffing Resources at the School Level:  The Development 
of Recommendations for NCES for the Schools and Staffing Survey (SASS) 

Mary Rollefson 

97–44 Development of a SASS 1993–94 School-Level Student Achievement Subfile:  Using 
State Assessments and State NAEP, Feasibility Study 

Michael Ross 

98–01 Collection of Public School Expenditure Data: Development of a Questionnaire Stephen Broughman 
98–02 Response Variance in the 1993–94 Schools and Staffing Survey: A Reinterview Report Steven Kaufman 
98–04 Geographic Variations in Public Schools’ Costs William J. Fowler, Jr. 
98–05 SASS Documentation: 1993–94 SASS Student Sampling Problems; Solutions for 

Determining the Numerators for the SASS Private School (3B) Second-Stage Factors 
Steven Kaufman 

98–08 The Redesign of the Schools and Staffing Survey for 1999–2000: A Position Paper Dan Kasprzyk 
98–12 A Bootstrap Variance Estimator for Systematic PPS Sampling Steven Kaufman 
98–13 Response Variance in the 1994–95 Teacher Follow-up Survey Steven Kaufman 
98–14 Variance Estimation of Imputed Survey Data  Steven Kaufman 
98–15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman 
98–16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey Stephen Broughman 

1999–02 Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results Dan Kasprzyk 
1999–04 Measuring Teacher Qualifications Dan Kasprzyk 
1999–07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey Stephen Broughman 
1999–08 Measuring Classroom Instructional Processes: Using Survey and Case Study Fieldtest 

Results to Improve Item Construction 
Dan Kasprzyk 

1999–10 What Users Say About Schools and Staffing Survey Publications Dan Kasprzyk 
1999–12 1993–94 Schools and Staffing Survey: Data File User’s Manual, Volume III: Public-Use 

Codebook 
Kerry Gruber 

1999–13 1993–94 Schools and Staffing Survey: Data File User’s Manual, Volume IV: Bureau of 
Indian Affairs (BIA) Restricted-Use Codebook 

Kerry Gruber 

1999–14 1994–95 Teacher Followup Survey: Data File User’s Manual, Restricted-Use Codebook Kerry Gruber 
1999–17 Secondary Use of the Schools and Staffing Survey Data Susan Wiley 
2000–04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and 

1999 AAPOR Meetings 
Dan Kasprzyk 

2000–10 A Research Agenda for the 1999–2000 Schools and Staffing Survey Dan Kasprzyk 
2000–13 Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of 

Data (CCD) 
Kerry Gruber 

2000–18 Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire Stephen Broughman 
 
Third International Mathematics and Science Study (TIMSS) 

 

2001–01 Cross-National Variation in Educational Preparation for Adulthood: From Early 
Adolescence to Young Adulthood 

Elvira Hausken 

2001–05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales 
2001–07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third 

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme 
for International Student Assessment (PISA) 

Arnold Goldstein 



Listing of NCES Working Papers by Subject 
 

No. Title NCES contact 
 
Achievement (student) - mathematics 

 

2001–05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales 
 
Adult education 

 

96–14 The 1995 National Household Education Survey: Reinterview Results for the Adult 
Education Component  

Steven Kaufman 

96–20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early 
Childhood Education, and Adult Education 

Kathryn Chandler 

96–22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early 
Childhood Program Participation, and Adult Education 

Kathryn Chandler 

98–03 Adult Education in the 1990s: A Report on the 1991 National Household Education 
Survey 

Peter Stowe 

98–10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks 
and Empirical Studies 

Peter Stowe 

1999–11 Data Sources on Lifelong Learning Available from the National Center for Education 
Statistics 

Lisa Hudson 

2000–16a Lifelong Learning NCES Task Force: Final Report Volume I Lisa Hudson 
2000–16b Lifelong Learning NCES Task Force: Final Report Volume II Lisa Hudson 
 
Adult literacy—see Literacy of adults 

 

 
American Indian – education 

 

1999–13 1993–94 Schools and Staffing Survey: Data File User’s Manual, Volume IV: Bureau of 
Indian Affairs (BIA) Restricted-Use Codebook 

Kerry Gruber 

 
Assessment/achievement 

 

95–12 Rural Education Data User’s Guide Samuel Peng 
95–13 Assessing Students with Disabilities and Limited English Proficiency James Houser 
97–29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes?  Larry Ogle  
97–30 ACT’s NAEP Redesign Project:  Assessment Design is the Key to Useful and Stable 

Assessment Results 
Larry Ogle  

97–31 NAEP Reconfigured:  An Integrated Redesign of the National Assessment of Educational 
Progress 

Larry Ogle  

97–32 Innovative Solutions to Intractable Large Scale Assessment (Problem 2:  Background 
Questions) 

Larry Ogle  

97–37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items Larry Ogle  
97–44 Development of a SASS 1993–94 School-Level Student Achievement Subfile:  Using 

