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. Introduction

In many censuses and sample surveys, missing values commonly exist because some subjects contacted
do not respond to some items being asked. These missing vaues not only mean less efficient estimates
because of the reduced size of the database but also that standard compl ete-data methods cannot be
immediately used to andyze the data. Moreover, possible biases exist because the respondents are
often sysemdticdly different from the nonrespondents; of particular concern, these biases are difficult to
eliminate since the precise reasons for nonresponse are usudly not known.

Badcdly, there are four types of imputation procedures to handle missing values. superficial methods,
such as assgning the mean or mode for al missng cases, weighting methods, in which missing vaues
areimplicitly filled in by increasing the weights assigned to Smilar cases that responded; single
imputation and multiple imputation, which are described below.

Single imputation, thet is, filling in avaue for each missing vaue, is probably the most common method
for handling item nonresponse in current survey practice. There are three mgjor atractive features
supporting this practice. First, standard complete-data methods of analysis can be used on thefilled-in
data set. Second, imputation will obvioudy be more accurate when close relations exist anong
variables present and those missing. Variables with close rdations can provide information for each
other. Third, imputation can incorporate data collector’ s knowledge. Because the data collectors
usudly have much better information about and understanding of the process that crestes nonresponse
than the typicd user, it is possble that data andysts, even those with afull arsena of modern satistical
tools, might reach better inferences by trusting the data collector’ simputations than by applying
sophisticated statistical models to alessrich data base.

Just as these advantages are rather obvious and important, there are equaly obvious and important
disadvantages of single imputation. WWhen we gpply complete-data methods to imputed data sets,
inferences based on the imputed data set will be too sharp since the extra variability dueto the
unknown missing vauesis not being taken into account. Also, quantities such as correlations that
depend on variahilities can be badly biased. Furthermore, when nonreponse is not redly understood,
no account is being taken of the uncertainty arisng from not knowing which nonresponse models for
imputation are appropriate. These flaws can be corrected by multiple imputation.

Multiple imputation, replacing each missng vaue with two or more acceptable vaues representing a
digribution of possihilities, retains the virtues of single imputation and has three extremdy important
advantages to multiple imputation over Sngle imputation. Frst, when imputations are randomly drawn in
an atempt to represent the didtribution of the data, multiple imputation increases the efficiency of
estimation. Second, when the multiple imputations represent repeated random draws under amodd for
nonresponse, valid inferences—that is, ones that reflect the additiond variability due to the missing
vaues under that modd reflect the additiond variability due to the missng vaues under that modd—are



obtained smply by combining complete-data. Third, by generating repesated randomly drawn
imputations under more than one modd, multiple imputation alows the sraightforward study of the
sengtivity of inferences to various models for nonresponse smply using complete-data methods
repeatedly. However, multiple imputation needs more work to produce multiple imputations and to
andyze the multiply-imputed data set, and more space to store a multiply-imputed data set.

This task evauated two existing imputation software products. Proc Impute, created by Statistical
Anayss Group in Education (SAGE) and modified by Dr. Wise and Dr. McLaughlin of American
Ingtitute for Research (AIR), and Schafer’ s Multiple Imputation Software, created by Dr. Schafer of
Pennsylvania State University. The most recent version of Proc Imputeis a stand-alone Fortran
program which can be run under a DOS environment. This verson alows a user to generate multiple
imputations, but the results may not be “ proper” in the sense of Rubin’s definition (seel (2)). Schafer’s
Multiple Imputation Software conssts of three independent parts for multivariate normal varigbles,
categorica variables and mixed variables, respectively. This software is for amultiple imputation
purpose and cooperates with Rubin’s * proper” criterion if the sample is asmple random sample.

Detalled evauations of these two software packages are described in section |1 and section 111,
respectively, and a comparison of these two packages and some smulation results are given in section
IV. Different imputations for three variables from 1990-91 SASS administrator data file by NCES,
Schafer’s Multiple Imputation Software and Proc Impute are also attached in appendix 4. Section
V gives our suggestions for next steps.



[1. Evaluation of Proc | mpute

This subtask evauated the Proc Impute imputation software in terms of its usability/performancein a
DOS or Windows 486 environment, its suitability for generating multiple imputations, its adaptability to
different surveys conducted by the National Center for Education Statistics (NCES), and its feasibility
to interface with SAS.

When we use the term “Proc Impute’ in this report we are referring to the stand-alone FORTRAN
program (PC Impute) and not the SAS procedure. The stand-alone program is an improved version of
the SAS procedure! developed by the Statistical Analysis Group in Education (SAGE) under contract
with NCES.

In this report dl discussions about specific performance standards of Proc | mpute are based upon runs
conducted on the NCES data set “Nationa Survey of Postsecondary Faculty” (NSOPF);? these runs
were performed in a Pentium (586) environment—90 MHZ clock speed, 16 megabytes of memory,
and 600 megabytes of hard disk space.

A.ALGORITHM AND ITSIMPLEMENTATION
Description of Algorithm

Proc Impute isadigributiona estimation procedure that is believed to be more generd and to produce
more accurate results than a standard “hot deck” procedure. Basically, this procedure assumes that
relations among variables are constant for observed cases and missing cases, and considers each
vaiable onthefileinturn asa“target” variable whose missng vaues are to befilled in and uses
information on other variables to minimize the error in imputing each target variable. For each “target”
variable, regresson analysisis used to find the best combination of predictors, and cases with the target
variable present are divided into subsets based on values of the regression function. All casesin agiven
subset that are missing the target variable then are imputed with welghted averages of two vaues dravn
from that regression function value subset and an adjacent subset with probability proportiond to the
distribution of reported vaues for that variable within these two subsets. The basic assumption of this
agorithm isthat within these homogenous subsets, the missing vaue cases will have the same target
vaue digtribution as the cases with reported values on the target variable. More specificaly, Proc

I mpute makes three passes through the datafile.

During the firgt pass through the data, the program computes basic univariate and bivariate Satistics,

such as the mean, gandard deviation, minimum, maximum, and the number of  missing vaues for eech
variable, the intercorrelations among the variables, and the number of cases missng one variable but not
the other for each pair of variables. Then it determines the best linear predictor of each variable in terms
of the remaining variables and an optima order for imputing missing vaues. In order to ensure that Proc
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Impute accuratdly reflects the strengths of relations among variables on the file, the program alows for
two imputation equations for variables—afirg “ghost” imputation equation to provide valuesto usein
equations that produces the vaue to be included in the output data set. Predictors are dlowed to enter
the equations only if they make significant contributions to reducing error variance.

During the second pass through the data, the bivariate frequency distributions of the regression function
vaues and their associated target variables are estimated by counting the number of casesin each
regression value subset a each leve of the target variable. Then, each bivariate frequency distribution
converted to separate probability distributions of target variables for each regression subset. Moreover,
the mean regression function vaue in each subset is dso computed to provide information for
interpolation between the distributions in adjacent regression subsets.

During the find pass through the data, missing vaues are imputed for each case. For each missing value,
two subsets are identified: the regression value subset and the adjacent subset. One observed value
from each subset is selected with the probability proportiond to the relative frequency of that vauein
that subset. Then the two vaues drawn from the two adjacent subsets are averaged according to the
distance of the mean regression vaue in each subset from the regression vaue for the case being
imputed. This average vaue is rounded to an integer if the integer flag is sat for the target variable.

After dl missng vaues have been imputed for a case, the case is written to the output file with dl of the
missing vauesfilled in. Missng data flags are dso created and set for each variable with avaue of “1”
corresponding to imputed vaues, “R” corresponding to red valuesand “A” corresponding to skip
missing vaues

I mplementation of Algorithm

Theorigind verson of Proc Impute created by SAGE is used as a SAS procedure on a JCL
mainframe, but the recent PC verson modified by Dr. Wise and Dr. McLaughlin of American Ingtitutes
for Research is a gand-aone Fortran program which can only be run under a DOS environment. But it
is easy to interface with SAS for Windows (see B(4) for details).



B. EVALUATION

Our evauation conssts of answering three main questions (1)-(4) described in the following
paragraphs. Answers to questions (3) and (4) are based on our own version of Proc Impute that has
been dightly modified.

(2) Isit feasbleto perform all imputationsfor a*“typical” NCES survey with Proc | mputeon
a 486 PC?

Yes, itis. Proc Impute isamultiple-regress on-based dgorithm. It can impute al types of variables
by treating them as continuous, but the imputation values generated by this procedure are within the
range of observed vaues. Categorica variables are treated as if they were ordered, and it may be
desirable to recode categorical variablesinto a series of dichotomous indicators prior to use Proc

I mpute.

Speed and storage are not serious problems to run this software on a 486 PC, but it should be
noted that it is less expensve to make a series of callsto Proc Impute on smdl blocks of variables
than asingle cdl on alarge number of varigbles, and it is more efficient to put highly corrdated
variables into the same block and to include key predictor variablesin every block. It is advisable
to include no more than 30 variables for each call. The user must congtruct a contral file to run the
program just once to carry out al the imputations as a batch job.

More specific features about the feasibility of the software are described in the following five
questions (a)-(€).

(@ How many runswould it taketo impute all variablesin a survey?

Fird, it should be noted that Proc Impute uses a regression-based imputation agorithm.
Second, in our experience, Proc Impute can effectively incorporate no more than 30 variables
into any one regresson model. Therefore, any “large’ data sets (i.e., data sets containing more
than 30 variables) must be partitioned into subsets containing no more than 30 variables each
before being processed by Proc Impute.

Given those considerations, how many runs does it take to impute al variablesin asurvey? In
short, one runisal that isreguired to impute al missing vaues (for dl variables) in any survey.
However, in the case of “large’ data sets, one run would consst of the following four steps:

(i) Frg, the andyst must decide upon the specific regresson models to use in partitioning the
variables. Let’ s use the 1993 Nationa Study of Postsecondary Faculty (NSOPF) data as an
example. If the drategy isto merdy use “adjacent” variables in the regresson modds, then the



analyst would partition the NSOPF data set into about 14 (i.e., 400/30 . 13.3) subsets. If the
strategy isto use key predictor variables (e.g., sex, race, and region) in every regresson model
(in addition to the adjacent variable strategy), then the analyst would partition the NSOPF data
st into about 15 (i.e., 397/27 . 14.7) subsets. Obvioudy, how much the regresson modes
are customized determines not only the number of subsets to be processed by Proc Impute,
but aso the amount of time devoted to the overal imputation process (see part (e) below).

(i) Second, an ASCII datafile must be created for each subset of variables (i.e., for each
regresson mode). This can be accomplished by running one SAS program.

(iii) Thethird step invalves running Proc I mpute on each data subset. To perform an
imputation, acontral file must be congtructed. Fortunately, one can specify dl of the regresson
moddsin the same contral file and, thus, run Proc Impute on the entire data set asasingle
batch job.

(iv) Thefind step in the process is combining the output (imputed) files into asingle file that
contains both the original and the imputed values for dl variables, with flags indicating imputed
vaues.

While Proc Imputewill impute all missing vauesin any data (sub)set thet is specified in the
contral filein one run and, thus, will impute al missng vauesfor any datafilein onerun
(possibly processed as subsets of the file and run as a batch job), the amount of pre- and post-
processing of agiven datafileis dependent upon the size of the file, the number of varigblesin
the file, the relationships among the variables, etc.

(b) Can Proc Impute handle all types of variables (i.e., continuous, ordinal, and
categorical) correctly?

Proc Impute will only process “numericd” data; that is, it will only process varigblesthat are
both coded and stored as strings of numbers—not variables whose coding and storage alows
for character strings. Any “character” variablesin the data set must be either recoded to
“numeric’ or removed from the data set. Once the data set holds the proper coding, each
variable will have a continuous, an ordind, or a categorica digtribution—categorica variables
can be either dichotomous or polytomous. Proc Impute’ s ability to process each of the
digtribution typesis asfollows

Continuous: Because Proc Impute uses a regression-based algorithm, it assumes that each
variableis continuous, is digtributed normally, and has homogeneous variance. A “standard”
linear regression that is run on continuous variables which violate the distribution or variance
assumptions often yields high probabilities of generating “ out-of-range’ predictions. However,



in attempts to avoid imputing “out-of-range”’ vaues, Proc I mpute uses knowledge about
conditiond frequency digtributions adong with its regresson dgorithm when imputing missng
values.

Bascdly, Proc Impute congders each varigble with missng vaues as a“target” variable, and
uses step-wise regression to identify the best combination of predictor variables for each
“target” variable based solely upon those cases where the value of the “target” variable is not
missing. Once the regression models are constructed and regression vaues are computed for
all cases, Proc Impute partitions the range of regression vauesinto subsets. For each missng
vaue, two subsets are identified: the regression vaue subset and the adjacent subset. One
observed vaue from each subset is selected with probability proportiond to the relative
frequency of that valuein that subset. Then the two vaues obtained from the two adjacent
subsets are averaged according to the distance of the mean regression value in each subset
from the regression vaue for the case being imputed. This average vaueisrounded to an
integer if the integer flag is set for the target variable. Hence, dl imputed vaues not only are
within the range of observed vaues but aso exhibit distributions similar to the observed vaues*

In short, Proc I mpute encounters little difficulty in imputing a* reasonable’ set of missng vaues
for continuous varigbles.

Ordina: Proc Impute handles ordind variables asiif they were continuous. Therefore, dl
imputed vaues are within the range of observed vaues, and al imputed vaues exhibit
digtributional properties smilar to those of the observed vaues. We experienced no difficulties
in Proc Impute’ s handling of ordind variables.

Dichotomous: Again, Proc Impute assumesthat al variables are continuous—if the andyst is
willing to assume normdity and homogeneous variance for dichotomous variables, then the set
of imputed vaues will have the “nice’ properties listed above. We experienced no difficultiesin
Proc Impute’ s handling of dichotomous variables.

Polytomous: For each polytomous categorica variable, the andyst needs to create an
appropriate number of dummy (0/1) variables,® and then run Proc Impute on the dummy
variables. Proc Impute handles the dummy variables in the same fashion thet it handles
dichotomous variables. Since Proc | mpute does not understand that the dummy variables are
grouped as sets of variables, theimputed values may be meaningless;® however, since the
dummy varigblesin any set representing a given polytomous variable are highly correlated, that
should rarely happen. Fewer than four percent of the imputed values of our “reconstructed”
polytomous variables were bad.

In summary, once dl “character” variables either have been converted to “numeric’ or have
been removed from the data st, there exists no specid pre- or post-processing for continuous,
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(d)

ordind, or dichotomous categorical variables. Also, imputed vauesfor al such varidbles are
reasonable—reasonable in the sense that the imputed va ues both fall within the range of the
observed vaues and mimic the distributiona properties of the observed vaues.

Polytomous categorica variables are the only type that are potentidly troublesome to Proc
Impute. Specia pre- and post-processing is required for polytomous variables—the mapping
and inverse mapping of the polytomous variables to and from their associated sets of dummy
variables. And, dthough it is uncommon, Proc | mpute may impute vaues into the dummy
variablestha are meaningless after performing the inverse mapping to the origind polytomous
variable. In such cases “hot-deck” procedures may be gppropriate to impute any remaining
missing vaues

How much special processing isrequired to handle skip patterns?

It isvery easy for Proc Imputeto handle skip patterns. The andyst only need to set the skip
missing valuesto “A” inthe ASCII datafile. If the ASCII datafileis crested from a SAS data
file, then the skip missing vaues should be set to “.A”.

How much memory and disk spaceis needed?

The amount of required disk soace is predominantly afunction of the sze of your datafile. It
requires about 480 Kb conventional memory to run Proc Impute With a 586 Pentium PC (16
Mb of totd memory and 636 Kb conventional memory), we did not experience memory
problems after we remove some programs to generate 488 Kb free conventional memory to
run Proc Impute. Considering the rate of technologica developments, we do not foresee future
difficulties

(e) How fast isit?

For the actua imputation processing, speed is not a seriousissue. For the NSOPF survey, a
run with 12,000 cases and 30 variables took less than 20 minutes—this trandatesinto a
processing time of less than 280 minutes if the entire data set was run as a batch job (14
subsets multiplied by 20 minutes/subset—see question 1&(i)).

However, an andyst will devote the mgority of hisher processng time to pre- and post-

imputation file management. Thistime will be spent performing a subset of the following tasks:

» Changing “character” variablesto “numeric” variables and/or removing “character”
variables from thefile.

» Creating ASCII flat file(s—if working with datain some other format, and

» Congtructing control programs (IMPUTE.CON).



For “large’ data sets,
» Determining the appropriate partitioning scheme (i.e., determining the regresson mode

subsets), and
»  Comhbining the output (imputed) subsets into one overal completed file.
For polytomous variables,

»  Credting dummy variables and then performing the mappings and inverse mappings
between the origina polytomous variables and the associated dummy variables, and

» Using another method of imputation for individua cases where Proc I mpute generated
“meaningless’ vaues.

For cases with valid skips,

*  Removing the cases from the data file before imputation processng, and

* Merging the removed cases with the imputed detafile, and

» Usng another method of imputation to generate outcomes for variables with “true” missing
vaues.

Working through thislist of pre- and post-imputation tasks could easily consume more than a
full work-week’ sworth of the andys’ s time. Hence, the non-imputation portion of the
processing is eadly the most time-consuming part of generating acomplete data set usng Proc
I mpute.

(2) Does Proc I mpute perform “proper” imputationsin the sense of Rubin?’ If not, can Proc
I mpute be adapted to perform multiple imputations?

Multiple imputation involves imputing each missing vaue (in the incomplete data set) multiple times.
Hence, in performing a multiple imputation, one creates multiple files of complete data, wherein
each of the multiple data files has a different set of imputed vaues. Once the multiple files have been
congtructed, the analyst should replicate dl subsequent analyses by using the information from all
of the multiple files to assess the impact of random variation (of missng vaues) on Satigtica
inferences.

Rubin listed three criteria to satisfy a Proper Multiple Imputation (PMI): (i) the multiple imputation
procedure provides randomization-valid inferences for the complete-data satistic O (the
conditional mean of the objective of the sudy O), (ii) the average of the multiple complete-data
variance is centered a U (the conditiond variance of O) with variahility of alower order than that
of O (the variance of the posterior mean of O), and (iii) over repeated samples, the variability of B
(the variance of the posterior mean) is aso centered at U and is of alower order than that of O.
These criteriaare based on m 6 4 (where m isthe number of imputations on the data set).

Rubin’s PMI criteria are based on the asymptotic properties of the multiple imputation Satidtics;
hence, the concept of “proper” imputation is exclusively suitable to multiple imputation
approaches. Since Proc Impute uses a single imputation procedure based upon a (non-

9



Bayesan) digributiona estimation, Proc Impute cannot meet Rubin's criteriafor “proper”
imputation. However, it isthe case that Proc Imputeis designed to assess the impact of random
variation (of missng vaues) on datisticd inferences.

Even though the two methods cannot be compared in the “proper” sense (as introduced by Rubin),
we can gill examine the criteriafor the optimdlities of these two methods—the randomization-vaid
inferences for PMI are based on the concept of the Central Limit Theorem whereas the
digributiona estimation method employed in Proc Imputeis based on Pitman's Closeness
Criterion.®

Proc Impute dlows a user to generate m sets of imputations by setting the option “multiple=m” in
the control file (see (3) for detals). Then the question arises. “as the number of imputations
increases, do these sets of imputed vaues adhere to Rubin’s PMI criteria?’ The answer depends
upon the data, since Proc I mpute uses regression to find the optima combination of predictors. If
the involved errors agree with the Gauss-Markov assumption then the least-squares estimator gives
an optimd fit of the observationsto theoretica models. It would not be difficult to verify that
multiple imputetions generated by Proc Impute are “proper,” since both the observed “combination
of predictors’ and the observed “ digtribution of the cases in the range’ would converge to the true
“combination of predictors’ and the true “digtribution in the range,” respectively. It should o be
noted that the average of m estimators based on the m sets of imputed data is asymptotically
unbiased (conditionally on the observed data) if the multiple imputation procedure is randomization-
vaid?®

Since the design and structure of Proc Impute are fixed, it would not be easy to incorporate
Rubin’s strategies into the program.

(3) How to use Proc | mpute?

This PC verson of Proc Impute is a stand-adone Fortran program and is invoked by caling the
executable file IMPUTE.EXE from DOS. Proc | mpute expects to find a DOS ASCII control file
(the default contral file name is IMPUTE.CON) which specifies the imputation problem and the
input and output data sets. So there are two stepsto run this software: Firdt, congtruct a control file;
then, cal IMPUTE.EXE. The format of the contradl file is given below and an example of a control
fileis given after the description.

Format of the control filefor version 2.0 of Proc I mpute
PROC IMPUTE options;

TITLE statement;
BY statement (optiond);
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VAR gatement;

If there are more than one data subsets which require imputation, we will repeat these satementsin
the same control file such thet al the imputation can be carried out as asingle batch job. “PROC
IMPUTE” statement and “VAR” statement are required by every subset. It dways Sartswith a
“PROC IMPUTE” gtatement and ends with a semi-colon. The program stops reading statements
when it comes to the end of the contral file or encounters another “PROC IMPUTE” line, indicating
anew imputation request. Detailed description of the statements and the options follows.

PROC IMPUTE Statement
PROC IMPUTE options;

The options that can appear in the PROC IMPUTE statement are given below. These options can
bein any order, and most options have default values and therefore need not to be specified. But
the input, output, and printout files must be specified through the options “DATA=filename,”
“OUT=filename,” and “PRINTOUT=filename,” respectively.

DATA=filename
specifies the directory and the name of the input ASCII datafile to be imputed by Proc
Impute. If no directory is specified, Proc Impute expects the fileis located on the directory
where Proc Imputeisingaled.

OUT=filename
specifies the directory and the name of the output ASCII datafile outputed by Proc Impute. If
no directory is specified, Proc Impute expects thefileis located on the directory where Proc
Imputeisingaled.

PRINTOUT=filename
specifies the name of the printout file which reports missing data frequencies and univeriate
datigtics, characteristics of cases with missing values, correlations between reported vaues,
regression equations, conditiond distributions and error analyss.

EQNS=filename
specifies the name of the outpuit file that contains more detailed information about the regression
equations than that given in the PRINTOUT file. But thefileis not so readable. The defaullt file
nameis IMPUTE.EQN.

DIST S=filename
specifies the name of the output file that contains more detailed information about the
conditiond digtributions than that given in the PRINTOUT file. But thefileis not so readable.
The default file name isIMPUTE.DIS,

11



TERSEVERBOSE
controls the PRINTOUT file. The default value is TERSE. VERBOSE will lead to amuch
longer PRINTOUT file, and may be used when some unusud results occur.

FLEVEL=number
sets athreshold for letting variables into the prediction equation. A higher FLEVEL will letin
more variables. Dr. McLaughlin, one author of Proc Impute, clams that the value 0.25 works
best with his experience.

HOTDECK|SIMPLE|REGRESS
specifies the method to impute the missing vaues. The default method isHOTDECK which
imputes va ues sdlected randomly from the empirica distribution as described in 11(A).
SIMPLE method imputes the mean vaue for dl missng cases. And REGRESS method imputes
the predicted vaues from the regression equation for the missing cases.

SEED=number
sets random generator seed.

MULTIPLE=number
specifies the number of multiple imputation sets. The number can not be too big due to the
dorage limitation. If MULTIPLE=4, say, is used as an option, and the output datafileis
specified as OUTHILE.TXT, for example, then Proc Impute will creste four sets of output files
named OUTHLE.TXT, OU2FILE.TXT, OU3FILE.TXT and OU4FILE.TXT. That is, for
imputations other than one, it replaces the third character in the file name by the index of the
multiple.

RECL=number
gpecifies the record length. RECL does not necessarily equd to the exact length of the records.
But it should be noted that the missingness flags are outputed at the position of RECL+2. If the
RECL is et to be too small, the missingness flags may overwrite the data. On the other hand, if
the RECL is set to be too large, it wastes Storage space.

BY Statement
BY var cd len;

A BY satement can be used in the contral file to alow sdection of vaues for imputation from
different digributions for different subsets of the data defined by the BY varidbles. The syntax is
“BY var col len”, where“var” givesthe variable name, “col” gives the sarting column of arecord
wherethe BY varidbleislocated, and “len” givesthe length of the BY variable. For example, if the
BY variable “school” islocated in columns 11-15 of arecord, we should use“BY school 11 5".
The input data file must be pre-sorted by the BY varigble if this statement is used.
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TITLE Statement

TITLE ‘characters;
A TITLE statement can be used in the control file to specify atitle for the PRINTOUT file.
VAR Statement

VAR vaiabld col format
variable2 col format

A VAR gatement must be used in the control file to specify the “target” variables to be imputed by
Proc Impute Variableswith no missng value may dso be specified in this statement o that they
can be used in the regresson modd to provide information for predicting missing vaues of other
vaiables. The syntax is“VAR variadle col format”, where “variable’ givesthe variable name, “col”
gives the garting column where the varigble is located, and “format” specifies the format of the
vauesfor that variable. None of these three elements can be omitted.

Hereis an example of a control file that impute two data sets verifl.dat and verif2.dat, where
verifl.dat has 4 variables for imputation and verif2.dat has 6 variables for imputation.

An example of the controal file

PROC IMPUTE DATA=a:\verifl.dat OUT=verifl.out
PRINTOUT=verifl.prn EQNS=verifl.egn DISTS=verifl.dis
TERSE HOTDECK SEED=11111 FLEVEL=0.25
MULTIPLE=1 RECL=66;

TITLE 'Imputations for data set verifl with 4 variables’;
VAR Y1 1 83

Y29 83

Y3 17 83

Y4 25 83

PROC IMPUTE DATA=a:\verif2.dat OUT=a:\verift2.out
PRINTOUT=verif2.prn EQNS=verif2.eqn DISTS=verif2.dis
TERSE HOTDECK SEED=11111 FLEVEL=0.25
MULTIPLE=1 RECL=65;
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TITLE 'Imputations for data set verif2 with 5 variables;;
VAR Y1 1 83

Y2 9 83

Y3 17 83

Y4 25 83

Y5 33 83

(4) How to interface Proc | mputewith SAS for Windows?

Proc Impute can be run from within SAS 0 that an andyst can do both imputation and andysis for
the imputed data within the same SAS session. Suppose that we want to impute an incomplete SAS
datafile named incomp.sd2, and output aimputed SAS data file named comp.sd2, which keeps
the origina variable names, labels, and formats, etc, asin incomp.sd2. We will need the following
five ample stepsto do the job:

0] Create an ASCII input file (named as a\templ.dat) for Proc |mpute with SAS
satements:
data tmpl; set incomp;
file* a:\tmpl.dat”;
put variable list; (with fixed formats)
run;

(D) Congtruct a control file as described in B(3) above. An easiest way to specify the
control fileisto open an old control fileinto SAS editor or somewhere else and
modify it. Any convenient variable name (such as X1, X2, ..., etc) can beused in
the VAR statement in the control file. They do not have to be the same asin
incomp.sd2.

(i) Use SAS FilgRun pull-down menu to run Proc Impute from within SAS. Let uscal
the output data file as a:\tmp2.dat.

(iv)  Creste acomplete SAS datafile from imputed data file a:\tmp2.dat.

data tmp; infile “ a:\tmp2.dat” ;
input variable list; (the same variable names as in incomp.sd2)
run;

v) Create the target SAS complete data file which keeps the variable names, labels,
format, etc, asin the origind SAS data file incomp.sd2:

data comp; merge incomp tmp; run;

For a“large’ data set that has over 30 variables, we may have to divide the data set into severd

subsets, and perform steps (i) once for each subset but we only need to perform steps (ii) and (iii)
once for dl subsets. If the Single imputation option is salected, we need to execute steps (iv) and (V)
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once for each subset, and then use another MERGE statement to combine al these complete SAS
datafiles into one complete SAS datafile if necessary; if the multiple imputation option is selected,
we need to execute steps (1v) and (v) multiple times for each subset and use MERGE statement
multiple times to combine the corresponding data files (one file from each subset each time) to
generate multiple imputed data files.

C. NOTES

1 PC Impute contains three refinements—McL aughlin, Dondd H. (1991), “Imputation for Non-
Response Adjustment,” Interna Report. American Ingtitutes for Research: Pao Alto, Cdifornia.

2 NSOPF (faculty survey) contains approximately 12,000 cases and 400 variables.

3 Weran Proc Impute on a sample consisting of 872 cases and 31 variables on both a 486 machine
(33 MHZ speed, 16 Mb memory, 110 Mb storage) and the above 586 machine. The processing times
were 55 (£ 1) seconds and 15 (£ 1) seconds, respectively. These outcomes indicate that the 586 is 3.4
to 4 times faster than the 486 in processing a Proc | mpute run. However, it should be noted thet this
conversion factor is afunction of many things: the number of cases, the number of variables, the number
of missing values, the pattern of missing vaues, the correlations among the variables, etc.

“ The basic assumption of this dgorithm is that within these homogeneous subsets, the missing vaue
cases have “target” variable digtributions identicd to the “target” variable distributions of cases with
reported values—SAGE (1980), “ Guidebook for Imputation of Missing Data,” prepared for NCES
(contract #300-78-150). American Ingtitutes for Research: Palo Alto, CA.

® For example, for aten-category variable one needs to create nine 0/1 dummy variables, where for
each case @ther: (a) eight of the dummy variables are coded with the vaue 0 and the remaining dummy
variable is coded with the vaue 1 (indicating that the origina polytomous variable case belongs to the
dummy category coded “1”) or (b) dl nine of the dummy variables are coded with the value 0 and no
dummy varigble is coded with the vaue 1 (indicating that the origind polytomous variable case belongs
to the “missng” dummy category). In generd, an n-category variable would be associated with (n-1)
dummy variables having coding schemes andogous to the above example.

® In the above example, for a specific case, it may be the Situation that more than one of the nine dummy
variables will be imputed with the vdue “ 1"—this would indicate that the origina polytomous variable
case assumes mulltiple categories Smultaneoudy!

" Rubin, Donad B.(1987), Multiple Imputation for Nonresponse in Surveys. New Y ork: John Wiley &
Sons.
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8 For an estimation problem with parameter space 1, an estimator *; is said to be Pitman closer
(to ©) than *,, if, for every 601, Ps(**1(X)-8*<**,(X)-6*)>0.5. This criterion is caled Fitman
closeness or Pitman nearness or Pitman domination

® Rubin, Multiple Imputation for Nonresponse in Surveys, 116.
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[Il.  Evaluation of Schafer’s Multiple Imputation Software

Schafer’ s Multiple Imputation Software consists of three independent parts: the first part usesa
multivariate norma modd to impute continuous variables; the second part uses a saturated
multinomiad modd and a congtrained loglinear modd (Bishop, Fienberg and Holland, 1975) to
impute categorica variables, and the third part uses restricted and unrestricted genera location
models (Olkin & Tate, 1961) to impute mixed variables (include both categoricd variables and
continuous variables in one modd). We implemented al three parts on a PC environment and
evauated them in terms of its usability/performance in a Windows 486 PC environment, and its
adaptability to different surveys conducted by NCES.

All discussions about specific performance standards of this software are based on runs
conducted on the NCES data set “1993-94 School and Staffing Survey Administrator
Component” (SASS.AS). These runs were performed in a Pentium (586) environment—90 MHZ
clock speed, 16 megabytes of memory, and 520 megabytes of hard disk space.

A. ALGORITHM AND ITSIMPLEMENTATION
Description of the Algorithms

Schafer’ s multiple imputation software uses multivariate norma modes, multinomial modds

and generd location models to impute missing values for continuous variables, categorica
variables and mixed variables, respectively. All modes assume thet the missing mechanism is
ignorable; that is, missing vaues occur at random. Brief descriptions of the three types of models
follow. Details about these models can be found in Schafer (1991).

@ Algorithmsfor Incomplete Continuous Data

Suppose that a random vector X=(Y1, Y, ..., Yp) hasamultivariate normal distribution

MN (i, E), the prior distribution of i, given G, is multivariate norma MN(o, J* G), and the prior
distribution of G is norma-inverted Wishart Wt (m, 7). Then the posterior distributions of p and
G aredso multivariate norma MN (o, (3°)* G), and normal-inverted Wishart W (m’, 77),
respectively, where the updated hyperparameters are

t(=t +n

mi=m+n
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and
(L9t =Lt +nS+ (2 )(y- m)(y- m)".
t +n

Where n stands for the sample size and S stands for the sample variance.

Fird, this software uses the EM agorithm (Dempster, Laird, and Rubin, 1977; Little and Rubin,
1987) to find the Maximum Likelihood Edtimates of 1 and G, which may be used asthe Sarting
vauesin the iterative smulation step. Then, the software gpplies the iterative smulation method
to smulate one or more iterations of angle Markov chain (Schafer, 1995). Each iteration
conggts of arandom imputetion of the missing data drawn from multivariate norma digtribution
with current parameter values (I-step), followed by a random draw from the posterior
digributions of the parameters, multivariate normd digtribution of 1 and normd-inverted
Wishart distribution of G, given the observed data and the imputed data (P-step).

2 Algorithmsfor Incomplete Categorical Data

Let Yy, Yo, ..., Y, denote the p categorica variables recorded for n units (rows) in the nxp data
matrix Y. Denote the possible values of Y; by the positiveintegers 1, 2, ..., d; for j=1, 2, ..., p.
Each row of Y can be assigned to a unique cell of the p-dimensond contingency table that
cross-classified the data by Y1, Yo, ..., Y, . Denote the total number of cellsin thistable by D=3
d;, the cell probabilitiesby 2={24: d=1, 2, ..., D}, and the cell counts by {xq: d=1, 2, ..., D}, after
we re-index the cdllsby 1, 2, ..., D in such an order that the first variable varies the fastest, and
the second variable varies the second fastest, and so on. The software considers two types of
models for categoricd data.

(2.1) Saturated Multinomial M odel

Suppose Y hasamultinomid digtribution with a density function

n D
f(yla)=5——Parls, (A2.1)
(Iilxd!ls

where Isisthe indicator for the smplex S={2: 24 >0, 324=1}. If acdl probability is O, we call
it structural zero and exclude it from any further cdculation. Assume the priorsfor the cell
probabilities 2 are Dirichlet digtribution with hyperparameters {<q } (the natura conjugate prior),
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D
p@)uEQFﬁs (A.2.2)
=1

then the pogterior digtribution for 2 isaso Dirichlet with hyperparameters{ xq +<q-1},

D
f@ly)m Pas™ s (A2.3)

To gpply this saturated multinomial modd to incomplete categorica data, the software first use
the EM dgorithm to find maximum likelihood estimate or posterior mode of cdll probabilities 2,
which may be used as the Sarting vaues in the iterative Smulation step. Then, the software
applies the iterative smulation method to Smulate one or more iterations of asingle Markov

chain. Each iteration condsts of an I-step and a P-step. The I-step draws a random imputation for
the missng data from multinomia distribution with current parameter estimates, and the P-step
draws parameter estimates of the cell probabilities 2 from the posterior Dirichelet distribution.
Details about the implementation of I-step can be found in Schafer (1991, pp. 79-80). The P-step
is very graightforward.

(2.2) The constrained loglinear model

The saturated multinomia modd fitsthe full set of D-1 parametersin 2 and may be appropriate
when the number of cases nislarge relative to the number of cdls D. Asthe number of variables
p grows, however, D quickly becomes enormous, and it may be undesirable to estimate dl D-1
parameters. In such cases, it is customary to reduce the dimensondity of the problem by
requiring 2 to satisfy a set of loglinear condraints. Now let 2jj.+ denote the cell probability for
the cdl where Y1=1, Y2=1, ..., Yp=t. We may impose the loglinear condraints

|09q”k..t S UHU ;) FUy Gy oo H UG FUGGE) U g0 T T U g0 + e (A.2.4)

on the cdll probabilities, where, for identifiability, the u-terms are constrained to sum to zero
over any subscripts, for example,

d,
Uiy = @ Uragy =
J:

Qo

i=1

By setting some of u-termsto zero, especidly the higher order interactions, we can often capture
the essentia features of the data set without resorting to the estimation of dl D-1 parameters.
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The maximum likelihood estimates of 2 can be obtained through the agorithm of Iterative
Proportion Fitting (Bishop, Fienberg and Holland, 1975). The GIBS agorithm, a stochastic
verson of IPF cdled Bayesian IPF by Gelman, Meng and Rubin (1991), is used to smulate the
posterior distribution of 2 under thisloglinear mode.

To agpply this congtrained loglinear modd to incomplete categorical data, the software first use
the ECM dgorithm (Meng and Rubin, 1991) to find the maximum likelihood estimeate or
posterior mode of the cell probakilities, which may be used as the sarting valuesin the iterative
smulation step. Then, the software gpplies the iterative smulation method to simulate one or
more iterations of asngle Markov chain. Each iteration aso congsts of an I-step and a P-step.
Thel-gep isidenticd to the I-step of the saturated multinomia mode, while the P-step uses the
Bayesan IPF dgorithm to draw parameter estimates for the cell probabilities.

3 Algorithmsfor Incomplete Mixed Data

Partition the complete datamatrix Y as Y=(W, Z), where W is an nxp matrix of categorical
variables, and Z is an nxq matrix of continuous varigbles. Let W1, Wo, ..., Wp and Z3, 75, ..., Zq
denote the variablesin W and Z, respectively. Asin A(2) above, denote the possible values of W,
by the positive integers 1, 2, ..., dj, the total number of cellsby D=A d;, the cell probabilities by
B={Bq d=1, 2, ..., D}, and the cdll counts by {xq: d=1, 2, ..., D}, after we re-index the cdllsby 1,
2, ..., D in such an order that the first variable varies the fastest, and the second varigble varies
the second fastest, and so on. Let U be the nxD matrix with rowsu', i=1, 2, ...n, where y isaD-
vector containing a1 in pogtion d if theith row of W fdlsinto cel d, and O'sin dl other

positions.

(3.1) The general location model (Olkin and Tate, 1961)

Thismode assumes that the margind digtribution of W isamultinomia digtribution on the cell
counts{xq: d=1, 2, ..., D},

D
f(ylp)=- Ppgls, (A.3.1)

Px/!lg
2 fatls

where Isisthe indicator for the smplex S={B: B4 >0, 3Bs=1}. If acdl probability isO, it will

be excluded from any further caculation. Given W, the rows of Z are conditionally modeled as
multivariate normd. Let By be a D-vector containing a1 in position d, and O's elsewhere. The
conditiond digtribution of theith row of Z, given u =Ey (i.e, ith row fdlsin cdl d), is assumed

to be MN(l, E), where lyis ag-vector of means corresponding to cell d. This model alowsthe
means of Zy, Z, ..., Zy to vary fredy from cell to cdll, but assumes a common covariance
dructure E for dl cdls.
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Let 2=(B, p, E) denote dl the parametersin this model, where p=(ju, 1o,..., Po) | isaDxq matrix
of means. Assumethe prior of B isa Dirichlet digribution with hyperparameters <={<q4 }, and

the prior distribution of (, E) is the diffuse Jeffreys prior B(, E) % |E[@*Y"2. Then the posterior
digribution of B, P(B|W), isa Dirichlet ditribution with hyperparameters{ xq +<¢-1} , and the
posterior digribution of p and E is multivariate norma and normal-inverted Wishart; that is,

P& |ZW)=Wn- D,F'T) Y
P(m, [&,Z,W) = N(fy,x;" &) (A3.2)

for d=1, 2, ..., D, where

m=(U'U)*U"Z
T=Z-Um (A.3.3)

If any cdl count xqis zero, the matrices U and U™ U will have deficient rark, and (A.3.3) will not
be defined. In this case, the posterior distribution will be improper due to the inestimability of

g When this occurs, an analysis under this prior may proceed by omitting the inestimable
parameters |y from the mode or by reducing the dimensiondity of the parameter though a
constrained mode as described in section (3.2) below.

To gpply this unrestricted genera location model to incomplete mixed deta, the software first use
the EM dgorithm to find the maximum likelihood estimates of the cell probabilities, the cell
means and the covariances, which may be used as the starting vaues in the iterative smulation
gep. Then, the software applies the iterative smulation method to smulate one or more
iterations of asingle Markov chain. Each iteration conssts of an I-step and a P-step. The |-step
draws arandom imputation for the missing categorica dataand missing continuous data from
the predicted multinomia distribution and multivariate normal distribution, respectively, with
current parameter estimates. Details about the implementation of this step can be found in
Schafer (1991, pp. 111-115). The P-gtep Smulates parameter estimates of cell probabilities B,
cdl means W, and covariances E from their posterior distributions, which are Diriche €,
multivariate norma and Wishart (A.3.2), respectively. This step is very sraightforward.

(3.2) Therestricted general location model

The unrestricted generd location mode has (D-1)+Da+q(g+1)/2 free parameters, and is useful
when nislarge reative to the number of the free parameters. D and then Dxq become enormous
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very quickly when the number of categorica variables p grows. A restricted modd is more
desirable in practice for mixed data. The same loglinear constrains can be gpplied to the cell
probabilities asin section (2.2). Here we discuss the constrains on the within-cdl means  of the
continuous varigbles. Let A be aDxr design matrix and u=A$, where $ isarxq matrix. We
assume that rank(A)=r#D. So we only need to estimate rq parameters of $ instead of Dq
parameters of . This congdrained modd ill dlow the means py to vary from cdl to cell, but
now require that each of the g columns of the matrix [ liesin ther-dimensiond linear subspace
of RP gpanned by the columns of A. By saturating the loglinear mode for B and taking A=Ipxp
(identity matrix), we obtain the generd location modd as a specid case.

In this restricted modd, the same prior is assumed and the same posterior will be obtained for the
cdl probabilities asin section (2.2) above, snce we gpply the margina distribution to cell
probabilities which is a separate factor in the full likelihood in the modd. For parameters ($, E),
we till assume the Jeffreys prior; that is, B($, E)%|E[ @2, and the posterior distributions are

P@A|ZW)=W"*(n-4F'T)*
P(b |&,Z,W)=N(b,a AV), (A.3.4)

where

b=V!AUTZ, T=Z-UAb, V=(ATUTUA)?,

and E¥4V isthe Kronecker product of E and V (Anderson, 1984, pp. 599-601).

To apply thisredricted generd location mode to incomplete mixed data, the software first use
the ECM dgorithm to find the maximum likelihood estimates or posterior modes of cdll
probabilities, the cell means and the covariances, which may be used as the Sarting valuesin the
iterative Smulation step. Then, the software applies the iterative smulation method to Smulate
one or more iterations of asingle Markov chain. Each iteration also conssts of an I-step and a P-
step. The I-gep isidentica to the I-step of the unrestricted genera location mode, while the P-
step draws parameter estimates for the cdll probabilities B through the Bayesian |PF dgorithm,
and smulaes parameter estimates for $ and E from their posterior digtribution (A.3.4).