State Assessments and State NAEP, Feasibility Study 
Michael Ross 

98–09 High School Curriculum Structure: Effects on Coursetaking and Achievement in 
Mathematics for High School Graduates—An Examination of Data from the National 
Education Longitudinal Study of 1988 

Jeffrey Owings 

2001–07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third 
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme 
for International Student Assessment (PISA) 

Arnold Goldstein 

 
Beginning students in postsecondary education 

 

98–11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96–98) Field 
Test Report  

Aurora D’Amico 

2001–04 Beginning Postsecondary Students Longitudinal Study: 1996–2001 (BPS:1996/2001)  
Field Test Methodology Report  

Paula Knepper 

 
Civic participation 

 

97–25 1996 National Household Education Survey (NHES:96) Questionnaires: 
Screener/Household and Library, Parent and Family Involvement in Education and 
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement 

Kathryn Chandler 



No. Title NCES contact 
 
Climate of schools 

 

95–14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used 
in NCES Surveys 

Samuel Peng 

 
Cost of education indices 

 

94–05 Cost-of-Education Differentials Across the States William J. Fowler, Jr. 
 
Course-taking 

 

95–12 Rural Education Data User’s Guide Samuel Peng 
98–09 High School Curriculum Structure: Effects on Coursetaking and Achievement in 

Mathematics for High School Graduates—An Examination of Data from the National 
Education Longitudinal Study of 1988 

Jeffrey Owings 

1999–05 Procedures Guide for Transcript Studies Dawn Nelson 
1999–06 1998 Revision of the Secondary School Taxonomy Dawn Nelson 

 
Crime 

 

97–09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman 
 
Curriculum 

 

95–11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of 
Recent Work 

Sharon Bobbitt & 
John Ralph 

98–09 High School Curriculum Structure: Effects on Coursetaking and Achievement in 
Mathematics for High School Graduates—An Examination of Data from the National 
Education Longitudinal Study of 1988 

Jeffrey Owings 

 
Customer service 

 

1999–10 What Users Say About Schools and Staffing Survey Publications Dan Kasprzyk 
2000–02 Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps Valena Plisko 
2000–04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and 

1999 AAPOR Meetings 
Dan Kasprzyk 

 
Data quality 

 

97–13 Improving Data Quality in NCES: Database-to-Report Process Susan Ahmed 
 
Data warehouse 

 

2000–04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and 
1999 AAPOR Meetings 

Dan Kasprzyk 

 
Design effects  

 

2000–03 Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing 
Variances from NCES Data Sets 

Ralph Lee 

 
Dropout rates, high school 

 

95–07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS&B and 
NELS:88 Sophomore Cohort Dropouts 

Jeffrey Owings 

 
Early childhood education 

 

96–20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early 
Childhood Education, and Adult Education 

Kathryn Chandler 

96–22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early 
Childhood Program Participation, and Adult Education 

Kathryn Chandler 

97–24 Formulating a Design for the ECLS: A Review of Longitudinal Studies Jerry West 
97–36 Measuring the Quality of Program Environments in Head Start and Other Early Childhood 

Programs: A Review and Recommendations for Future Research 
Jerry West 

1999–01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale Jerry West 
2001–02 Measuring Father Involvement in Young Children's Lives: Recommendations for a 

Fatherhood Module for the ECLS-B 
Jerry West 

2001–03 Measures of Socio-Emotional Development in Middle School Elvira Hausken 



No. Title NCES contact 
2001–06 Papers from the Early Childhood Longitudinal Studies Program: Presented at the 2001 

AERA and SRCD Meetings 
Jerry West 

 
Educational attainment 

 

98–11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96–98) Field 
Test Report  

Aurora D’Amico 

 
Educational research 

 

2000–02 Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps Valena Plisko 
 
Eighth-graders 

 

2001–05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales 
 
Employment 

 

96–03 National Education Longitudinal Study of 1988 (NELS:88) Research Framework and 
Issues 

Jeffrey Owings 

98–11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96–98) Field 
Test Report  

Aurora D’Amico 

2000–16a Lifelong Learning NCES Task Force: Final Report Volume I Lisa Hudson 
2000–16b Lifelong Learning NCES Task Force: Final Report Volume II Lisa Hudson 
2001–01 Cross-National Variation in Educational Preparation for Adulthood: From Early 

Adolescence to Young Adulthood 
Elvira Hausken 

 
Engineering 

 

2000–11 Financial Aid Profile of Graduate Students in Science and Engineering Aurora D’Amico 
 
Faculty – higher education  

 

97–26 Strategies for Improving Accuracy of Postsecondary Faculty Lists Linda Zimbler 
2000–01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report Linda Zimbler 

 
Fathers – role in education  

 

2001–02 Measuring Father Involvement in Young Children's Lives: Recommendations for a 
Fatherhood Module for the ECLS-B 

Jerry West 

 
Finance – elementary and secondary schools 

 

94–05 Cost-of-Education Differentials Across the States William J. Fowler, Jr. 
96–19 Assessment and Analysis of School-Level Expenditures William J. Fowler, Jr. 
98–01 Collection of Public School Expenditure Data: Development of a Questionnaire Stephen Broughman 

1999–07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey Stephen Broughman 
1999–16 Measuring Resources in Education: From Accounting to the Resource Cost Model 

Approach 
William J. Fowler, Jr. 

2000–18 Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire Stephen Broughman 
 
Finance – postsecondary 

 

97–27 Pilot Test of IPEDS Finance Survey Peter Stowe 
2000–14 IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for 

Private, Not-for-Profit Institutes: A Concept Paper 
Peter Stowe 

 
Finance – private schools 

 

95–17 Estimates of Expenditures for Private K–12 Schools Stephen Broughman 
96–16 Strategies for Collecting Finance Data from Private Schools Stephen Broughman 
97–07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary 

Schools: An Exploratory Analysis 
Stephen Broughman 

97–22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman 
1999–07 Collection of Resource and Expenditure Data on the Schools and Staffing Survey Stephen Broughman 
2000–15 Feasibility Report: School-Level Finance Pretest, Private School Questionnaire Stephen Broughman 



No. Title NCES contact 
 
Geography 

 

98–04 Geographic Variations in Public Schools’ Costs William J. Fowler, Jr. 
 
Graduate students 

 

2000–11 Financial Aid Profile of Graduate Students in Science and Engineering Aurora D’Amico 
   

 
Imputation 

 

2000–04 Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and 
1999 AAPOR Meeting 

Dan Kasprzyk 

2001–10 Comparison of Proc Impute and Schafer’s Multiple Imputation Software Sam Peng 
 
Inflation 

  

97–43 Measuring Inflation in Public School Costs William J. Fowler, Jr. 
 
Institution data 

 

2000–01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report Linda Zimbler 
 
Instructional resources and practices 

 

95–11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of 
Recent Work 

Sharon Bobbitt & 
John Ralph 

1999–08 Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test 
Results to Improve Item Construction 

Dan Kasprzyk 

 
International comparisons 

 

97–11 International Comparisons of Inservice Professional Development Dan Kasprzyk 
97–16 International Education Expenditure Comparability Study: Final Report, Volume I Shelley Burns 
97–17 International Education Expenditure Comparability Study: Final Report, Volume II, 

Quantitative Analysis of Expenditure Comparability 
Shelley Burns 

2001–01 Cross-National Variation in Educational Preparation for Adulthood: From Early 
Adolescence to Young Adulthood 

Elvira Hausken 

2001–07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third 
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme 
for International Student Assessment (PISA) 

Arnold Goldstein 

 
International comparisons – math and science achievement 

 

2001–05 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales 
 
Libraries 

 

94–07 Data Comparability and Public Policy: New Interest in Public Library Data Papers 
Presented at Meetings of the American Statistical Association 

Carrol Kindel 

97–25 1996 National Household Education Survey (NHES:96) Questionnaires: 
Screener/Household and Library, Parent and Family Involvement in Education and 
Civic Involvement, Youth Civic Involvement, and Adult Civic Involvement 

Kathryn Chandler 

 
Limited English Proficiency 

 

95–13 Assessing Students with Disabilities and Limited English Proficiency James Houser 
 
Literacy of adults 

 

98–17 Developing the National Assessment of Adult Literacy: Recommendations from 
Stakeholders 

Sheida White 

1999–09a 1992 National Adult Literacy Survey: An Overview Alex Sedlacek 
1999–09b 1992 National Adult Literacy Survey: Sample Design Alex Sedlacek 
1999–09c 1992 National Adult Literacy Survey: Weighting and Population Estimates Alex Sedlacek 
1999–09d 1992 National Adult Literacy Survey: Development of the Survey Instruments Alex Sedlacek 
1999–09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates Alex Sedlacek 
1999–09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scales and Literacy 

Levels 
Alex Sedlacek 



No. Title NCES contact 
1999–09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability 

Convention 
Alex Sedlacek 

1999–11 Data Sources on Lifelong Learning Available from the National Center for Education 
Statistics 

Lisa Hudson 

2000–05 Secondary Statistical Modeling With the National Assessment of Adult Literacy: 
Implications for the Design of the Background Questionnaire 

Sheida White 

2000–06 Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door 
Surveys in the Assessment of Adult Literacy 

Sheida White 

2000–07 “How Much Literacy is Enough?” Issues in Defining and Reporting Performance 
Standards for the National Assessment of Adult Literacy 

Sheida White 

2000–08 Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses 
with Recommendations for Revisions 

Sheida White 
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