I mplementation of algorithm
Dr. Schafer uses S-PLUS functions and Fortran subroutines, which support the S-PLUS
functions, to implement the above adgorithms. The software works in an S-plus environment.

When we use the term “the software’ in this report, we will usudly refer to the S-plus functions
rather than the Fortran subroutines. There are atotal of twelve S-PLUS functions for dedling
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with norma continuous variables, eighteen for categorical variables and nine for mixed variables. But
not al are needed for imputation purposes (see appendix 1-appendix 3 for details). These functions can
be classfied into four categories. preiminary data manipulation functions, functions for EM or ECM
agorithm, smulation and imputation functions, and multiple imputation inference functions.

Due to a problem with the random generators in the origina version of the software, none of the
amulaion and imputation functions works. We aso need to fix some storage mode errorsin the
Fortran subroutines in order that the WATCOM Fortran compiler can successfully compile the Fortran
source filesin the software. Actudly, fixing dl these problems takes us more time than the evaluation
process. However, the software gill has some problems with the constrained loglinear model for
categorica variables, and the congtrained generd location model for mixed variables. These two
congrained models try to increase the number of variablesin one run by imposing congrains on the
parameters. But, because the programs for these two models work so dowly and till need the same
amount of gpace to store the parameters as their corresponding saturated models, we can only put one
or two more categorical variables in those constrained modds. Furthermore, both models have varigble
ordering problems. The variables stored in a particular order according to the missingness pattern after
the preliminary data manipulation, while users will usudly specify the u-terms (interactions) in (A.2.4)
for the programsin the origina order of the variables. Then the program will mis-match the variables
and therefore the results could be wrong. The results will be correct if the u-terms are symmetricaly
designed; that is, if one interaction of a certain order in (A.2.4) isincluded in the mode, dl interactions
of that order must be included. The user may cdl those functionsin the software for the constrained
loglinear modd (ECM.CAT and DABIPF.CAT) if the u-terms are symmetricaly selected, but the
functionsin the software for the restricted genera location model (ECM.MIX and DABIPF.MIX) are
not recommended in any circumstance because they work very dowly and some unexpected errors,
such as * overflow range error,” may happen for some specific priors.

Dr. Schafer isworking on anew version of the software which will not re-order the variablesin the
preliminary data manipulation so that the variable ordering problems described here will not exist any
more in the coming new verson.

B. EVALUATION

Our evauation conssts of answering three main questions (1)-(3) described in the following
paragraphs.

(1) Isit feasbleto perform all imputationsfor a"typical” NCES survey with this
softwar e on a 486 PC?

Yes, itis. Combining dl three parts of the software with five types of models as described in section
A, we can impute dl types of variablesfor a“typicad” NCES survey. A large data set may have to

23



be divided into severd subsets. The number of variables in each subset depend on the number of
cases and the number of free parametersin the models. Higher correlated variables with smilar
scales should be put into the same subset. We may use the firgt part of the software to impute
continuous variables, and the second part to impute for the categoricd variables. If some
categoricd variables are highly corrdated with some continuous variables, we may want to use the
third part of the software to impute the missing vaues for these mixed variables.

Speed and storage are not very serious problems to run this software on a486 PC. Furthermore,
this software is easy to use and convenient to handle skip patterns. More specific features about the
feagbility of this software are discussed in the following five questions (a)-(€).

(2 How many runswould it taketo impute all variablesin a survey?

S-PLUS deds with a data set through a matrix: the rows represent cases and the columns represent
variables. Because object szes and dynamic memory are limited in SPLUS, alarge data set must
be partitioned into severa subsets. The partition strategy isto put highly correlated variables with
close scdes (for continuous variables) into the same subset. This makes the convergence criterion
for the EM or ECM dgorithms easier to set up and very likely produces more accurate results. The
number of variablesin each subset depends on the number of cases and the number of free
parameters to be estimated in the mode, which may include cdll probabilities, cell means and
variance-covariances. On one hand, more cases can estimate more free parameters so that we can
include more variables in the modd; on the other hand, more cases leads to abigger SPLUS
object (datamatrix) so that we can have less variables in the modd. The number of variablesin
each subset should be determined such that (1) the Size of the data matrix and the dynamic memory
requirement must be under S-PLUS limitation, and (2) the number of cases must be rdatively large
to the number of free parameters.

With the multivariate norma mode for continuous varigbles, we do not have too many free
parameters, and the number of free parametersis not a crucid factor to decide the number of
variablesin each subsat. The software can incorporate with 30 variables in one subset if the number
of casesislessthan 15,000. With dl other four models (saturated multinomiad modd, constrained
loglinear modd, unrestricted and restricted genera location modd), both factors, the number of
cases and the number of free parameters, are crucid to determine the number of variablesin each
subset. Generdly spesking, an anayst may want to include as many variables in asubset asthe
software can correctly handle Snce more varigblesin the mode will provide more information for
each other to predict the missng vaues, and including more varigblesin each subset will lead to less
subsets and therefore less runs. But we do not recommend more than 30 variables in any model
due to consideration of speed, storage and memory requirement, and the number of free
parameters which need to be estimated.
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The SASS AS data set has 9,415 observations, 15 categorical variables, and 56 continuous
variables, which are appropriate for imputation. There are alot of ways to partition these variables.
For example, we may use three saturated multinomia models for the 15 categoricd variables and
two multivariate norma models for the 56 continuous variables, or we may use two congrained
loglinear mode without third or higher order interactions for the 15 categorica variables and two
multivariate norma models for the 56 continuous variables; or we may use three unrestricted
generd location moddswith 5 categorica variables and 19 continuous variables apiece, etc. But
we do not recommend the user to use the restricted genera location model because it works very
dowly and some unexpected errors, such as “overflow range error,” may happen for some specific
priors. We mean that the S-PLUS functions for thismodel in this version of the software do not
work so well.

After the variables have been divided into a certain number of subsets and each subset of data has
been read into an S-PLUS data matrix, the following runs are required to impute the variables for
each subset:

(i) Cdl function prelim.norm for multivariate norma models, preim.cat for saturated
multinomia models and congtrained loglinear models, or prelim.mix for restricted and
unrestricted generd location models, to perform some preliminary manipulations, such as
centering, scaing, and sorting by missngness patterns on amatrix of incomplete data.

(i1) Cdl function em.norm for multivariate norma models, em.cat for multinomia modds,
ecm.cat for consrained loglinear models, em.mix for unrestricted generd location models,
and ecm.mix for regtricted generd location models, to find the maximumt-likelihood
esimates of the parameters with the incomplete data usng the EM or ECM agorithm.
These parameter estimators of cell probabilities (if categorica variables are present),
means, and variance-covariances, will usudly be used as sarting vaues of parameters for
the iterative smulation functions da.norm, da.cat, dabipf.cat, da.mix and dabipf.mix.

(iii) Cdl functionda.norm for multivariate norma models, da.cat for saturated multinomia
models, dabipf.cat for constrained loglinear models, da.mix for unrestricted generd
location modds, or dabipf.mix for restricted generd location models, to smulate one or
more iterations of asingle Markov chain under anormd-inverted Wishart prior. These
functions draws parameter estimates from their posterior distributions. These parameter
esimates will be used by step (iv) below to generate imputations for missng vaues.

(iv) Cdl function imp.norm for multivariate norma modds, imp.cat for saturated multinomia

models and congtrained loglinear models, or imp.mix for generd location models (both
restricted and unredtricted), to impute the missing vaues of the data matrix under user-
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supplied vaues of the parameters (usudly use the parameter estimates from step (iii)).
These functions will return amatrix of complete data

Steps (iii) and (iv) can be performed multiple times to generate multiple imputations.
(b) Can it handleall types of variables?

Yes, it can. We may use multivariate norma mode s to impute continuous variables, saturated
multinomia models and/or congtrained loglinear models to impute for categorica variables, and
restricted and/or generd location models to impute mixed variables when categorica variables
are highly corrdated with continuous varigbles. We believe that the models for categorica
variables and mixed variables in this software are more appropriate than Proc I mpute which
fits usud regresson models by treating dl types of variables as continuous variables.

The multivariate norma assumption is crucid to the Schafer’s norma imputation modds. If the
variables departure too far from normality, the imputations generated by Schafer’ s software
could be very bad. Theoretically speaking, any continuous variable can be transferred to a
variable with anorma digtribution. But we may not be able to do so in practice since the true
digtribution of avariable rarely known to us, or the exact transformation may be too
complicated to perform even if we know the digtribution of the variable. Therefore, in practice,
we may first use some common transformations (e.g., logarithm, exponentid, square roct,
square, etc.) to make the variables as close to normal variables as possble, then apply
Schafer’s multivariate norma imputation modesto the transferred variaoles.

It should be noted that al four types of models which involve categorica variables do not teke
explicit account of any ordering of the categories; that is, they regard the possible levels of each
categorical variable as unordered categories. In some case, incomplete ordina data can
gpproximately be handled by pretending that they are normaly distributed and applying the
multivariate norma modd. In other cases, we may disregard the ordering and apply the
multinomia modd. Although the multinomia mode may result in some loss of information and
may be less stisfactory for the development of scientificaly meaningful modds, it may bea
perfectly reasonable gpproach if our god is merely to produce plausible multiple imputations of
the missing data for future analyses (Schafer, 1991, p. 71).

(c) How much special processing isrequired to handle skip patterns?
It isvery easy to handle skipsin S-PLUS. For example, suppose that “NA” represents the redl

missing values, “99999” represents’ the vaid skips, and x is the data matrix, then the following
four statements will do the job:
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(d)

0] Record postions of valid skips. pos_(x==99999),

(i) Treat dl vdid kipsas"true’ missng vaues x[pos]_NA

(i)  Use Schafer's software to impute dl missing vaues including red missng
vaues and vaid skips.

(iv)  Removedl imputed vauesfor vaid skips x[pos|] 99999

Only one minute may be needed to handle dl valid skipsin thisway. If the data set includes
severd different “skip flags,” more statements will be needed, but they will be smilar to (i), (ii),
and (iv).

How much memory and disk space would be required?

The amount of required memory and disk space depends on the Size of the data matrix. Dueto
the object Sze limitation and the dynamic memory limitation in SPLUS for Windows, the PC
environment where Schafer’ s software works, the number of variablesin each run islimited.
For a486 PC, we do not recommend more than 30 variables in any model. Otherwise, it may
run out of dynamic memory or exceed the object limitation. As the number of casesis 20,000
or more, we recommend 20 variables or lessin one run.

For amodd involving categorica variables (saturated multinomia model, congtrained loglinear
moded, restricted/unrestricted genera location models), the number of variables in each mode
not only depends on the number of cases, but aso depends on the number of free parametersin
the model. The number of cases must be rdatively large to the number of free parameters. The
number of cells becomes enormous as the number of categorica variables grows. So the
saturated multinomiad mode and the unrestricted generd location modd can only include afew
categorical variables. Ten categorica variables will have at least 21°=1,024 cdlls (and therefore
at least 1,024 free parameters in the saturated models) if dl variableshave only 2 levels Ina
red survey, 10 variables usudly have much more than 1,024 cdlls. For example, thefirst 10
categorica variablesin the SASSAS data set include 4 variables with 3 levels, 5 variables with
4 levels, and one variable with 5 levels, which will lead to 3*x4°x5=414,720 cells. Definitely
that istoo much for one modd.

Theoreticdly, the constrained loglinear modd and the restricted genera location mode can
include much more categoricd variables in each run since we can control the number of the free
parameters as we want to. However, we actualy can not put too much more variables into
these models due to two reasons: (1) the S-PLUS functions for these modelsin the software
work so dowly that we can not afford abig mode (see next section for details about speed),
and (2) they require the same amount of space to Sore the parameters. The software store all
the parametersin one vector caled “theta’ in double precison. The sSze of “theta’ grows as
twice fast as the number of cells when the number of categorica variables grows. It will exceed
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the object gze limitation (default valueis 5 MB) very quickly. Although we can increase the
maximum object sizein SPLUSto run Schafer’ s software with a“theta’ larger than 5 MB, it
will be very likely that the program runs out of dynamic memory if we do so. Even if we have
enough memory and space to run with such abig object, the processing time is un-affordable.
For example, it will take severd hours to run the constrained loglinear modd without third or
higher order interactions for those 10 categoricd variablesin the SASS.AS data set mentioned
in the previous paragraph. While it only takes about a minute to run two saturated multinomial
models with 5 categorica variables apiece, and merge the two imputed subsets back into one
ubset. Soit isredly not agood ideato run this software with too many categoricd variablesin
terms of cost.

Here we try to give our recommendation on the number of variables that each modd should
include in for data sets with 5,000 to 12,000 cases, but it should not be surprising if they are not
appropriate for some stuations. A user redly should determine this issue on his’her own based
on the data set he/she got.

# of variablesin onerun

M odel (5,000 to 12,000 cases)
Multivariate normal model 30 continuous variables
Saturated multinomia model 5-8 categorica variables
Congtrained loglinear modedl 7-10 categorical variables

(Without 3rd or higher interactions)

Unrestricted generd location model about 5 categorica variables &
15-20 continuous variables

Redtricted generd location model better not use it with thisverson
(without 3rd or higher order interactions)

As mentioned earlier, alarge data set must be partitioned into smaller subsets, and run the
software on one subset at atime. We experienced that the second run was hung up when we
made two runs of the software in the same S sesson. It isadvisablefor auser toquitan S
session after running Schafer’ s software for one subset in that session, and enter another S
session to run the software for the second subset if both subsets have more than 25 variables
and over 10,000 cases.
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(e) How fast isit?

The imputation processing time depends on the Sze of the data matrix, the number of iterations
specified for the iterative smulation adgorithm and that for EM or ECM dgorithms. Usudly, 25

iterations will generate quite stable results for both agorithms.

We have run each model on one or two subsets for the SASS.AS survey data set with 9,415
cases. All runs are supposed to take 25 iterations for both iterative smulation agorithm and EM

or ECM dgorithm. The imputation processing time for each modd is given asfollows.

S-Functions

Time

Description

Multivariate Normal M odel (with 30 continuous variables)

prelim.norm:
em.norm;
danorm:
imp.norm:
Totd:

1'10"
2'15"
420"
155"

preliminary data manipulations

initia parameter estimates by EM dgorithm
iterative Smulation (data augmentetion)
imputation of the missng vaues

Saturated Multinomial Modél (6 variables with 4x5x3x4x3x4=2880 cells)

prelim.cat:
em.cat:
da.cat:
imp.cat:
Totd:

5
10"
5
o
22"

preliminary data manipulations

initia parameter estimates by EM dgorithm
iterative Smulation (data augmentetion)
imputation of the missng vaues

Constrained Loglinear Modé (8 variables with 4x3x3x3x4x3x4x4=20736 cells
and no higher than 2nd order interactions)

prelim.cat:
ecm.cat:
dabipf.cat:
imp.cat:
Totd:

10"
335"
338"

5

preliminary data manipulations

initid parameter estimates by ECM agorithm
Bayesian iterative proportiond fitting
imputation of the missng values
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Unrestricted General Location M odel (20 continuous variables and 5 categorica
variables with 3x5x3x4x3=540 cells)

prelim.mix: 1'15" preliminary data manipulations

emmix: 2'15" initia parameter estimates by EM dgorithm
damix: 120" iterative Smulaion (data augmentation)
imp.mix: 1'30" imputation of the missing vaues

Totd: 620"

Restricted General L ocation Modéel (20 continuous variables and 5 categorica
variable with no higher than 2nd order interactions and design matrix A=lp.p)

preim.mix: 1'15" preliminary data manipulations
ecm.mix: 6 hrs initia parameter estimates by ECM agorithm
dabipf.mix: forever Bayesan iterative proportiond fitting

From these results, we can see that the actual imputation processing speed isfast for al modes
except the redtricted genera location model. It isworth to point out that amode including one
more variable may cogt alot more running time. For example, for the constrained loglinear
mode, arun (including al 4 steps) with 7 categorica variables takes 1 minute and 23 seconds,
with 8 variables takes 7 minutes and 28 seconds, while with 9 variables takes severa hours (we
run DABIPF.CAT and ECM.CAT for acouple of iterations and estimate the total time for 25
iterations). The speed isredly sengtive to the Sze of data set, especialy the number of
categorica variables. We should not put too many variablesinto any single model, but we aso
should not put too few variables into the modd since more varigblesin the mode will provide
more information for each other to generate more accurate imputations. In the above example,
it is gppropriate to put 7 or 8 variables into the constrained loglinear model, while 9 are too
many and 6 are too few.

It should aso be noted that the Bayesian Iterative Proportiona Fitting Algorithm works very
dowly with this verson of the software and it redly can not increase too many variablesin the
models than the saturated models due to the storage limitation of “theta’, the container for the
parameters (see (B.1.d) above for details). Moreover, the time is unaffordable to run a
constrained mode with third order (or higher) interactions for a data set with a reasonable size.

In summary, it will not take too much imputation processing time to impute al missng vaues for
asurvey if we choose the “ gppropriate’ models in Schafer’ s software. However, an andyst will
devote the mgority of his processing time to pre- and post- imputation file-management. This
time will be spent performing a subset of the following tasks:



Checking the digtributions of the variables, and the correlations between the variables,
Performing data transformations for those continuous variables with sever violation

of the normality assumption;

Re-coding the levels of the categoricd variables with pogtive integers Sarting with 1
if necessary (may use function “categorize’ provided by the software);

Partitioning the data set into subsets according to the rules of putting highly correlated
variables with close scalesinto the same subsets;

Performing inverse transformations and/or re-coding process to transfer the imputed
vaiablesto the origind variableswith origina scales (may use function “uncategorize’ in the
software);

O Combining the output (imputed) subsetsinto one overdl completefile.

o o o0

(@]

Working through this list of pre- and post-imputation data file management may take much
more time than the actua imputation processing.

(2) How well documented isthe software? Isit difficult to use?

How to ingtdl and use the software will be described before answering these questions. Ingtallation
ingtructions provided by Schafer’s software are for a UNIX workstation and some are not
gpplicable to a PC system. Before performing the following ingalation steps for a PC environment,
abunch of storage mode errors (over 60 places) in the FORTRAN subroutines have to be
corrected in order for them to be successfully compiled.

I ngtallation:

0] Use WATCOM FORTRAN 77 compiler (WATCOM International Corporation,
1993) to compile the FORTRAN source files“norm.for”, “cat.for” and “ mix.for”
to create object files “norm.obyj”, “cat.obj” and “mix.obyj”, respectively;

(i) Copy files"norm.obj”, "norm.s', “cat.oby”, “cat.s’, “mix.obj” and “mix.s’ to the
S-PLUS working directory "c:\spluswinlhome” (if S-plusfor Windowsisindalled
on the C drive);

(i)  Cresteasubdirectory "_hdp" of "c:\spluswvinlhome\_data’ and copy dl the help files
into this subdirectory "c:\splusvin\home\ data_help';

(iv)  Inan Ssesson, define the function .First asfollows:

Firg_function() {
dyn.load(* norm.obj”) # load file “norm.obj”

source(“norm.s’) #load file“norm.s’
dyn.load(“cat.obj”) # load file “cat.obj”
source(“cat.s’) #load file“ca.s’
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dyn.load(“ mix.obj”) #load file “mix.oby”

source(“mix.s’) #load file“mix.s’

rngseed(6534288) # initialize the random generator seed
}

(V) Quit Ssession.

Then the next time we enter an S session, Schafer’ s software will autometicaly be loaded into it.
Since the three parts of the software work independently, a user can load only part of the software
through the .Fir st function if the other part is not needed for hisher purpose.

Using the program:

After correctly ingdling the program, the 40 S-functions in the software (12 for continuous
variables, 19 for categoricd variables and 9 for mixed variables) can be cdled just like any other S
PLUS functions. See Appendix 1—Appendix 3 for brief descriptions of these functions. More
complete descriptions of these functions are found in the help files by typing "hdp(filename)” from
within S sesson.

So the software is easy to useif the user isfamiliar with S language.

To recapitulate, the question was “How well documented is the software?” By and large, the
software iswell documented, and the dgorithm for the software is especidly well developed.
However, asthe author said, the software is at its early stage and improvement will be madeto its
future verson. The most serious problem is with the consirained loglinear model and the restricted
generd location model. The programs for these models have variable ordering problems, work very
dowly, and require a huge vector to store the parameters, which limits their capacity of deding with
large number of categorical variablesto the leve of their corresponding saturated models. Actudly,
no model in this software can ded with more than 8 categorica variables of the SASSAS data st.
We believe that, if the parameters are stored in severd vectorsingtead of one vector “thetd’, those
constrained models may be able to ded with more categoricd variables. Moreover, as dready
mentioned, no Smulation or imputation function work due to its random generator problems. Some
storage mode errors are aso needed to be corrected. Figuring out these program problems took
much more time than the eval uation process.

Asaclose note for this section, we would like to quote some idiosyncrasies from Dr. Schafer asa
caution, athough we did not experience these problems:

(i) These S-plusfunctions do not supply many error messages, so if something does not
seem to work, it'slargely up to the user to figure out why.
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(ir) 1f the EM dgorithm bombs; it could be that the ML estimate is on the boundary of the
parameter space. Smilarly, if Data Augmentation under the default non-informative
prior does not seem to work, it could be that the posterior distribution does not exit. These
problems may arise with data sets that are sparse; that is, having lots of missing values, or
having a number of observations not substantialy larger than the number of variables. The
remedy for sparse dataisto supply a proper prior distribution, or smplify the model by
eliminating variables that are not crucid to the andyss.

(3) Can the softwar e be adapted to interface easily with SAS and SPSS?

The immediate answer to this question is“no.” Schafer’ s software is written in S language and run
under an S-PLUS environment, and S-PLUS and SAS (SPSS) can not interface with each other.
However, with the help of software DBMSCOPY (Conceptud Software, Inc. 1994), it isvery
easy to make transformations between SAS (SPSS) data files and S-PLUS data matrices so that
an andyst can use Schafer’ s software to impute the data under an S-PLUS environment and
andyze the imputed data under a SAS or SPSS environment. We may use S-PLUS “File’ pull-
down menu to import and/or export SAS (SPSS) data files from within S sessons. In order to use
this SSPLUS*File€’ pull-down menu, we need to add a Statement
“DBMSCOPY=C.\DBMSCOPY” to the SSPLUS Initid file “SPLUS.INI" if the software
DBMS/COPY isingdled on the C directory.

After we have correctly ingaled DBMSCOPY software and modified the SPLUS initid  fileas
described above, we can use the following four smple stepsto import a SAS or SPSS incomplete
datafile for Schafer’ s software to impute, and then output a complete SAS or SPSS data file for
SASor SPSSto andyze:

0] Click the “Fileé’ menu and select “import” from the SPLUS tool bar to transfer the
incomplete SAS or SPSS datafileto an S PLUS data frame, say, X;
(i) Change the storage mode of X to “single™ with satements:
X_asmatrix(X);  storagemode(X)_“sngle’;
(i) Apply Schafer’ s software to the data matrix X to impute the missing vaues,
(iv)  Click the SPLUS“File’ menu again and sdect “export” to transfer the imputed
S-PLUS data matrix to a SAS or SPSS datafile.

"When aSAS or SPSS datafileis transferred to an S-PLUS data frame through
DBMSCOPY, the output data frame has a“list mode”’, origind S-PLUS functions can be applied to
thistype of data frame, while Schafer’ s software can not because it requires a“single mode’ of adata
metrix.



In the case that DBMSCOPY is not available to the user, the following three steps can trandfer a
SASfileto aS-PLUS data matrix (we may use smilar steps for SPSS data files):
() In a SAS environment, use a number to represent missing vaue'.', for example, -1,
providing that thereis no other value equd to -1.
@i Transfer the SASfileto an ASCII file (may use PUT gtatement in SAS), and send the
ACII fileto “c\spluswinthome” (may use FILE statement in SAS).
(i) Inan S session, use function “scan” to read the datainto an S object. Then let “NA”
gtand for missng values and make a data matrix.

After dl missng vaues have been imputed by the software, the complete datawill be sored in a
matrix. The following statement can be used to transfer the imputed data matrix into an ASCI| file
which can be read directly by SAS.

write(t(x), “filename’, ncol=ncol(x))

where X isthe imputed data matrix, t(x) isthe trangpose of X, and “filename’ is the name of the
target ASCII file which will be located in the S-plus working directory “c:\spluswin\home”.
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V. A Comparison of Proc Impute and Schafer’s Software

This section congigts of three subsections. Subsection A describes asmal smulation study which is
designed to compare the two imputation software packages in terms of generating more accurate
imputations for continuous data. Subsection B discusses some datistical arguments on theoretical
comparisons of the dgorithms used in the software; Subsection C presents the imputations generated
by NCES, Proc Impute and Schafer’ s Software for afew selected variables from 1990-91 School
and Staffing Survey Administrator Component.

A. ASIMULATION STUDY FOR CONTINUOUSVARIABLES

We smulate three types of data sets: independent normd variables, correlated normd variables and
contaminated independent variables. Each data set has 8 variables and 2000 cases. Thefirgt 7 variables
have about 10% missing va ues gpiece and the 8th variable has no missng vaue. Three types of missng
mechanisms are consdered: (1) X israndomly missing; (2) X is missng when Z<c (a congtant) and
corr(X, Z)=0.6; and (3) X ismissng when Z<c and corr(X, Z)=0.9. Table 1-Table 3 compare Proc

I mpute and Schafer’ s Software in terms of average imputing error and mean bias for independent
norma data, correlated norma data and contaminated data, respectively. Here the average imputing

aror is defined as
1 m
4‘— j (&R
171

where|; and R are the imputed vaue and the redl vaue, respectively, for theith missing case, and mis
the number of missng vaues.

Table 1 shows that, when the variables (X;-Xs) in the modd are norma and independent, the
performance of Proc Impute and that of Schafer’ s Software are very close in terms of average
imputing error and mean bias. It dso shows that neither of imputation methods improves any mean bias
comparing to the un-imputed sample mean. Thisis supposed to be because the variables in the model
provide no information for each other for predicting the missing valuesif they are independent. In this
kind of dtuation, imputation methods may be used for the purpose of andytica convenience when some
satistica approaches can only be applied to complete data sets, or the statistical approaches become
too complicated for incomplete data sets. Of course, thiskind of Stuation israrein ared survey.
Variables are correlated with each other more or less.

When the variables in the modd are normal and correlated (with correlation between 0.3-0.9), table 2
demondtrates that Schafer’ s Softwar e aways has better performance than Proc Impute, whether the

37



Table 1 A Comparison of Proc Impute and Schafer’ s Software for Independent Normal
Variables through a Smulation with 2000 cases (std=1)

Vaiables X, X5 X3 X4 Xs Xe X7 Xsg
true mean (): -3 -2 -1 0 05 1 2 3

(1) Missing at random

# of missng vadues 191 187 193 219 194 222 198 O
average imputing error:
Schefer: 1414 1397 1418 1417 1394 1387 1422 0O
Proc Impute: 1414 1437 1419 1.383 1414 1472 1324 0
B-He
Schafer: -.007 0.028 0.002 0.009 -.002 -.003 -.008 0.046
Proc Impute: -.012 0.029 -.002 -.009 0.005 -.001 0.004 0.046
TV -.012 0.033 0.001 0.001 0.006 -.004 -.004 0.046

(2) X; ismissng if Z<c; and corr( X;, Z)=0.6

# of missng vaues 202 198 199 202 208 198 195 O
average imputing error:
Schafer: 1.780 1.685 1.660 1.817 1.641 1.804 1.780 O
Proc Impute: 1676 1613 1.790 1.782 1.680 1.731 1.628 0O
(28
Schafer: 0.107 0.133 0.110 0.130 0.117 0.133 0.120 0.046
Proc Impute: 0.105 0.133 0.119 0.121 0.118 0.130 0.099 0.046
TV 0.107 0.135 0.118 0.120 0.116 0.138 0.103 0.046

(3) X; ismissngif Z<c;, and corr( X;, Z)=0.9

# of missng vaues 204 199 186 207 200 200 175 O
average imputing error:
Schefer: 2023 2102 2.001 2.115 2.072 2.108 1.986 O
Proc Impute: 2100 2.011 2.077 2.020 2.012 2.131 2073 O
(Lo
Schafer: 0.169 0.203 0.163 0.191 0.175 0.194 0.148 0.046
Proc Impute; 0.176 0.197 0.169 0.179 0.180 0.197 0.151 0.046
by L 0.169 0.199 0.167 0.186 0.173 0.192 0.148 0.046

Note: * W istheimputed sample mean; W, is the sample mean without any imputation; and L isthe true
mean.



Table 2 A Comparison of Proc Impute and Schafer’ s Software for Correlated Normal Variables
through a Smulation with 2000 cases (std=1 and corr(X;, X))=1-0.1*|i-j| )

Vaiables X, X5 X3 X4 Xs Xe X7 Xsg
true mean (): -3 -2 -1 0 05 1 2 3

(1) Missing at random

# of missng vaues 199 18 197 193 191 190 190 O
average imputing error:
Schafer: 0.635 0.426 0.464 0.456 0.443 0.450 0.467 O
Proc Impute; 0.760 0.537 0.449 0.487 0.599 0.654 0.657 O
B-He
Schafer: 0.000 -.003 0.002 -.006 -.004 0.002 0.002 0.000
Proc Impute; 0.005 -.001 0.002 -.001 0.002 0.003 0.009 0.000
TV 0.002 0.003 -.012 0.000 0.001 0.007 0.004 0.000

(2) X; ismissng if Z<c; and corr( X;, Z)=0.6

# of missng vaues 196 192 186 196 208 201 202 O
average imputing error:
Schafer: 0.915 0.673 0544 0.513 0.491 0.510 0.488 0
Proc Impute; 0.947 0.784 0.804 0.836 0.617 0.740 0.542 O
(28
Schafer: 0.039 0.023 0.022 0.014 0.015 0.020 0.017 0.000
Proc Impute; 0.043 0.024 0.029 0.030 0.017 0.029 0.016 0.000
TV 0.117 0.113 0.110 0.113 0.109 0.122 0.124 0.000

(3) X ismisang if Z<c; and corr( X;, Z)=0.9

# of missing vaues 210 181 190 198 195 199 207 O
average imputing error:
Schefer: 1.143 1.013 0.892 0.804 0.730 0.688 0.566 O
Proc Impute; 1453 1.354 1.102 0.896 0.938 0.835 0.627 0
ML
Schafer: 0.079 0.059 0.059 0.046 0.043 0.036 0.035 0.000
Proc Impute; 0.114 0.084 0.074 0.051 0.060 0.048 0.043 0.000
v 0.183 0.158 0.164 0.168 0.169 0.175 0.181 0.000

Note: * W istheimputed sample mean; W, is the sample mean without any imputation; and L isthe true
mean.
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Table 3 A Comparison of Proc Impute and Schafer’ s Software for Contaminated Independent
Variables through a Smulation with 2000 cases (90% normd and 10% Cauchy)

Variables X4 X, X3 X4 Xs X6 X5 Xg
complete sample mean (L): -2.979 -2.044 -1.025 0.162 0.438 0.926 2.050 2.969
complete sample std (S¢): 2.042 3.183 1.535 6.288 8.783 8.350 4.459 2.295

(1) Missing a random

# of missng vdues 208 203 202 188 197 206 193 O
average imputing error (in S¢):
Schafer: 1.169 1.014 1.163 1.066 1.162 1.148 1.047 O
Proc Impute: 1.455 0.493 1.326 2.282 1.343 0.187 0.979 0
M- -
Schafer: 0.009 -.012 -.001 -.069 0.103 -.018 0.052 O
Proc Impute: 0.008 -.018 -.019 -.071 0.212 0.008 0.061 O
VPRIV -.008 -.001 0.004 0.007 -.010 -.007 0.007 O

(2) X; ismisang if Z<c;, and corr( X, Z)=0.6

# of missing vdue 200 203 198 209 225 220 200 O
average imputing error (in s¢):
Schafer: 1.858 2.091 2.006 1962 2.884 2453 2.253 0
Proc Impute: 1.618 2616 1.990 1.905 2.898 2.591 2138 0O
M- e
Schafer: 0.135 0.180 0.153 0.253 0.241 0.321 0.248 O
Proc Impute  : 0.127 0.199 0.133 0.091 0.285 0.377 0.231 O
v - He: 0.126 0.167 0.150 0.158 0.260 0.322 0.238 O

(3) X; ismissng if Z<c; and corr( X;, Z)=0.9

# of missng vaues 200 192 209 202 202 206 196 O
average imputing error:
Schafer: 2589 2316 2221 1.892 3.025 2.656 2.199 0
Proc Impute: 1.770 2189 2329 2585 3.062 3.188 2.226 0
H-He:
Schafer: 0.237 0.284 0.239 0.210 0.293 0.367 0.323 O
Proc Impute: 0.195 0.249 0.254 0.220 0.267 0.388 0.284 O
Ly ~ e 0.200 0.242 0.238 0.199 0.295 0.362 0.299 O

Note: * W istheimputed sample mean; W, is the sample mean without any imputation; and |, isthe
complete sample mean.



assumption of missing a random (MAR), which is required by Schafer’ s Software, holds or not. This
may be because the more important assumption, norma digtribution of X, is satisfied for Schafer’s
Software in this case. When missing vaues occur a random, neither of the two imputation methods
makes any improvement on the population mean estimates. However, when the missing vaues occur
with some patterns, both methods dramaticaly improved the popul ation mean biases. The stronger the
correlaion between the “target” variable and the predictorsis, the more the improvement will be.

For the data set with 90% normd data and 10% Cauchy data, table 3 illustrates that Proc Imputeis
better than Schafer’ s Software in some cases, whileit isthe other way around in other cases. And the
performance of both methods are very ungtable. With al three types of missing mechanisms, both
imputed sample means perform poorly because the correlation between variables are very small so that
little information can be borrowed from other variables to impute the missing values for the “target”
variables. In the case of missng a random, missing vaues cause no bias and the un-imputed sample
mean is much better than the imputed means, while the serious bias makes the un-imputed sample mean
evenly bad as the imputed mean when the missing vaues occur with some trend.

Our findings of this smdl amulation study can be summarized asfollows: (1) for independent data, the
biases caused by the missing values can not be corrected through any imputation approach; (2) for
normd correlated data, Schafer’ s Software dways perform better than Proc |mpute no matter what
missingness mechaniam is, (3) both imputation gpproaches can improve the estimator for the population
mean dramdicdly if the missng vaues occurred with some strong pattern and the variables have
moderately high corrdations; (4) both imputation approaches are not so robust for the contaminated
data

More smulation sudies are definitely needed to compare the two imputation gpproaches. For example,
it is necessary to compare them for al types of variables(continuous, ordind, categorica, mixed), and
compare them with more criteria, such as coverage probabilities, variance estimates, etc; it isaso
worthwhile to investigate their performance on multiple imputation inference (see section V for details).

B. THEORETICAL ARGUMENTS

Proc Impute is based on an assumption that the relations between variables keep the same for the
observed cases and missing cases, and tries to predict the missing vaues of the “target” variables
through a probabilistic relationship between the “target” variables and predicting variables. This
assumption is more reasonable in practice than the assumption of missing a random (MAR), which is
required by Schafer’s Software. In other words, Schafer’ s Softwar e assume that the observed values
have the same digtribution as the missing vaues. In practice, it is often the case that the distribution of
the missing cases has a different pattern from that of observed cases, but the relations among the
variables are usualy smilar for both observed part and missng part. Actudly, MAR isavery strong
assumption. If data are missng at random, then imputation is usdess for improving the satistica resuilts,
and we may ignore the missing cases and base our inference on the observed cases only. However, our
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smulation study fortunatdly shows that the assumption of MAR is not so important to Schafer’s
Software. Aslong asthe norma distribution assumption holds, Schafer’ s Software aways do better
than Proc Impute no matter what missngness mechanism is. Then the consequent question is, “Can we
just use Schafer’ s Software and ignore this assumption?” We are not in a hurry to answer this question.
More smulation studies should be conducted to answer this question.

Schafer’ s Softwar e assumes normdlity for continuous variables, while Proc I mpute assumes that the
conditiond ditribution of the “target” variables given the predictors are normd, or equivaently, the
resduas from the regresson models are normd. It comes to our atention that Schafer’ s Software is
more sengtive to its digtributionad assumption than Proc Impute. The reason isthat Schafer’ s Software
uses a Bayesan method to generate the imputations directly from the assumed digtribution, while the
digributiona assumptionin Proc Imputeis used only in the middle step to fit the regresson models and
the imputations are not generated directly from the regresson equations. Therefore we should be more
careful about the digtribution of the data when we use Schafer’ s Softwar e to do the imputations. As
we mentioned before, theoretically, any continuous variable can be transferred into a variable with a
normd digtribution. In practice, we may use common transformations (e.g., logarithm, exponentid,
square root, square, etc) to make the variables as close to norma variables as possible, and then apply
Schafer’ s Softwar e to impute missing values for the transferred normal variable and then transfer back
to the origina variables. Aswe seein our smulation, Schafer’ s Softwar e has much better performance
if the data are normal. So we recommend Schafer’ s Software for the continuous dataif they are
goproximately normd, or asmple transformation is available to make them gpproximately normdl.
Otherwise, we may try Proc Impute It is possible that Proc |mpute will show better performance than
Schafer’ s Software if we use a data set which has further departure from normdity, or in the cases that
the conditiona distributions of the variables (or residuals) are norma but the variables themselves are
not.

For categorical variables, Schafer’ s Softwar e uses saturated multinomial models and constrained
loglinear models to impute missing vaues, while Proc I mpute fits usud regresson modes by treating dl
types of variables as continuous variables. The models used in Schafer’ s Software are believed to be
more appropriate than those used in Proc Imputefor categorica variables.

Another advantage of Schafer’ s Softwar e is about multiple imputation. Proc Impute isbasicadly a
sngle-imputation agorithm. Although the newest verson of Proc Impute dlows the usersto generate
multiple imputations, but the number of imputations for each case is very limited and it may not be
“proper” in the sense of Rubin’s definition. On the other hand, Schafer’ s Software isoriginaly crested

for multiple-imputation purposg, it adheres to Rubin’s “proper” criterion if the sampleisasmple
random sample.

However, Schafer’ s Multiple Imputation Softwar e draws imputation vaues for the missing cases
from a pogterior distribution. The generated imputation values for continuous variables may be out of
the range of the observed values (or, say, the domain of the variables), while Proc Impute has made an
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effort to avoid thiskind of problem. Another advantage of Proc Impute is its convenience to perform
imputations for large data sets. Proc Impute can carry out al imputations as one single batch job no
matter how large the data set is. But Schafer’ s Softwar e usudly requires more than one S sesson and
much more runsto carry out dl the imputations for alarge data set due to the limitation of dynamic
memory of SPLUS for Windows. An andyst may need to divide alarge data set into more subsets to
apply Schafer’ s Software, and, consequently, need to spend much more time on pre- and post-

imputation data file management.

In summary, Schafer’ s Software may generate more accurate imputationsiif its distributiona
assumptions are approximately satisfied, but Proc Impute is much more convenient to use for alarge
data set.

C. ANAPPLICATION TO NCESDATA

Appendix 4 shows the un-imputed data and the dataimputed by NCES, by Schafer’ s Software and
by Proc Impute for three variables: Year received bachelor’s degree (BS'BA), Years of
elementary/secondary teaching experience before becoming principal (Tch), and Year of birth
(Birth), from 1990-91 SASS Adminigtrator datafile. It is noticed that al the means and standard
deviations for the un-imputed data, NCES imputed data, two sets of imputed data by Schafer’s
Software, and Proc Impute imputed data, are very close, dthough the imputed values for each
individud missing case are quite different. One may argues that this is because the numbers of missing
cases, 142 for BS/BA, 82 for Tch, and 114 for Birth, are not big enough comparing to the sample
Sze 9054. In fact, we dso used these methods to impute another variable with 898 missing cases, the
means and standard deviations for that variable are ill very close. The digtributions of BS/BA, Tch and
Birth are close to norma, so the imputations by Schafer’ s Software may be good athough it
generates afew negative vaues for T ch which are not acceptable for the varigble. All imputation vaues
generated by Schafer’ s Software are rounded up to integers because these variables are integer-
vaued, while Proc Impute automaticaly generates the same type of vaues for the missing cases as
observed values.
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V. Next Steps

Aswe mentioned earlier, Schafer’ s Softwar e will generate more accurate imputations than Proc
Impute if its distributiona assumptions are gpproximatdy satisfied, and it also has the advantage over
Proc Impute for generating “proper” multiple imputationsif the sample is asmple random sample. But
the programs for the two congtrained modelsin Schafer’ s Softwar e has a variable ordering problem. If
the u-terms (or interactions) in the loglinear congtrains (A.2.4) of section 1l are not symmetrically
designed, the results will not be right. Furthermore, each of the two constrained models is supposed to
fit more categorica variables than its saturated model, and alow any order interactions in the models.
However, we can usudly put no more than 8 categorica variables and no higher than second order
interactions. Otherwise, ether the vector “theta’, which stores dl parameters of the model, will exceed
the object Sze limitation, or the run will take un-affordable time. Dr. Schafer is modifying the software
to fix these problems (at least the variable ordering problem). We think it is worthwhile for NCES to
obtain the new versgon of Schafer’ s Software and implement it on a PC environment. Actudly, we
know the whole software very well and it is not so difficult for usto fix these problemsfor NCES if Dr.
Schafer can not complete the modification in timely manner.

We did asmadl smulation for continuous variables. A thorough smulation study will be necessary to
investigate the performance of both imputation software packagesin terms of generating more accurate
imputations. The following questions will be answered by the smulation. Will Schafer’ s Softwar e il
perform better than Proc Impute in terms of other popular, important, and more complicated criteria
such as coverage probabilities, variance estimates, etc.? Can Schafer’ s Software aso generate more
accurate imputations for categorica variables, ordina variables? |s the assumption of MAR redlly not
important to dl five types of moddsin Schafer’ s Software? Can Schafer’ s Software redly generate
more “proper” multiple imputations than Proc Impute?

Our amulation study shows that both Proc Impute and Schafer’ s Software are very unstable for
contaminated data with outliers. It will be vauable for NCES to explore some more robust imputation
agorithms or implement some robust Satistica approaches for imputation purposes and develop new
imputation software. It will be a huge project. If NCES isinterested, we will proposeit in detall.
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Appendix 1. Twelve S-PLUS Functions for Continuous Variables
in Schafer’s Multiple Imputation Software

. preim.norm(x)

Performs preliminary manipulations for x—amatrix of incomplete continuous data. The
data are centered, scaled, and sorted by missingness patterns. It returnsalist of objects
that summarizes various fegtures of the incomplete data matrix.

. em.norm(s, start, showits=T, maxits=1000, criterion=0.0001, prior)

Performs maximum:-likelihood estimation using the EM dgorithm, or finds a posterior
mode under a norma-inverted Wishart prior supplied by the user. It returns a vector of
parameters representing the MLE. The parameter vector stores the means and variance-
covariance matrix in thisorder: -1, means, up-triangular rows of variance-covariance
matrix. It is caled packed storage by the author.

Brief descriptions of the arguments passed in “em.norm” follow:
S asummary list produced by “preim.norm”
start: optiona darting value of the parameter
showits: if “TRUE,” reports the iterations of EM
maxits.  maximum number of iterations performed
criterion:  convergence criterion
prior: optiond prior ditribution. Thisisalig of the hyperparameters of a
normal-inverted Wishart distribution. In order, the elements of thelist are:
" (ascdar),
m (ascaar),
Lo (avector of length p),
71 (apxp matrix),
where p is the number of variables. If no prior is supplied, the default is
usud noninformative prior for multivariate norma modd:
"=0
m=-1
fo=arbitrary
7 '=amatrix of zeros
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3. getparam.norm(s, theta, corr=F)

Returns mean vector and variance-covariance matrix on their origina scale and origind form
from theta which is on packed storage.

Brief descriptions of the arguments passed in “getparam.norm” follow:
S asummary list produced by “prdim.norm”
theta: parameter estimatorsin packed storage
corr: if "TRUE", returns sandard deviations and correaion matrix; if "FALSE",
variance-covariance matrix

4. makeparam.norm(s, thetalist)
Does the opposite of "getparam.norm’—makes a parameter list in packed storage

Brief descriptions of the arguments passed in “ makeparam.norm” follow:
S asummary list produced by “prdim.norm”
thetalist: asthe results produced by "getparam.norm”

5. danorm(s, gart, prior, steps=1, showits=F, return.ymis=F)

Simulates one or more iterations of asingle Markov chain. Each iteration congsts of arandom
imputation of the missing data given the observed data and the current parameter vaue (1-step),
followed by a draw from the posterior distribution of the parameter given the observed data
and the imputed data (P-step). Returns avalue of the parameter, the result of the fina P-step.

Brief descriptions of the arguments passed in “danorm” follow:

S asummary list produced by “prdim.norm”

start: darting vaue of the parameter. One obvious choice is the estimator
generated by "em.norm’

prior: optiond prior distribution—alist of the hyperparameters of a normd-inverted
Wishart didribution asin “em.norm’”.

steps: number of data augmentation iterations

showits. if "TRUE", reportsthe iterations

return.ymis. if "TRUE", returns the output of the last I-step as the imputed vaues
of missing datain addition to the output of the last P-step.



6. mdanorm:

Monotone data augmentation which is supposed to converge more quickly than "da.norm” for
nearly monotone missingness data sets. Unfortunately this function does not work because of
some bad Fortran subroutines.

7. imp.norm(s, theta, x)

Draws missing dements of adata matrix under the multivariate norma mode and a user-
supplied parameter. Returns amatrix of complete data.

Brief descriptions of the arguments passed in “imp.norm” follow:
S asummary list produced by “prdim.norm”
theta: aparameter vector in packed storage, such as one created by "em.norm”
or "danorm".
X: the origina data matrix

8. rngseed(seed)
Initidizes the random number generator seed. If this function has not been cdled in .First

function, it must be cdled a least once before the smulation functions (e.g., da.norm and
imp.norm) can be used. The argument “Seed” is preferred to be alarge integer (must be

pogitive integer).
9. loglik.norm(s, theta)

Evduates the observed-data loglikelihood function at a user-supplied vaue of the parameter.
Thisfunction is useful for monitoring the progress of EM and data augmentation.

The arguments passed in “loglik.norm” have the same meaning asin “danorm”.

10. logpost.norm(s, theta, prior)
Similar to loglik.norm, except it evauates the log of observed-data posterior densgity under a
norma-inverted Wishart prior (asin danorm). If no prior is specified by the user, the usud

"noninformative" prior for the multivariate norma distribution is used.

The arguments passed in “logpost.norm” have the same meaning asin “danorm”.
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11. ninvwish(s, params)

12.

Smulaes avaue from a normd-inverted Wishart distribution. This function may be useful for
obtaining values of the parameters of a multivariate norma digtribution for multiple chains of
data augmentation.

Brief descriptions of the arguments passed in “ninvwigh” follow:
S asummary list produced by “prdim.norm”
params. aligt of parameters of a normd-inverted Wishart digtribution asin
da.norm. When using this function to create garting vaues for data
augmentation, i, and ? " should be chosen in relaion to the data matrix after
the columns have been centered and scaled to have mean zero and variance
one.

mi.inference(est, std.err, confidence=0.95)

Combines estimates and standard errors from m complete-data anayses performed on m
imputed data sets to produce a single inference. Uses the technique described in Rubin (1987)
for multiple imputation inference for a scdar estimand.

Brief descriptions of the arguments passed in “mi.inference’ follow:
est: alist of m (at least 2) vectors representing estimates from complete-data
anayses performed on m imputed data sets
gd.err:  alist of mvectors containing standard errors from the complete-data andyses
corresponding to the estimates in 'ext’
confidence:  desired coverage of interva estimates

Thisfunction returns alist with the following components:

est: the average of the complete-data estimates

sd.err:  standard errors incorporating both the between and the within imputation
uncertainty

df: degrees of freedom associated with the t reference distribution used for
interval estimates

signif: p-vaues for the two-talled hypothesis tests that the estimated quantities are
equd to zero

lower: lower limits of the confidence interval

upper: upper limits of the confidence interva

r: estimated relative increases in variance due to nonresponse

fminf: estimated fractions of missng information



Appendix I1:  Eighteen S-PLUS Functions for Categorical
Variablesin Schafer’s Multiple Imputation Software

1. categorize(x)
Recode the levels of categorica variables as consecutive poditive integers starting with 1.

The only argument, X, in this function isametrix of discrete data taking integer vaues. This function
will return aligt with the following two components:

X: amatrix corresponding to x, but whose columns have been recoded as consecutive
positive integers 1,2,...

levs: alig of length 'ncol(x)' whose dements are character vectors giving the origind levels
of the columns of "X..

2. uncategorize(x, levs)

Does the opposite of “ categorize’—change the categorical variablesto their origina levels after
imputation.
The two required arguments are:
X: amatrix whose columns are categoricd datataking values 1,2....
levs: alist of character vectors of length “ncol(x)' giving the integer codes corresponding to
the levels of the columns of "X
This function returns amatrix like “x', except recoded to correspond to “levs.

3. preim.cat(x, counts, levs)

Performs grouping and sorting operations on categorica data sets with missing values. It creates a
list that is needed for input to “em.cat”, “dacat”, “imp.cat”, ec.

The three arguments are:

X: categorica datamatrix containing missing vaues. The datamay be provided ether in
ungrouped or grouped format. In ungrouped format, the rows of x correspond to
individua observationa units, so that nrow(x) is the totd sample sze. In grouped
format, the rows of x correspond to distinct covariate patterns, the frequencies are
provided through the “counts’ argument. In ether format, the columns correspond to

51



variables. The categories must be coded as consecutive positive integers beginning with
1(1,2,...), and missing vaues are denoted by NA.

counts: optiona vector of length “nrow(x)" giving the frequencies corresponding to the

levs:

covariate paternsin x. The total sample sizeis “sum(counts)'. If “counts is missing, the
data are assumed to be ungrouped; thisis equivalent to taking “counts equal to
“rep(1,nrow(x))'".

optiond vector of length “ncol(x)" indicating the number of levels for each categorica
variable. If missng, ‘levd]j]' istaken to be "max(x[,j],narm=T)'"

Thisfunction returns alist with 17 components. The key components are:

nmis. avector of length "ncol(X)' containing the number of missing vaues for each variablein

r.

X.
matrix of response indicators showing the missng data patternsin x. Dimension is (m,p)
where m is number of digtinct missingness patternsin the rows of x, and p is the number
of columnsin x. Observed vaues are indicated by 1 and missing vaues by 0. The row
names give the number of observations in each pattern, and the columns correspond to
the columns of x.

vector of length “ncol(x)" indicating the number of levels for each variable. The
complete-data contingency table would be an array with these dimensions. Identical

to levs if levs was supplied.

ncells: number of cellsin the cross-classified contingency table, equd to “prod(d)'.

4. em.cat(s, start, prior=1, showits=T, maxits=1000, eps=0.0001)

Finds ML estimate or pogterior mode of cdll probabilities under the saturated multinomia modd. If
zero cdl counts occur in the observed-data table, the maximum likelihood estimate may not be
unique, and the agorithm may converge to different sationary vaues depending on the Sarting
vaue. Also, if zero cell counts occur in the observed-data table, the ML estimate may lie on the
boundary of the parameter space. Supplying a prior with hyper-parameters greater than one will
give a unique posterior mode in the interior of the parameter space. Etimated probabilities for
gructurd zero cdlswill aways be zero.

The arguments are:

S.

start:

summary list of an incomplete categorica data set produced by the function “prelim.cat’.
optiond starting value of the parameter. Thisis an array with dimensions “s$d' whose
elements sum to one. The default starting value isauniform array (equa probabilitiesin
al cdl9). If gtructurad zeros gppear in the table, "start’ should contain zeros in those
positions and nonzero (e.qg., uniform) vaues e sewhere.
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prior: optiond vector of hyperparameters for a Dirichlet prior distribution. The default is
auniform prior digtribution (al hyperparameters = 1) on the cdl probabilities, which will
result in maximum likelihood estimation. If structurd zeros appear in the table, a prior
should be supplied with "NA'sin those cells.

showits: if TRUE, reportsthe iterations of EM S0 the user can monitor the progress of the
dgorithm.

maxits:  maximum number of iterations performed. The dgorithm will stop if the parameter
dill has not converged after this many iterations.

eps:  convergence criterion. Thisis the largest proportiond change in an expected cdl count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cdll probability (1/number of non-structura zero cells) is set to zero during
the iterations.

This function returns aarray of dimension "s$d' containing the ML etimate or posterior mode,
assuming that EM has converged by "maxits iterations.

. ecm.cat(s, margins, start, prior=1, showits=T, maxits=1000, eps=0.0001)

Uses ECM dgorithm to find ML estimate or posterior mode of cell probabilities under a
congrained loglinear mode for incomplete categorica data. Thisis an iterative dgorithm. At eech
iteration, performs an E-step followed by asingle cycle of iterative proportiond fitting. If zero cell
counts occur in the observed-data tables, the maximum likelihood estimate may not be unique, and
the dgorithm may converge to different stationary vaues depending on the sarting vaue. Also, if
zero cdl counts occur in the observed-data tables, the ML estimate may lie on the boundary of the
parameter space. Supplying a prior with hyperparameters greater than one will give aunique
posterior mode in the interior of the parameter space. EStimated probabilities for structura zero
cdlswill dways be zero.

The arguments are:

S summary list of an incomplete categoricd datamatrix "X’ produced by the function
“prelim.cat’.

margins: optiond vector describing the sufficient configurations or marginsin the desired
loglinear model. A margin is described by the factors not summed over, and margins
are separated by zeros. Thus ¢(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and
(1,3) marginsin athree-way table; that is, the modd of no three-way association. The
integers 1,2,... in the specified margins correspond to the columns of the origind data
matrix “X'. If no margins are given, “ecm.cat’ performs EM for the saturated modd with
no loglinear congtraints, and the results will agree with those of ‘em.cat’.
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sart: optiond starting vaue of the parameter. Thisis an array with dimensions “s$d' whose
elements sum to one. The default starting value isauniform array (equa probabilitiesin
al cdls). If gtructurad zeros gppear in the table, "start’ should contain zeros in those
positions and nonzero (e.g., uniform) vaues e sewhere.

showits: if TRUE, reportsthe iterations of ECM s0 the user can monitor the progress of
the dgorithm.

maxits:  maximum number of iterations performed. The dgorithm will sop if the
parameter ill has not converged after this many iterations.

eps:  convergence criterion. Thisis the largest proportiond change in an expected cdl count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cdll probability(1/number of non-sructurd zero cdls) is set to zero during
the iterations.

prior: optiond vector of hyperparameters for a Dirichlet prior distribution. The default is
auniform prior digtribution (al hyperparameters = 1)on the cell probabilities, which will
result in maximum likelihood estimation. If structurd zeros appear in the table, a prior
should be supplied with "NA'sin those cells.

This function returns an array of dimension "s$d' containing the ML estimate or posterior mode,
assuming that ECM has converged by "maxits iterations.

. dacat(s, start, prior=0.5, steps=1, showits=F)

Uses Markov-Chain Monte Carlo method to simulate draws from the observed-data posterior
digtribution of underlying cell probakilities under a saturated multinomial mode. At eech iterations,
the missing data are randomly imputed under their predictive distribution given the observed data
and the current vaue of “thetd (I-step), and then anew vaue of “thetd is drawn from its Dirichlet
posterior distribution given the complete data (P-step). After a suitable number of steps are taken,
the resulting value of the parameter may be regarded as a random draw from its observed-data
posterior distribution.

This function is used in conjunction with “imp.cat' to create proper multiple imputations. It isvery
IMPORTANT that the random number generator seed must be set at least once by the function
“rngseed’ before this function can be used.

The arguments are:

S summary list of an incomplete categorica data set created by the function “prelim.cat’.

gart: darting vaue of the parameter. Thisisan array of cdll probabilities of dimension “sid,
such as one created by “em.cat'. If structural zeros gppear in the table, starting values
for those cdlls should be zero.



prior: optiona vector of hyperparameters specifying a Dirichlet prior distribution. The default
isthe Jeffreys prior (al hyperparameters =.5). If Structurd zeros appear in the table, a
prior should be supplied with hyperparameters set to "NA' for those cells.

steps: number of data augmentation steps to be taken. Each step congists of aimputation or
|-step followed by a posterior or P-step.

showits: if TRUE, reportsthe iterations so the user can monitor the progress of the
agorithm.

This function returns an array like “gart' containing smulated cdl probabilities.
. mda.cat(s, start, steps=1, prior=0.5, showits=F)

Uses Markov-Chain Monte Carlo method to simulate draws from the observed-data posterior
digtribution of underlying cell probabilities under a saturated multinomia mode. At each iteration,
the missing data are randomly imputed under their predictive distribution given the observed data
and the current value of “thetd (I-step). Unlike "da.cat’, however, not al of the missing data are
filled in, but only enough to complete a monotone pattern. Then anew vaue of “thetd is drawn
from its Dirichlet posterior distribution given the monotone data (P-step). After a suitable number of
steps are taken, the resulting value of the parameter may be regarded as arandom draw from its
observed-data posterior distribution. For good performance, the variablesin the origina data
matrix "X' (which is used to creste 'S) should be ordered according to their rates of missngness
from most observed (in the first columns) to least observed (in the last columns). This function is
supposed to converge more quickly than “da.cat’ when the pattern of observed datais nearly
monotone.

This function may be used in conjunction with “imp.cat’ to create “proper” multiple imputations. It is
very IMPORTANT that the random number generator seed must be set at least once by the
function “rngseed’ before this function can be used.

Thearguments are;

S summary list of an incomplete categorica data set created by the function “prelim.cat’.

gart: darting vaue of the parameter. Thisisan array of cdll probabilities of dimension “s$d,
such as one created by “em.cat'. If structural zeros gppear in the table, starting values
for those cdlls should be zero.

steps: number of data augmentation steps to be taken. Each step consists of an imputation or
|-step followed by a posterior or P-step.

prior: optiona vector of hyperparameters specifying a Dirichlet prior distribution. The default
isthe Jeffreys prior (al hyperparameters =.5). If structurd zeros appear in the table, a
prior should be supplied with hyperparameters set to "NA' for those cells.

55



showits: if TRUE, reports the iterations so the user can monitor the progress of the
dgorithm.

This function returns an array like "sart’ containing smulated cell probabilities.
. dabipf.cat (s, margins, theta, steps=1, prior=0.5, showits=F)

Performs data augmentation/Bayesian | PF agorithms. Produces anew draw of parameter
edimates viaan iterative Smulation gpproach. At eech iteration, the missng data are randomly
imputed under their predictive distribution given the observed data and the current vaue of “theta
(I-step), and then anew vaue of “theta is drawn through Bayesian | PF agorithm (P-step).

The random number generator seed must be set at least once by the function “rngseed’ before this
function can be used.

The arguments are:

S summary ligt of an incomplete categorica datamatrix "X’ produced by the function
“prelim.cat’.

margins: vector describing the sufficient configurations or marginsin the desired loglinear
model. A margin is described by the factors not summed over, and margins are
separated by zeros. Thus ¢(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and (1,3)
margins in athree-way table; that is, the modd of no three-way association. The
integers 1,2,... in the specified margins correspond to the columns of the origind data
matrix "X'. The same“margins’ asin the function “ecm.cat” should be used if the
parameter estimate generated by “ecm.cat” is used as the starting value for “theta’.

theta: garting vaue of the parameter. Thisisan array of cdl probabilities of dimension "s$d,
such as one created by “ecm.cat'.

steps: number of data augmentation steps to be taken. Each step congists of an imputation or
|-step followed by a cycle of Bayesian |PF or P-step.

prior: optiona vector of hyperparameters specifying a Dirichlet prior distribution. The default
isthe Jeffreys prior (al hyperparameters =.5). If Structurd zeros appear in the table, a
prior should be supplied with hyperparameters set to "NA' for those cells.

showits: if TRUE, reports the iterations so the user can monitor the progress of the adgorithm.

. ipf(table, margins, start, eps=0.0001, maxits=50, showits=T)
Finds ML egtimation for hierarchica loglinear models via iterative proportiond fitting. Thisfunction

is essentialy the same asthe S-PLUS internd function “loglin', but results are computed to double
precision. See "hep(loglin)’ for more details.

56



The arlguments are:

table: contingency table (array) to befit by alog-linear mode. All dements must be
non-negative.

margins: vector describing the margina totals to be fit. A margin is described by the factors
not summed over, and margins are separated by zeros. Thus ¢(1,2,0,2,3,0,1,3) would

indicate fitting the (1,2), (2,3), and (1,3) marginsin athree-way table; that is, the

model of no three-way association.

gart: darting vauefor ipf agorithm. The default isauniform table. If structurd zeros appear
in table, "dart’ should contain zerosin those cells and ones e sawhere.

eps:  convergence criterion. Thisis the largest proportiond change in an expected cdl count
from one iteration to the next. Any expected cell count that drops below 1E-07 times
the average cdll probability (1/number of non-structura zero cells) is set to zero during
the iterations.

maxits:  maximum number of iterations performed. The dgorithm will stop if the parameter
dill has not converged after this many iterations.

showits: if TRUE, reports the iterations of |PF so the user can monitor the progress of the
dgorithm.

This function returns an array like “tabl€, but containing fitted values under the loglinear modd. The
sum of the elements of thisarray equas “sum(table)'.

10. bayesipf(table, margins, start, steps=1, showits=F)

Simulates parameter estimates of cdl probabilities via Bayesan iterative proportiond fitting. This
function performs stochagtic relaxation on the expected cell counts of a contingency table under a
loglinear modd. Given a garting vaue, it cyces through the sufficient configurations, performing the
Bayesan |PF dgorithm (Gelman and Rubin, 1991). After alarge number of steps, the resulting
table of counts gpproximates adraw from its posterior distribution under a Dirichlet prior subject to
the loglinear condraints.

The random number generator seed must be set at least once by the function “rngseed’ before this
function can be used. The sarting value should lie in the interior of the parameter space. Hence,
caution should be used when using amaximum likelihood estimete (e.g., from “ipf’) asagarting
vaue. Random zeros in atable may produce MLE' swith expected cdll counts of zero, and any
zero in agarting vaueisinterpreted by "bayespf' as a structurd zero. This difficulty can be
overcome by using as a starting vaue caculated by “ipf' after adding a small positive prior count
(e.g., 1/2) to each cdl.
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11.

The arlguments are:

table: contingency table (array) containing cell countstprior counts. All dements should be
positive, except for structurd zeros, which should be zero.

margins: vector describing the sufficient configurations or margins in the desired loglinear
mode. A margin is described by the factors not summed over, and margins are
Separated by zeros. Thus ¢(1,2,0,2,3,0,1,3) would indicate the (1,2), (2,3), and (1,3)
margins in athree-way table; that is, the mode of no three-way association.

gart: darting vaue for the dgorithm. If structura zeros gppear in “table, “sart’ should
contain zeros in the same positions. Otherwise, “dart’ should liein theinterior of the
parameter space. The default is auniform array with zeros corresponding to the zerosin
“table.

steps: number of complete cycles of Bayesan ipf to be performed.

showits: if TRUE, reportsthe iterations so that the user can monitor the progress of the
agorithm.

This function returns an array like the argument “table,” but containing smulated expected cdll
counts.

imp.cat(s, theta)

Performs single random imputation of missing vauesin a categorica data set under a user-supplied
vaue of the underlying cell probabilities. It is very IMPORTANT that the random number
generator seed must be set by the function “rngseed’ at least once in the current session before this
function can be used.

The two required arguments are;

S summary list of an incomplete categorica data set created by the function “prelim.cat’.
theta: parameter vaue under which the missing dataare to be imputed. Thisisan array of
cdl probahilities of dimension “s$d' whose e ements sum to one, such as produced by
‘em.cat’, ‘ecm.cat’, "da.cat’, ‘mda.cat’ or "dabipf'.
This function returns an imputed complete data s&t. If the origina incomplete data set wasin
ungrouped format ("s$grouped=F), then is returns amatrix like "sPx' except that dl "NA's have
beenfilled in. If the origind data set was grouped, then it returns alist with the following
components.

X: Matrix of levelsfor categoricd varidbles

58



counts:  vector of length “nrow(x)' containing frequencies or counts corresponding to the
levelsin 'X.

12. getparam.cat(s, theta)
Convert the sorted parameter vector to an array, which is easier to read.
The two required arguments are:
S summary list of an incomplete categorica data matrix "X’ created by the function
“prelim.cat’.
theta: parameter vector in sorted order, such as one produced by the function’ecm.cat'.

This function returns an array of cdll probabilities whose dimensions correspond to the columns of
the categoricd data matrix $x$. The dimension is c(max(x[,1]),max(x[,2]),...)"-

13. makeparam.cat(s, theta)
Does the opposdite of “getparam.cat”—Convert parameter array to sorted vector
The two arguments are:
S summary ligt of an incomplete categorica data matrix "X’ created by the function
“prelim.cat’.
theta: array of cdl probabilities or expected frequencies whose dimensions correspond to
the columns of the categorica data matrix $x$. The dimension should be
“c(max(x[,1]),max(x[,2]),...)".

This function returns a vector in sorted order, suitable for use as a garting vaue or prior for
“dacat’, 'mda.cat’, and "dabipf'.

14. g2.cat(s, theta)
Calculates G statigtic for incomplete categoricd data
The two required arguments are:
S summary list of an incomplete categorical data matrix "X’ created by the function

“prelim.cat’.
theta: parameter vector in sorted order, such as one produced by the function “ecm.cat'.
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This function returns the value of the G likelihood ratio goodness of fit statistic associated with
“theta. When “thetd is the maximum likelihood estimate under the saturated modd, this provides a
test for the missing data being missng completely a random (MCAR), and provides a standard for
testing the sgnificance of models with loglinear congraints.

15. logpost.cat(s, theta, prior)
Calculates the observed-data loglikelihood or log-posterior dengity for incomplete categorical data
under a specified vaue of the underlying cell probabilities; for example, as resulting from em.cat or
ecm.cat.
The arguments are:
S summary list of an incomplete categorica data set created by the function “prelim.cat’.
theta: an array of cdl probabilities of dimension “s$d'
prior: optionda vector of hyperparameters for a Dirichlet prior distribution. The default isa
uniform prior digtribution (al hyperparameters = 1) on the cdl probahilities, which will
result in evauation of the loglikdlihood. If structural zeros appear in the table, aprior

should be supplied with NAsin those cdlls and ones (or other hyperparameters)
elsawhere.

This function returns the vaue of the observed-data loglikelihood or log-posterior dengtyfunction at
‘thetd. Thisisthe loglikelihood or log-posterior density that ignores the missing-data mechanism.

16. loglik.cat(s, theta)
Cdculates loglikelihood for incomplete categorica data
The arguments are:
S summary ligt of an incomplete categorica data matrix "X’ created by the function
“prelim.cat’.
theta: parameter vector in sorted order, such as one produced by the function’ecm.cat'.

The function returns the vaue of the loglikelihood function at “thetd.
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17. mi.inference(est, std.err, confidence=0.95)

Performs multiple imputation inference. Uses the method described on pp. 76-77 of Rubin  (1987)
for combining estimates and standard errors from m complete-data analyses performed on m
imputed data sets to produce a single inference for ascalar estimand. Significance levels and
interval estimates are gpproximately valid for each one-dimensiond estimand, not for dl of them
jointly.

The arguments are:

est: aligt of $m$ (at least 2) vectors representing estimates (e.g., vectors of estimated
regression coefficients) from complete-data anayses performed on $m$ imputed
data sets.

sd.err:  alig of $m$ vectors containing standard errors from the complete-data analyses
corresponding to the estimatesin “est'.

confidence:  desired coverage of interva estimates.

Thisfunction returns alist with the following components, each of which is a vector of the same
length as the components of “est' and “std.err”:

est: the average of the complete-data estimates.
sd.err:  sandard errorsincorporating both the between and the within-imputation
uncertainty (the square root of the "totd variance”).

df: degrees of freedom associated with the t reference distribution used for interval
estimates.

signif: P-vauesfor the two-tailed hypothesis tests that the estimated quantities are equa
to zero.

lower: lower limits of the (100* confidence)% interva estimates.

upper: upper limits of the (100* confidence)% interva estimates.

r: estimated relative increases in variance due to nonresponse.

fminf: edimated fractions of missing information.
18. rngseed(seed)
Initializes random number generator seed. The argument “seed” should be a positive number,
preferably alarge integer. Thisfunction must be caled at least once to set the random generator

seed before the smulation or imputation functionsin this package, such as“dacat”, “mdacat”,
“dabipf.cat”, “imp.cat”, etc, can be used.
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Appendix I11: Nine S-PLUS Functionsfor Mixed Variables
in Schafer’s Multiple Imputation Software

1. preim.mix(x,p)

Performs priminary data manipulations for x—a meatrix of incomplete mixed data. The continuous
variableswill be centered, scaed, and sorted by missingness patterns and the categorical variables
will be grouped and sorted. It returns alist of objects that summarizes various features of the
incomplete data matrix. The list will be usad by functions em.mix, ecm.mix, damix, imp.mix, &c.

The arguments are:

X: data matrix containing missing values. The rows of x correspond to observationd units,
and the columns to variables. Missing values are denoted by NA. The categorica
variables must bein the leftmost rows of x, and they must be coded with consecutive
positive integers starting with 1. For example, abinary variable must be coded as 1, 2
rather than 0,1.

p: number of categoricd varigblesin “X”.

Thisfunction returns alist of twenty-nine components that summarize various festures of x after the
data have been collapsed, centered, scaled, and sorted by missingness patterns. Components that
might be of interest to the user include:

nmis. avector of length ncol(x) containing the number of missing vaues for each varidblein x.

r: matrix of response indicators showing the missing data patterns in x. Observed vaues
are indicated by 1 and missing vaues by 0. The row names give the number of
observations in each pattern, and the columns correspond to the columns of x.

d: vector of length p indicating the number of levels for each categoricd variable.

ncells: number of cdlsin the cross-classified contingency table, equa to “prod(d)'.

2. em.mix(s, start, prior=1, maxits=1000, showits=T)

Finds the ML estimate for incomplete mixed data under a unrestricted genera location model
through EM dgorithm. If zero cdl counts occur in the complete-data table, the maximum likelihood
edimate may not be unique, and the agorithm may converge to different Sationary vaues
depending on the starting value. Also, if zero cell counts occur in the complete-data teble, the MLE
may lie on the boundary of the parameter space. Setting the prior counts greater than one will give a
unique pogterior mode in the interior of the parameter space.
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The arlguments are:

S summary ligt of an incomplete data matrix produced by the function “prelim.mix’.

gart: optiond garting vaue of the parameter. Thisis a parameter list in packed storage,
such as one returned by this function or by “damix'. If structural zeros gppeer in the
contingency table, "start$pi' should contain zeros in those positions and ones elsewhere.
If no starting valueis supplied, "em.mix' regards dl zeros as random zeros and chooses
its own gppropriate starting value.

prior: Optiona vector or array of hyperparameter(s) for a Dirichlet prior distribution. By
default, uses auniform prior on the cell probabilities. EM agorithm finds the posterior
mode, which under a uniform prior is the same as amaximum-likelihood estimate. If
structural zeros appear in the table, prior counts for these cells should be set to one.

maxits:  maximum number of iterations performed. The dgorithm will stop if the parameter
dill has not converged after this many iterations.

showits: if TRUE, reportsthe iterations of EM so the user can monitor the progress of the
dgorithm.

Thisfunction returns alist representing the maximum-likelihood estimates (or posterior mode) of the
norma parameters. Thislist contains cell probabilities, call means, and covariances. The parameter
can be transformed back to the origina scale and put into a more understandable format by the
function ‘ getparam.mix’.

. ecm.mix(smar gins,design,start,prior =1,maxits=1000,showits=T)

Finds the ML estimate for incomplete mixed data under a unrestricted generd location model
through EM dgorithm. If zero cdl counts occur in the complete-data table, the maximum likelihood
esimate may not be unique, and the agorithm may converge to different sationary vaues
depending on the starting value. Also, if zero cell counts occur in the complete-data table, the MLE
may lie on the boundary of the parameter gpace. Setting the prior counts greater than one will give a
unique posterior mode in the interior of the parameter space.

The arguments are:

S summary list of an incomplete data matrix X' produced by the function “prelim.mix’.

margins: vector describing the sufficient configurations or margins in the desired loglinear
model. The variables are ordered in the origind order of the columns of “x', so that 1
refersto "x[,1]', 2 refersto "x[,2]', and so on. A margin is described by the factors not
summed over, and margins are separated by zeros. Thus ¢(1,2,0,2,3,0,1,3) would
indicate the (1,2), (2,3), and (1,3) marginsin athree-way table; that is, the modd of no



three-way association. See dso the “loglin' function, which specifies margins in the same
manner.

design: design matrix specifying the relaionship of the continuous variables to the categorica
ones. Thedimensionis “¢(D,r)' where $D$ is the number of cdlsin the contingency
table, and $r$ is the number of effects which must be less than or equd to $D$. The
order of the rows corresponds to the storage order of the cell probabilitiesin the
contingency table; see “getparam.mix’ for details.

gart: optiond darting value of the parameter. Thisisalist such as one created by "em.mix’. If
structural zeros appear in the table, "start$pi' should contain zeros in those postions and
ones dsawhere. If no starting value is supplied, ‘em.mix’ regards al zeros as random
zeros and chooses its own gppropriate starting value.

prior: Optiona vector or array of hyperparameter(s) for a Dirichlet prior distribution. By
default, uses a uniform prior on the cell probabilities. ECM finds the posterior mode,
which under a uniform prior is the same as a maximum-likelihood esimate. If structurd
zeros gppear in the table, prior counts for these cells should be et to one.

maxits: maximum number of iterations performed. The dgorithm will stop if the parameter Hill
has not converged after this many iterations.

showits: if TRUE, reports theiterations of ECM so the user can monitor the progress of the
agorithm.

This function returns a list representing the maximum likelihood estimates or posterior modes of the
cdl probabilities, within means and variance-covariances under a restricted generd location model.
This parameter can be put into a more understandable format by the function “getparam.mix'.

. damix(s, theta, steps=1, prior=1.5, showits=F)

Performs data augmentation for the generd location mode without retrictions. Given agtarting
vaue, it Smulates arandom walk through the posterior distribution of the parameter. At each step,
missing data are randomly imputed under the current parameter (I-step), and a new parameter
vaueis drawn from its posterior distribution given the completed data (P-step). After a suitable
number of steps are taken, the resulting vaue of the parameter may be regarded as arandom draw
from its incomplete-data posterior distribution.

For gtructura zeros, both the sarting vaue and the prior counts must be set to zero. A suitable
garting vaue is atable with zeros corresponding to structurd zeros, and ones e sawhere. Suitable
darting values may aso be obtained from "em.mix’. The garting vaue should lie in the interior of the
parameter space. Hence, caution should be used when using a maximum likelihood estimate (e.g.,
from "'em.mix’) as a garting value. Random zeros in the compl ete-data table may produce MLE's
on the boundary of the parameter space. This difficulty can be overcome by applying “em.mix’ with
prior counts greater than one, ensuring amode in the interior.
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The arlguments are:

S summary ligt of an incomplete data matrix cregted by the function “preim.mix..

theta: darting vaue of the parameter. Thisis a parameter list such as one created by the
function "em.mix’.

steps: number of data augmentation steps to be taken.

prior: Optiona vector or array of hyperparameter(s) for aDirichlet prior distribution. The
default isaDirichlet prior with dl prior counts= .5. If Structura zeros appear in the
table, prior counts for these cells should be st to zero.

showits: if "TRUE, reports the iterations so the user can monitor the progress of the
agorithm.

Thisfunction returns alist containing new parameter estimate. The parameter can be put into a
more understandable format by the function “getparam.mix..

5. imp.mix(s, theta, x)

Imputes missing data under the unrestricted genera location model with user-supplied vaues of
parameter. The random number generator seed must be sat at least once by the function “rngseed'
before this function can be used.

The arguments are:

S summary list of an incomplete data matrix “x' created by the function “prelim.mix..

theta: vaue of the parameter under which the missng data are to be randomly imputed. This
isaparameter list such as one crested by "em.mix’ or "damix’.

X: the origind data matrix used to creste the summary list °s. If this argument is not
supplied, then the data matrix returned by this function may disagree dightly with the
observed vauesin "X' due to rounding errors.

This function returns amatrix of the same form as "X, but with dl missng vauesfilled in with
smulated vaues drawn from their predictive digtribution given the observed data and the specified
parameter.

6. dabipf.mix(s, margins, design, theta, steps=1, prior=1.5, showits=F)
Performs data augmentation/Bayesian | PF agorithm for the generd location modd with restrictions.
Given adarting vaue, it smulates arandom wak through the posterior ditribution of the

parameter. At each step, missing data are randomly imputed under the current parameter (I-step),
and anew parameter vaue is drawn via Bayesian | PF algorithm given the completed data. After a
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suitable number of steps are taken, the resulting vaue of the parameter may be regarded asa
random draw from its incomplete-data posterior distribution.

For gtructura zeros, both the sarting vaue and the prior counts must be set to zero. A suitable
garting vaue is a table with zeros corresponding to structurd zeros, and ones e sawhere. Suitable
darting values may dso be obtained from “ecm.mix’. The Sarting vaue should lie in the interior of
the parameter space. Hence, caution should be used when using a maximum likelihood estimate
(e.g., from "ecm.mix’) as a garting vaue. Random zeros in the complete-data table may produce
MLE's on the boundary of the parameter pace. This difficulty can be overcome by applying
“ecm.mix’ with prior counts greater than one, ensuring amode in the interior.

The arguments are:

S summary lig of an incomplete data matrix created by the function “prim.mix’.

margins: vector describing the sufficient configurations or margins in the desired loglinear
model. The variables are ordered in the origind order of the columns of “x', sothat 1
refersto "x[,1]', 2 refersto "x[,2]', and so on. A margin is described by the factors not
summed over, and margins are separated by zeros. Thus ¢(1,2, 0,2,3,0,1,3) would
indicate the (1,2), (2,3), and (1,3) marginsin athree-way table; that is, the modd of no
three-way association. See dso the “loglin' function, which specifies marginsin the same
manner.

design: design matrix specifying the relaionship of the continuous variables to the categorica
ones. Thedimengionis '¢(D,r)' where $D$ is the number of cdlsin the contingency
table, and $r$ is the number of effects which must be less than or equd to $D$. The
order of the rows corresponds to the storage order of the cell probabilitiesin the
contingency table; see "getparam.mix’ for details.

theta: darting value of the parameter. Thisis a parameter list such as one created by the
function ‘ecm.mix.

steps: number of data augmentatiorn/Bayesan |PF steps to be taken.

prior: Optiona vector or array of hyperparameter(s) for aDirichlet prior distribution. The
default isaDirichlet prior with dl prior counts= .5. If Structura zeros appear in the
table, prior counts for these cells should be st to zero.

showits: if TRUE, reports theiterations so the user can monitor the progress of the
agorithm.

Thisfunction returns alist containing new parameter estimates. The parameter can be put into a
more understandable format by the function “getparam.mix’.

67



7. getparam.mix(s, theta, corr=F)

Presents parameters of generd location model in an understandable format

The parameters are:

S:
theta:
corr:

summary ligt of an incomplete norma data matrix cregted by the function “prelim.mix'.
list of parameters such as one produced by the function "em.mix..

if TFALSE, returnsalist containing an array of cell probabilities, amatrix of cell means,
and avariance-covariance matrix. If "TRUE, returnsalist containing an array of cdll
probabilities, amatrix of cell means, a vector of standard deviations, and a correlation
metrix.

If “corr=F, the function returns alist containing parameter estimates of cell probabilities, call means
and variance-covariances, if “corr=T", it returns alist containing parameter estimates of cell
probabilities, call means, standard deviations and correlation matrix. The list contains the following
components.

pi:

mu:

sgma:
sdv:

array of cell probabilities whose dimensions correspond to the columns of the
categorica part of $x$. The dimension is “c(max(x[,1]),max(x[,2]),....,max(x[,p]))'
where $p$ is the number of categorical varigbles.

Matrix of cell means. The dimension is “¢(g,D)' where $g% is the number of
continuous varidblesin $x$, and $D$ is length(pi)'. The order of the rows,
corresponding to the eements of “pi', is the same order we would get by vectorizing
pi', asin “as.vector(pi)'; it isthe usua lexicographic order used by S and Fortran, with
the subscript corresponding to "x[,1]' varying the fastest, and the subscript
corresponding to X[ ,p]' varying the dowest.

matrix of variances and covariances corresponding to the continuous variablesin “X..
vector of standard deviations corresponding to the continuous varigblesin "X
matrix of correlations corresponding to the continuous variablesin "X'.
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8.

loglik.mix(s, theta)
Cdculates loglikelihood for incomplete data under the generd location model
The arguments are:

S summary ligt of an incomplete data matrix “x' created by the function “preim.mix’.
theta: parameter list, such as one produced by “ecm.mix’ or “damix..

This function returns the vaue of the loglikelihood function at “thetd.

r ngseed(seed)

Initidlizes random number generator seed. The argument “seed” should be a positive number,
preferably alarge integer. Thisfunction must be caled at least once to set the random generator

seed before the smulation or imputation functionsin this package, such as“dacat”, “mda.ca”,
“dabipf.cat”, “imp.cat”, etc., can be used.
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Appendix V. Imputations by NCES, Schafer's Software, and Proc Impute
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= B
GO R RO

Impute

10.21
5.67
10
23

2
13
4

8

12
11

6

9

[EEN
w

15
1

10

71

#1

10.221
5.662
10

23

7

13

4

8

12

11

6

9

&

onvbBuouvwvoRoomo onons

15
11

10

#2

10.22
5.656

[ B
GO R RO

Impute

10.217
5.659
10

23

7
13
4
8
12
11
6
9

=
w

15
11

10

Birth
Year

NCES Schafer Schafer Proc

Impute

#1

#2

Impute

4292 42900 42895 42907 42.801

711
114
43
41
39
48
a7

29
46
43
49
49

49
39

GEERRLLBRELEY

7.125

43
41
39
48
47
29
46
43
49
49
49

GEERRLEBRELRY

7.118
43
41
39

G HEE5BRILIEEBREIRY

7111

43
41
39
48
47

B85 53

RBLR

58588988

7.127
43
41
39
48
47

29
46
43
49
49

49
39

GEERRLELBRELEY



31

BLELRRY

39

4

FRBIJILBBLILIERHLY

Degree  NCES Schafer Schafer Proc

BS/BA

Impute
66
78
69

59
67

72

69
72
76
73

RAGIRRY

838886

67

47

#1

62
76
74
%
62
69
69
74
58
67
61
70
68
72

62
55
68
72

#2

64
7
71

RIE

70
62
57
67
71
72

75

67
67
7

73
71
51

BEIRE

62
51

Impute
64
7
67

67

72
62

67

62
69
71
57
76
67
67

76
70
7

EEBISFTELD

Teaching NCES Schafer Schafer Proc

Exper.

3
10
11
18

8
10

7
17
20
15

5

6

4
14

6
14
13
13

9

4
11
21

Impute
3
10
1
18
8
10
7
17
20
15
5
6
4
14
6
14
13
13
9
4
11
21

72

#1
3
10
11

robBbRoRroutBR B ob

868

10
15

#2
3
10
11
18
8
10
7
17
20
15
5
6
4
14
6
14
13
13
9
4
11
21

Impute

3
10
11
18
8
10
7
17
20
15
5
6
4
14
6
14
13
13
9
4
11
21

Birth

Year

24
56
47
32
38
47

43
a7

W
QA

GR2R8BLE

S

REHEELLRER/SIZLR

NCES Schafer Schafer Proc

Impute
a4
56
a7
32
38
a7
43
a7

w b~
[ gy

GR2R8BLE

S

REHEELLLER/SIZLR

#1

14
56
47
32
38
47
43
47
37

RERBEBEG

GEHRBLE

S

REGELLRERIIZLR

#2

44
56
47
32
38
47
43
47

w b~
[

G2RERE

S

REEGELLELERIIZLR

Impute
a4
56
a7
32
33
47
43
a7

W
QA

GR2R8LE

S

REHEELLRR/SIZLR



67

69
70
71
72
73
74
75
76

EBBIBRRXIVRBI I

92
93

9%

8S88LY

1
101

Degree  NCES Schafer Schafer Proc

BS/BA

Impute
75
59
76

74
69
59
62
63

49
69
71
69
56
62

72
72
69

REIIBI2G

#1

76
62
7

73

72
71
67
59
67
70

70
62
67

#2

78
67
73
61
68
62

62

57
59
69

SRR

69

71
78

SR

71

72
61
62

Impute
76
60
75
57
70
74

71
64

R R

73
67
51
61
82
49

70
71

3L

69
70
67
57

Teaching NCES Schafer Schafer Proc

Exper. Impute #1 #2 Impute
3 3 3 3 3
4 4 4 4 4

14 14 14 14 14
13 13 13 13 13
10 10 10 10 10
22 22 22 22 22
5 5 5 5 5
9 9 9 9

3 3 3 3 3
15 15 15 15 15
10 10 10 10 10
13 13 13 13 13
6 6 6 6 6
3 3 3 3 3
9 9 9 9 9
4 4 4 4 4
0 0 0 0 0
7 7 7 7 7
9 9 9 9 9
13 13 13 13 13
7 7 7 7 7
15 15 15 15 15
21 21 21 21 21
17 17 17 17 17
6 6 6 6 6
9 9 9 9 9
7 7 7 7 7
3 3 3 3 3
10 10 10 10 10
12 12 12 12 12
12 12 12 12 12
10 10 10 10 10
21 21 21 21 21
3 3 3 3 3
17 17 17 17 17
7 7 7 7 7

73

Birth

Year

53
37
54
35
47

37
40
41
27
47
40
47

NCES Schafer Schafer Proc

Impute
53
37
54
35
47

37
40
41
27
47
40
47

SBALABRLRBEGHRBINSEBREESR

SRS

#1

53
37
54
35
47

37
40
41
27
47
40
47

588

BSRESNLIBEIEEHSRBINEBRE

#2

53
37
4
35
47

37
40
41
27
47
40
47

RREESR

BSRESVNLIBRIBEHBREBINEGS

Impute
53
37
54
35
47

37
40
41
27
47
40
47

SBALABRLRBESGFHRBINSEBREESR

SRS



102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119

121

123
124
125
126
127
128

130
131
132
133
134
135
136
137

Degree  NCES Schafer Schafer Proc

BS/BA

74

75

Impute
61

61
68

IBBLIELR

2 &3

61
62

BRGEBELBINIGETAIB33

#1

63
67
74
52

PRI RBBAEIFIINIEIBERS

78
61
62
49
74

69
75

#2

63
64
68
56
69
68

Impute
62
60
70
57
75
67

I8

NRAR-Y

72
49
62

67
73
70

59

L3333

71

59
74

75

Teaching NCES Schafer Schafer Proc

Exper.
16
12
13

3
15
7
19
5
6
5
9
14
3
6
11
8
19
9
15
9
25
17
10
6
5
6
10
0
10
15

O O w

Impute
16
12
13

3
15
7
19
5
6
5
9
14
3
6
1
8
19
9
15
9
25
17
10
6
5
6
10
0
10
15
3
0
0
10
0
14

74

#1
16
12
13
3
15
7
19
5
6
5
9
14
3
6
11
8
19
9
15
9
25
17
10
6
5
6
10
0
10
15
3
0
0
14
13
11

#2
16
12
13
3
15
7
19
5
6
5
9
14
3
6
11
8
19
9
15
9
25
17
10
6
5
6
10
0
10

Impute
16
12
13
3
15
7
19
5
6
5
9
14
3
6
1
8
19
9
15
9
25
17
10
6
5
6
10
0
10
15
3
0
0
13
18
15

Birth
Year
39

39
46
A
51

42
31
37
56
32
36

CRBIERRREBLEGESELEEEEEB88BIAA

AJEN

39
39
46
A
51
42
31
37
56

BERRRELLEGELEELEELEBITEER

&8

#1

39
39
46
A
51

42
31
37
56
32
36

B

TATVRERBRRELEEELEBE5EE5B88RBIH

#2

CRIERRRELEGEESEEBEEEB8BE8RBIZEY

IS

NCES Schafer Schafer Proc
Impute

Impute
39

39
46
A
51

42
31
37
56
32
36
41

TRVIERRRELEGEEEBEEEB88RBLE

AJEN



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
14
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Degree  NCES Schafer Schafer Proc

BS/BA
69
74
74

71
63
60
57
64

57
70
71
60
62
72
80
70
67
66
73
70
70

483K

&3

Impute
69
74
74

71
63
60
57
64

57
70
71
60
62
72
80
70
67
66
73
70
70

483 &

&3

#1

69
74
74

71
63
60
57
64

57
70
71
60
62
72
80
70
67
66
73
70
70

488K

&3

#2

69
74
74

71
63
60
57
64

57
70
71
60
62
72
80
70
67
66
73
70
70

GREB

71

62

&3

Impute
69
74
74

71
63
60
57
64

57
70
71
60
62
72
80
70
67
66
73
70
70

&3

Teaching NCES Schafer Schafer Proc

Exper. Impute

=
o~

13

s
[62 SN

&R G

GEE38R ok

8LHOI\)QLOO

75

#1

K o

SN

11
16
11
17
13
10
10
16
18

14

8o

#2

6
19

9
13
15
11
17
10
14

9

(o]

Impute

R o

w

19
14
10

14
17
10

18
19

Birth

Year

BERERELNRERNEGEHEILEHEEEBNREER/IREBELER

NCES Schafer Schafer Proc

Impute

BERERER

#1

SREOXNRENEGEHEILEGEHEEEBRNREERIREBELER

88K

#2

SEANREEEBENRES5B/REEEELE R

BERSERLELNREREES

Impute

REGEEENDHEEEBENRESEBIREEELE L

BERKERHELNES



174
175
176
177
178
179
180
181
182
183
184
185
186
187

Degree  NCES Schafer Schafer Proc

BS/BA
68
62

ERNANBBBEBBEBNBRIERBHA

71

78
59
67

52

57
57

73
70
71
72

Impute
68
62
71

ERFARBBBEIIEBIBRERB

71

78
59
67

52

57
57

73
70
71
72
69

#1

68
62
71
69
64
59
62
69
72
80
59

69

71
72
59
71

78
59
67

52
59
57
57

73
70
71
72
69

#2

68
62
71
69
64
59
62
69
72
80
59

69

71
72
59
71

78
59
67

52
59
57
57

73
70
71
72
69

Impute
68
62

ERANBBBEBBEBNBIERB N

71

78
59
67

52

57
57

73
70
71
72

Teaching NCES Schafer Schafer Proc

Exper. Impute
10
19
12
10
10
13
16
16

8
14
19

0
21

OU'IK‘)

17
16

76

#1

2
14
15
12
18
10
18

womd R BRooRlRomRokbE

23
13

ER&GG

#2
7
13
11
6
16
14
9
9
13
11
21
8
11
5
5
11
19
15
17
16
11
14
10
15
19
4
7
11
19
14
4
16
9
14
7
12

Impute

oO~NbdO N

00 O NN W

17
17

17

Birth

Year

42
40
49
47
41
34
41
46
47
57
32
40
37
29
a7
a7
47
49
46
37

a7
35
4
37
41

B R &

&8

NCES Schafer Schafer Proc

Impute
12
40
49
47
41
A
41
46
a7
57
32
40
37
29
a7
a7
a7
49
46
37

a7
35
4
37
41

B R &

8868

#1

42
40
49
47
41
A
41
46
47
57
32
40
37
29
47
47
47
49
46
37

47
35
4
37
41

8 R &

&8

#2

4?2
40
49
47
41
A
41
46
47
57
32
40
37
29
a7
a7
47
49
46
37

a7
35
4
37
41

B8R &

S8

Impute
12
40
49
47
41
A
1
416
a7
57
32
40
37
29
a7
a7
a7
49
46
37

a7
35
4
37
41

B R &

8868



210
211
212
213
214
215
216
217
218
219

221

223
224
225
226
227
228

230
231

BHEBEE

237
238
239
240
241
242
243
244
245

Degree  NCES Schafer Schafer Proc

BS/BA
62
73
61

72
75
68
70
78
62
64
72
67
60
69
70

62
62
61

FEAIRGS B

72

57

Impute
62
73
61
60
72
75
63
70
78
62
64
72
67
60
69
70

62
62
61

FE8AIRGSBR

72

57

#1

62
73
61
62
72
75
68
70
78
62
64
72
67
60
69
70

62
62
61

FEAIRRSBR

72

57

#2

62
73
61
64
72
I6)
68
70
78
62
64
72
67
60
69
70

62
62
61

FEHRIRBRB G

72

57

Impute
62
73
61
58
72
75
63
70
78
62
64
72
67
60
69
70

62
62
61

FEAIRRS B R

72

57

Teaching NCES Schafer Schafer Proc

Exper.

o~ OO

13

aoRBro

(0]

11
10

10

15

16

11

18

238K o

15

15

Impute

1
10

O~ OO NOO

13

oR8ro

0o

11
10
15
10

15
16
1

18

283K o

15

15

77

18
15

&

oo B &b

rH oG rBRobobbh

14
14
-3
19

o~ OO N

13

aoRBro

oo

11
10

10

15

16

11

18

238K o

15

15

Impute

o

11
10
15
10

15
16
11

18

28K o

15

15

Birth

Year

40
52
38
38

NCES Schafer Schafer Proc

Impute
40
52

GRBEE58BE55RARRNERLEBEEHERABE

888 85

G&aLA

#1

ARBLEEE8REREDELERS

BERBRAEEXL

EEERREBEELBE G

#2

BERREZHBLEIS

BRIEBBLILNBRISBBBBEERENEER

Impute

40
52
38

& & &

KRE8BIRIEEHBEIHBS

49

88

RRE8

51
41



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Degree  NCES Schafer Schafer Proc

BS/BA
69
55

838

33

FIBEIRNLBBER

69

75
75

53888

70

75
49

7

Impute

69
55

EBRIBINIBBEBIB3RG

538884

70

75
49

79

#1

69
55

g3

FIBEIRNLBBEI IS

69

75
75

53888

70

75
49

79

#2

69
55

F3IRINLBBEZI33

69

75
75

53888

70

75
49

7

Impute

69
55

FIBEIRLBBER

69

75
75

53888

70

75
49

7

Teaching NCES Schafer Schafer Proc

Exper. Impute #1 #2 Impute
5 5 5 5 5
6 6 6 6 6

11 1 11 11 11
8 8 8 8 8
9 9 9 9 9

18 18 18 18 18

14 14 14 14 14
7 7 7 7 7
8 8 8 8 8
5 5 5 5 5
4 4 4 4 4
8 8 8 8 8
7 7 7 7 7
7 7 7 7 7
9 9 9 9 9

13 13 13 13 13

18 18 18 18 18
0 0 0 0 0

15 15 15 15 15

21 21 21 21 21

21 21 21 21 21

18 18 18 18 18

11 1 11 11 1

13 13 13 13 13
7 7 7 7 7

17 17 17 17 17

11 1 11 11 11

14 14 14 14 14
7 7 7 7 7

20 20 20 20 20
7 7 7 7 7

13 13 13 13 13

23 23 23 23 23
2 2 2 2 2
8 8 8 8 8
5 5 5 5 5

78

Birth
Year

NCES Schafer Schafer Proc

Impute
45
33
43
42

288

37

41
49

GEENERBHNR

#1

BLEBRGEEEBEREBERERBRIERRESH

SRS REBRYD

#2

SRV LRBRRBLEEELE

8 8

8L

V)

Impute

AS5BEERERRIJIRIBEBLYETLBRBEBERE

49
P

RERY

39

28



282
283
284
285
286
287

Degree  NCES Schafer Schafer Proc

BS/BA
73
70
82
61

57
58
64
69
58
73
60
65
76

72
67

51
77
65
62
53

70
57
69
73
65
72
70
55
61
72
77
71
59
50
72
67

Impute
73
70
82
61

57
58
64
69
58
73
60
65
76

72
67

51
77
65
62
53

70
57
69
73
65
72
70
55
61
72
77
71
59
50
72
67

#1

73
70
82
61

57
58
64
69
58
73
60
65
76

72
67

51
77
65
62
53

70
57
69
73
65
72
70
55
61
72
77
71
59
50
72
67

#2

73
70
82
61

57
58
64
69
58
73
60
65
76

72
67

51
7
65
62
53

70
57
69
73
65
72
70
55
61
72
7
71
59
50
72
67

Impute
73
70
82
61

57
58
64
69
58
73
60
65
76

72
67

51
77
65
62
53

70
57
69
73
65
72
70
55
61
72
77
71
59
50
72
67

Teaching NCES Schafer Schafer Proc

Exper.

NN W N

27

14
15
19
11

28

16
10
11
13

al

13
31

14

15
14

16
11

14

10
10

Impute

NN W N

27

14
15
19
1

28

16
10
1
13

ol

13
31

14

15
14

16
1

14

10
10

79

#1

~N N W N

#2

NN W N

27

14
15
19
11

28

16
10
11
13

al

13
31

14

15
14

16
11

14

10
10

Impute

~N DN W

27

14
15
19
11

28

16
10
1
13

[¢)

13
31

14

15
14

16
1

14

10
10

Birth
Year

NCES Schafer Schafer Proc

Impute
53
48
62

S5HEBEIRELBIELIBRER

Q&R

8&8

588

49

#1

GEBAEEBERGLEEBRERBLIRSEY

SEBHEEHLBY

#2

RIS

HF&EB8ELR

Impute
51

SENERRBEABBERRBEE R

42
25

SABBEEERRINERESH



Degree NCES Schafer Schafer Proc |Teaching NCES Schafer Schafer Proc | Birth NCES Schafer Schafer Proc

BS/BA Impute #1 #2 Impute | Exper. Impute #1 #2 Impute | Year Impute #1 #2 Impute
318 . 66 80 70 79 9 9 9 9 9 44 55 42 55
319 . 77 56 69 76 10 10 10 10 10 55 35 44 50
320 . 56 68 72 77 15 15 15 15 15 A 40 50 53
321 . 62 50 62 56 10 10 10 10 10 40 24 40 36
322 . 70 65 62 54 6 6 6 6 6 48 11 33 30
323 60 58 61 64 7 7 7 7 7 33 36 41 42
324 69 61 67 62 10 10 10 10 10 47 33 46 42
325 63 63 63 63 0 3 4 4 28 3 35 35
326 66 66 66 66 66 . 1 3 -2 10 44 12 3 35
327 70 70 70 70 70 . 9 2 8 8 52 a7 41 47

Notes: (1) The three variables compared from 1990-91 SASS Administrator datafile are:
BS/BA: Y ear received bachelor's degree
Teaching Experience: Y ears of elementary/secondary teaching experience before becoming principal
Birth: Year of birth

(2) Schafer'simputations are rounded up.

(3) In each five-column section, the first column represents un-imputed data, the second NCES imputed data, the third and fourth Schafer's software
imputed data (setl and set 2), the fifth Proc Impute imputed data, respectively, for the casesin which at least one of the three variables has a missing
value.

(4) Mean and standard deviation are calculated for the whole sample with sample size 9054.

80
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9743 Measuring Inflation in Public School Costs
98-04 Geographic Variationsin Public Schools Costs
1999-16  Mesasuring Resources in Education: From Accounting to the Resource Cost Model
Approach

High School and Beyond (HS& B)
95-12 Rural Education Data User’s Guide
199905  Procedures Guide for Transcript Studies
199906 1998 Revision of the Secondary School Taxonomy

HSTranscript Studies
199905  Procedures Guide for Transcript Studies
199906 1998 Revision of the Secondary School Taxonomy

International Adult Literacy Survey (IALS)
97-33 Adult Literacy: An International Perspective

I ntegrated Postsecondary Education Data System (IPEDS)
97-27 Pilot Test of IPEDS Finance Survey
98-15 Development of a Prototype System for Accessing Linked NCES Data
2000-14  IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for
Private, Not-for-Profit Institutes: A Concept Paper

National Assessment of Adult Literacy (NAAL)

98-17 Developing the National Assessment of Adult Literacy: Recommendations from

Stakeholders

1999-09a 1992 National Adult Literacy Survey: An Overview
1999-09b 1992 National Adult Literacy Survey: Sample Design
1999-09c 1992 National Adult Literacy Survey: Weighting and Population Estimates
1999-09d 1992 National Adult Literacy Survey: Development of the Survey Instruments
1999-09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates

1999-09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scales and Literacy

Leves

1999-09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability
Convention

200005  Secondary Statistical Modeling With the National Assessment of Adult Literacy:
Implications for the Design of the Background Questionnaire

200006  Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door
Surveysin the Assessment of Adult Literacy

200007  “How Much Literacy is Enough?’ Issuesin Defining and Reporting Performance
Standards for the National Assessment of Adult Literacy

200008  Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses
with Recommendations for Revisions

200009  Demographic Changes and Literacy Development in a Decade

200108  Assessing the Lexile Framework: Results of a Panel Meeting

National Assessment of Educational Progress (NAEP)
95-12 Rural Education Data User’s Guide
97-29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes?
97-30 ACT’s NAEP Redesign Project: Assessment Design is the Key to Useful and Stable
Assessment Results

Jerry West

William J. Fowler, Jr.
William J. Fowler, Jr.
William J. Fowler, Jr.
William J. Fowler, Jr.
William J. Fowler, Jr.

Samuel Peng
Dawn Nelson
Dawn Nelson

Dawn Nelson
Dawn Nelson

Marilyn Binkley

Peter Stowe
Steven Kaufman
Peter Stowe

Sheida White
Alex Sedlacek
Alex Sedlacek
Alex Sedlacek
Alex Sedlacek
Alex Sedlacek
Alex Sedlacek
Alex Sedlacek
Sheida White
Sheida White
Sheida White
Sheida White

Sheida White
Sheida White

Samuel Peng
Steven Gorman
Steven Gorman



No.

Title

NCES contact

9731

97-32

97-37
9744

98-15
1999-05
1999-06
200107

2001-08

NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational
Progress

Innovative Solutions to Intractable Large Scale Assessment (Problem 2: Background
Questionnaires)

Optimal Rating Procedures and Methodology for NAEP Open-ended Items

Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using
State Assessments and State NAEP, Feasibility Study

Development of a Prototype System for Accessing Linked NCES Data

Procedures Guide for Transcript Studies

1998 Revision of the Secondary School Taxonomy

A Comparison of the National Assessment of Educational Progress (NAEP), the Third
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

Assessing the Lexile Framework: Results of a Panel Meeting

National Education L ongitudinal Study of 1988 (NEL S:88)

95-04

95-05

95-06

95-07

95-12
95-14

96-03
98-06
98-09
98-15
1999-05

1999-06
1999-15

National Education Longitudinal Study of 1988: Second Follow-up Questionnaire Content
Areas and Research Issues

National Education Longitudinal Study of 1988: Conducting Trend Analyses of NLS-72,
HS& B, and NEL S:88 Seniors

National Education Longitudinal Study of 1988: Conducting Cross-Cohort Comparisons
Using HS& B, NAEP, and NEL S:88 Academic Transcript Data

National Education Longitudinal Study of 1988: Conducting Trend Analyses HS&B and
NEL S:88 Sophomore Cohort Dropouts

Rural Education Data User’s Guide

Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used
in NCES Surveys

National Education Longitudinal Study of 1988 (NEL S:88) Research Framework and
Issues

National Education Longitudinal Study of 1988 (NEL S:88) Base Y ear through Second
Follow-Up: Final Methodology Report

High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Study of 1988

Development of a Prototype System for Accessing Linked NCES Data

Procedures Guide for Transcript Studies

1998 Revision of the Secondary School Taxonomy

Projected Postsecondary Outcomes of 1992 High School Graduates

National Household Education Survey (NHES)

95-12
96-13
96-14
96-20
96-21
9622
96-29
96-30
97-02
97-03

97-04

Rural Education Data User’s Guide

Estimation of Response Biasin the NHES:95 Adult Education Survey

The 1995 National Household Education Survey: Reinterview Results for the Adult
Education Component

1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early
Childhood Education, and Adult Education

1993 National Household Education Survey (NHES:93) Questionnaires: Screener, School
Readiness, and School Safety and Discipline

1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early
Childhood Program Participation, and Adult Education

Undercoverage Bias in Estimates of Characteristics of Adults and O- to 2-Year-Oldsin the
1995 National Household Education Survey (NHES:95)

Comparison of Estimates from the 1995 National Household Education Survey
(NHES:95)

Telephone Coverage Bias and Recorded Interviews in the 1993 National Household
Education Survey (NHES:93)

1991 and 1995 Nationa Household Education Survey Questionnaires. NHES:91 Screener,
NHES:91 Adult Education, NHES:95 Basic Screener, and NHES:95 Adult Education

Design, Data Collection, Monitoring, Interview Administration Time, and Data Editing in
the 1993 National Household Education Survey (NHES:93)

Steven Gorman
Steven Gorman

Steven Gorman
Michael Ross

Steven Kaufman
Dawn Nelson

Dawn Nelson
Arnold Goldstein

Sheida White

Jeffrey Owings
Jeffrey Owings
Jeffrey Owings
Jeffrey Owings

Samuel Peng
Samuel Peng

Jeffrey Owings
Ralph Lee
Jeffrey Owings
Steven Kaufman
Dawn Nelson

Dawn Nelson
AuroraD’Amico

Samuel Peng
Steven Kaufman
Steven Kaufman
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler

Kathryn Chandler



No Title

NCES contact

97-05 Unit and Item Response, Weighting, and Imputation Procedures in the 1993 National
Household Education Survey (NHES:93)

97-06 Unit and Item Response, Weighting, and Imputation Procedures in the 1995 National
Household Education Survey (NHES:95)

97-08 Design, Data Collection, Interview Timing, and Data Editing in the 1995 National
Household Education Survey

97-19 National Household Education Survey of 1995: Adult Education Course Coding Manual

97-20 National Household Education Survey of 1995: Adult Education Course Code Merge
Files User’'s Guide

97-25 1996 National Household Education Survey (NHES:96) Questionnaires:
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement

97-28 Comparison of Estimates in the 1996 National Household Education Survey

97-34 Comparison of Estimates from the 1993 National Household Education Survey

97-35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996
National Household Education Survey

97-38 Reinterview Results for the Parent and Y outh Components of the 1996 National
Household Education Survey

97-39 Undercoverage Bias in Estimates of Characteristics of Households and Adultsin the 1996
National Household Education Survey

9740 Unit and Item Response Rates, Weighting, and Imputation Proceduresin the 1996
National Household Education Survey

98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education
Survey

98-10 Adult Education Participation Decisions and Barriers. Review of Conceptual Frameworks

and Empirica Studies

National Longitudinal Study of the High School Class of 1972 (NL S-72)
95-12 Rural Education Data User’s Guide

National Postsecondary Student Aid Study (NPSAS)
96-17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report
2000-17  National Postsecondary Student Aid Study:2000 Field Test Methodology Report

National Study of Postsecondary Faculty (NSOPF)

97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
98-15 Development of a Prototype System for Accessing Linked NCES Data
2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Postsecondary Education Descriptive Analysis Reports (PEDAR)
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Private School Univer se Survey (PSS)

95-16 Intersurvey Consistency in NCES Private School Surveys
95-17 Estimates of Expenditures for Private K—12 Schools
96-16 Strategies for Collecting Finance Data from Private Schools
96-26 Improving the Coverage of Private Elementary-Secondary Schools
96-27 Intersurvey Consistency in NCES Private School Surveys for 1993-94
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary
Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Development of a Questionnaire
98-15 Development of a Prototype System for Accessing Linked NCES Data
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Meetings
2000-15  Feasibility Report: School-Level Finance Pretest, Private School Questionnaire

Kathryn Chandler
Kathryn Chandler
Kathryn Chandler

Peter Stowe
Peter Stowe

Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Kathryn Chandler
Peter Stowe

Peter Stowe

Samuel Peng

Andrew G. Malizio
Andrew G. Madlizio

Linda Zimbler
Steven Kaufman
Linda Zimbler

AuroraD’ Amico

Steven Kaufman
Stephen Broughman
Stephen Broughman
Steven Kaufman
Steven Kaufman
Stephen Broughman

Stephen Broughman
Steven Kaufman
Dan Kasprzyk

Stephen Broughman



No.

Title

NCES contact

Recent College Graduates (RCG)

98-15

Development of a Prototype System for Accessing Linked NCES Data

Schoolsand Staffing Survey (SASS)

9401
94-02
94-03
94-04
94-06
9501
95-02
95-03
95-08
95-09
95-10
95-11

95-12
95-14

95-15

95-16
95-18

9601

96-02

96-05
96-06

9607
96-09

96-10
96-11

96-12
96-15
9623
9624
96-25
9628
9701
97-07

97-09
97-10

Schools and Staffing Survey (SASS) Papers Presented at Meetings of the American
Statistical Association

Generalized Variance Estimate for Schools and Staffing Survey (SASS)

1991 Schools and Staffing Survey (SASS) Reinterview Response Variance Report

The Accuracy of Teachers' Self-reports on their Postsecondary Education: Teacher
Transcript Study, Schools and Staffing Survey

Six Papers on Teachers from the 1990-91 Schools and Staffing Survey and Other Related
Surveys

Schools and Staffing Survey: 1994 Papers Presented at the 1994 Meeting of the American
Statistical Association

QED Estimates of the 1990-91 Schools and Staffing Survey: Deriving and Comparing
QED School Estimates with CCD Estimates

Schools and Staffing Survey: 1990-91 SASS Cross-Questionnaire Analysis

CCD Adjustment to the 1990-91 SASS: A Comparison of Estimates

The Results of the 1993 Teacher List Validation Study (TLVS)

The Results of the 1991-92 Teacher Follow-up Survey (TFS) Reinterview and Extensive
Reconciliation

Measuring Instruction, Curriculum Content, and I nstructional Resources: The Status of
Recent Work

Rural Education Data User’s Guide

Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used
in NCES Surveys

Classroom Instructional Processes: A Review of Existing Measurement Approaches and
Their Applicability for the Teacher Follow-up Survey

Intersurvey Consistency in NCES Private School Surveys

An Agendafor Research on Teachers and Schools: Revisiting NCES' Schools and
Staffing Survey

Methodological Issues in the Study of Teachers' Careers:. Critical Features of a Truly
Longitudinal Study

Schools and Staffing Survey (SASS): 1995 Selected papers presented at the 1995 Mesting
of the American Statistical Association

Cognitive Research on the Teacher Listing Form for the Schools and Staffing Survey

The Schools and Staffing Survey (SASS) for 1998-99: Design Recommendations to
Inform Broad Education Policy

Should SASS Measure Instructional Processes and Teacher Effectiveness?

Making Data Relevant for Policy Discussions: Redesigning the School Administrator
Questionnaire for the 1998-99 SASS

1998-99 Schools and Staffing Survey: Issues Related to Survey Depth

Towards an Organizational Database on America's Schools: A Proposal for the Future of
SASS, with comments on School Reform, Governance, and Finance

Predictors of Retention, Transfer, and Attrition of Special and General Education
Teachers: Data from the 1989 Teacher Followup Survey

Nested Structures: District-Level Datain the Schools and Staffing Survey

Linking Student Datato SASS: Why, When, How

National Assessments of Teacher Quality

Measures of Inservice Professional Development: Suggested Items for the 1998-1999
Schools and Staffing Survey

Student Learning, Teaching Quality, and Professional Development: Theoretical
Linkages, Current Measurement, and Recommendations for Future Data Collection

Selected Papers on Education Surveys: Papers Presented at the 1996 Meeting of the
American Statistical Association

The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary
Schools: An Exploratory Analysis

Status of Data on Crime and Violence in Schools: Fina Report

Report of Cognitive Research on the Public and Private School Teacher Questionnaires
for the Schools and Staffing Survey 1993-94 School Year

Steven Kaufman

Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Sharon Bobbitt &
John Ralph
Samue Peng
Samud Peng
Sharon Bobbitt

Steven Kaufman
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Mary Rollefson

Dan Kasprzyk

Stephen Broughman

Lee Hoffman
Dan Kasprzyk



No. Title NCES contact
97-11 International Comparisons of Inservice Professional Development Dan Kasprzyk
97-12 Measuring School Reform: Recommendations for Future SASS Data Collection Mary Rollefson
97-14 Optimal Choice of Periodicities for the Schools and Staffing Survey: Modeling and Steven Kaufman

Analysis
97-18 Improving the Mail Return Rates of SASS Surveys: A Review of the Literature Steven Kaufman
97-22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman
97-23 Further Cognitive Research on the Schools and Staffing Survey (SASS) Teacher Listing Dan Kasprzyk
Form
9741 Selected Papers on the Schools and Staffing Survey: Papers Presented at the 1997 Meeting  Steve Kaufman
of the American Statistical Association
9742 Improving the Measurement of Staffing Resources at the School Level: The Development  Mary Rollefson
of Recommendations for NCES for the Schools and Staffing Survey (SASS)
9744 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using Michael Ross
State Assessments and State NAEP, Feasibility Study
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire Stephen Broughman
98-02 Response Variance in the 1993-94 Schools and Staffing Survey: A Reinterview Report Steven Kaufman
98-04 Geographic Variationsin Public Schools Costs William J. Fowler, Jr.
98-05 SASS Documentation: 1993-94 SASS Student Sampling Problems; Solutions for Steven Kaufman
Determining the Numerators for the SASS Private School (3B) Second-Stage Factors
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper Dan Kasprzyk
98-12 A Bootstrap Variance Estimator for Systematic PPS Sampling Steven Kaufman
98-13 Response Variance in the 1994-95 Teacher Follow-up Survey Steven Kaufman
98-14 Variance Estimation of Imputed Survey Data Steven Kaufman
98-15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman
98-16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey Stephen Broughman
1999-02  Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results Dan Kasprzyk
1999-04  Mesasuring Teacher Qualifications Dan Kasprzyk
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey Stephen Broughman
199908  Measuring Classroom Instructional Processes: Using Survey and Case Study Fieldtest Dan Kasprzyk
Results to Improve Item Construction
1999-10  What Users Say About Schools and Staffing Survey Publications Dan Kasprzyk
199912  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume 111: Public-Use Kerry Gruber
Codebook
1999-13  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume 1V: Bureau of Kerry Gruber
Indian Affairs (BIA) Restricted-Use Codebook
1999-14  1994-95 Teacher Followup Survey: Data File User's Manual, Restricted-Use Codebook Kerry Gruber
1999-17  Secondary Use of the Schools and Staffing Survey Data Susan Wiley
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk
1999 AAPOR Mestings
2000-10 A Research Agendafor the 19992000 Schools and Staffing Survey Dan Kasprzyk
2000-13  Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of Kerry Gruber
Data (CCD)
2000-18  Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire Stephen Broughman

Third International Mathematicsand Science Study (TIM SS)

200101

2001-05
200107

Cross-National Variation in Educational Preparation for Adulthood: From Early
Adolescence to Y oung Adulthood

Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

A Comparison of the National Assessment of Educational Progress (NAEP), the Third
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

Elvira Hausken

Patrick Gonzales
Arnold Goldstein



Listing of NCES Working Papers by Subject

No. Title NCES contact
Achievement (student) - mathematics
200105 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales
Adult education
96-14 The 1995 National Household Education Survey: Reinterview Results for the Adult Steven Kaufman
Education Component
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early Kathryn Chandler
Childhood Education, and Adult Education
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early Kathryn Chandler
Childhood Program Participation, and Adult Education
98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education Peter Stowe
Surv:
98-10 Adult Egl{cati on Participation Decisions and Barriers: Review of Conceptual Frameworks ~ Peter Stowe
and Empirical Studies
1999-11  Data Sources on Lifelong Learning Available from the National Center for Education LisaHudson
Statistics
2000-16a Lifelong Learning NCES Task Force: Final Report Volume | LisaHudson
2000-16b  Lifdlong Learning NCES Task Force: Final Report Volume Il LisaHudson
Adult literacy—see Literacy of adults
American Indian — education
1999-13  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume 1V: Bureau of Kerry Gruber
Indian Affairs (BIA) Restricted-Use Codebook
Assessment/achievement
95-12 Rural Education Data User’s Guide Samuel Peng
95-13 Assessing Students with Disabilities and Limited English Proficiency James Houser
97-29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes? Larry Ogle
97-30 ACT' s NAEP Redesign Project: Assessment Design is the Key to Useful and Stable Larry Ogle
Assessment Results
97-31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational Larry Ogle
Progress
97-32 Innovative Solutionsto Intractable Large Scale Assessment (Problem 2: Background Larry Ogle
Questions)
97-37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items Larry Ogle
9744 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using Michael Ross
State Assessments and State NAEP, Feasibility Study
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Study of 1988
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third Arnold Goldstein

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

Beginning studentsin postsecondary education

98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report
2001-04  Beginning Postsecondary Students Longitudinal Study: 1996-2001 (BPS:1996/2001)

Field Test Methodology Report

Civic participation
97-25 1996 National Household Education Survey (NHES:96) Questionnaires:
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement

AuroraD’ Amico

Paula Knepper

Kathryn Chandler



No. Title

NCES contact

Climate of schools
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used
in NCES Surveys

Cost of education indices
94-05 Cost-of-Education Differentials Across the States

Coursetaking
95-12 Rural Education Data User’s Guide
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudinal Study of 1988
199905  Procedures Guide for Transcript Studies
199906 1998 Revision of the Secondary School Taxonomy

Crime
97-09 Status of Data on Crime and Violence in Schools: Final Report

Curriculum
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources. The Status of
Recent Work
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Study of 1988

Customer service
1999-10  What Users Say About Schools and Staffing Survey Publications
200002  Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps
200004  Selected Papers on Education Surveys. Papers Presented at the 1998 and 1999 ASA and

1999 AAPOR Mestings
Data quality
97-13 Improving Data Quality in NCES: Databaseto-Report Process
Datawar ehouse
200004  Selected Papers on Education Surveys. Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Mestings
Design effects
200003  Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing
Variances from NCES Data Sets

Dropout rates, high school
95-07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS& B and
NEL S:88 Sophomore Cohort Dropouts

Early childhood education
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early
Childhood Education, and Adult Education
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early
Childhood Program Participation, and Adult Education
97-24 Formulating a Design for the ECLS: A Review of Longitudinal Studies
97-36 Measuring the Quality of Program Environmentsin Head Start and Other Early Childhood
Programs: A Review and Recommendations for Future Research
1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale
2001-02  Measuring Father Involvement in Y oung Children's Lives: Recommendations for a
Fatherhood Module for the ECLS-B
2001-03  Measures of Socio-Emational Development in Middle School

Samud Peng

William J. Fowler, Jr.

Samuel Peng
Jeffrey Owings

Dawn Nelson
Dawn Nelson

Lee Hoffman

Sharon Bobbitt &
John Ralph
Jeffrey Owings

Dan Kasprzyk
VaenaPisko
Dan Kasprzyk

Susan Ahmed

Dan Kasprzyk

Ralph Lee

Jeffrey Owings

Kathryn Chandler
Kathryn Chandler

Jerry West
Jerry West

Jerry West
Jerry West

ElviraHausken



No. Title

NCES contact

200106  Papersfrom the Early Childhood Longitudinal Studies Program: Presented at the 2001

AERA and SRCD Mestings

Educational attainment
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report

Educational research
200002  Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps

Eighth-graders

200105 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics
Employment
96-03 National Education Longitudinal Study of 1988 (NEL S:88) Research Framework and
I ssues
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report
2000-16a Lifelong Learning NCES Task Force: Final Report Volume
2000-16b  Lifdong Learning NCES Task Force: Fina Report Volume Il
200101  Cross-Nationa Variation in Educational Preparation for Adulthood: From Early
Adolescence to Y oung Adulthood
Engineering
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Faculty — higher education
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Fathers—rolein education
200102  Mesasuring Father Involvement in Y oung Children's Lives: Recommendations for a
Fatherhood Module for the ECLS-B

Finance— elementary and secondary schools

94-05 Cost-of-Education Differentials Across the States
96-19 Assessment and Analysis of School-Level Expenditures
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey
1999-16  Measuring Resources in Education: From Accounting to the Resource Cost Model
Approach
2000-18  Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire

Finance— postsecondary
97-27 Pilot Test of IPEDS Finance Survey
2000-14  IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for
Private, Not-for-Profit Institutes: A Concept Paper

Finance— private schools

95-17 Estimates of Expenditures for Private K—12 Schools
96-16 Strategies for Collecting Finance Data from Private Schools
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary
Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Devel opment of a Questionnaire
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey
2000-15  Feasibility Report: School-Level Finance Pretest, Private School Questionnaire

Jerry West

AuroraD’Amico

VaenaPisko

Patrick Gonzales

Jeffrey Owings
AuroraD’Amico

LisaHudson
LisaHudson
Elvira Hausken

AuroraD’Amico

Linda Zimbler
Linda Zimbler

Jerry West

William J. Fowler, Jr.
William J. Fowler, Jr.
Stephen Broughman
Stephen Broughman
William J. Fowler, Jr.

Stephen Broughman

Peter Stowe
Peter Stowe

Sephen Broughman
Stephen Broughman
Stephen Broughman

Stephen Broughman
Stephen Broughman
Stephen Broughman



No. Title

NCES contact

Geography
98-04 Geographic Variations in Public Schools' Costs

Graduate students
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Imputation
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Meeting
2001-10  Comparison of Proc Impute and Schafer’s Multiple Imputation Software

Inflation
9743 Measuring Inflation in Public School Costs

Institution data
200001 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Instructional resources and practices
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources: The Status of
Recent Work
199908  Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test
Results to Improve Item Construction

I nter national comparisons
97-11 International Comparisons of Inservice Professional Development
97-16 International Education Expenditure Comparability Study: Final Report, Volume |
97-17 International Education Expenditure Comparability Study: Fina Report, Volumell,
Quantitative Analysis of Expenditure Comparability
200101  Cross-National Variation in Educational Preparation for Adulthood: From Early
Adolescence to Y oung Adulthood
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

International comparisons— math and science achievement
2001-05 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics

Libraries
94-07 Data Comparability and Public Policy: New Interest in Public Library Data Papers
Presented at Meetings of the American Statistical Association
97-25 1996 National Household Education Survey (NHES:96) Questionnaires:
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement

Limited English Proficiency
95-13 Assessing Students with Disabilities and Limited English Proficiency

Literacy of adults
98-17 Developing the National Assessment of Adult Literacy: Recommendations from

Stakeholders

1999-09a 1992 National Adult Literacy Survey: An Overview

1999-09b 1992 National Adult Literacy Survey: Sample Design

1999-09¢c 1992 National Adult Literacy Survey: Weighting and Population Estimates

1999-09d 1992 National Adult Literacy Survey: Development of the Survey Instruments

1999-09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates

1999-09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scales and Literacy
Levels
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No. Title NCES contact
1999-09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability Alex Sedlacek
Convention
1999-11  Data Sources on Lifelong Learning Available from the Nationa Center for Education LisaHudson
Statistics
200005  Secondary Statistical Modeling With the National Assessment of Adult Literacy: Sheida White
Implications for the Design of the Background Questionnaire
200006  Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door Sheida White
Surveysin the Assessment of Adult Literacy
200007  “How Much Literacy is Enough?’ Issuesin Defining and Reporting Performance Sheida White
Standards for the National Assessment of Adult Literacy
200008  Evauation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses Sheida White
with Recommendations for Revisions
200009  Demographic Changes and Literacy Development in a Decade Sheida White
200108  Assessing the Lexile Framework: Results of a Panel Meseting Sheida White
Literacy of adults— international
97-33 Adult Literacy: An International Perspective Marilyn Binkley
Mathematics
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudinal Study of 1988
199908  Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test Dan Kasprzyk
Results to Improve Item Construction
200105 Using TIMSSto Anayze Correlates of Performance Variation in Mathematics Patrick Gonzales
2001-07 A Comparison of the National Assessment of Educational Progress (NAEP), the Third Arnold Goldstein
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
Parental involvement in education
96-03 National Education Longitudinal Study of 1988 (NEL S:88) Research Framework and Jeffrey Owings
Issues
97-25 1996 National Household Education Survey (NHES:96) Questionnaires: Kathryn Chandler
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement
1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale Jerry West
200106  Papersfrom the Early Childhood Longitudinal Studies Program: Presented at the 2001 Jerry West
AERA and SRCD Meetings
Participation rates
98-10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks — Peter Stowe
and Empirical Studies
Postsecondary education
1999-11  Data Sources on Lifelong Learning Available from the National Center for Education LisaHudson
Statistics
2000-16a Lifelong Learning NCES Task Force: Final Report Volume LisaHudson
2000-16b  Lifelong Learning NCES Task Force: Fina Report Volume Il LisaHudson

Postsecondary education — persistence and attainment

98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report
1999-15  Projected Postsecondary Outcomes of 1992 High School Graduates

Postsecondary education — staff
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
200001 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

AuroraD’Amico

AuroraD’ Amico

Linda Zimbler
Linda Zimbler



No. Title NCES contact
Principals
2000-10 A Research Agendafor the 1999-2000 Schools and Staffing Survey Dan Kasprzyk
Private schools
96-16 Strategies for Callecting Finance Data from Private Schools Stephen Broughman
97-07 The Determinants of Per-Pupil Expendituresin Private Elementary and Secondary Stephen Broughman
Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman
2000-13  Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of Kerry Gruber
Data (CCD)
2000-15  Feasihility Report: School-Level Finance Pretest, Private School Questionnaire Stephen Broughman

Projections of education statistics
1999-15  Projected Postsecondary Outcomes of 1992 High School Graduates

Public school finance

1999-16  Messuring Resourcesin Education: From Accounting to the Resource Cost Model
Approach
2000-18  Feasihility Report: School-Level Finance Pretest, Public School District Questionnaire

Public schools

97-43 Mesasuring Inflation in Public School Costs
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire
98-04 Geographic Variations in Public Schools' Costs
1999-02  Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results
2000-12  Coverage Evauation of the 1994-95 Public Elementary/Secondary School Universe
Survey
2000-13  Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of
Data (CCD)

Public schools— secondary
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudinal Study of 1988

Reform, educational

96-03 National Education Longitudinal Study of 1988 (NEL S:88) Research Framework and
Issues
Responserates
98-02 Response Variance in the 1993-94 Schools and Staffing Survey: A Reinterview Report

School districts
2000-10 A Research Agendafor the 19992000 Schools and Staffing Survey

School districts, public
98-07 Decennial Census School District Project Planning Report
1999-03 Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection,
Processing, and Editing Cycle

School districts, public — demographics of

96-04 Census Mapping Project/School District Data Book
Schools
9742 Improving the Measurement of Staffing Resources at the School Level: The Development
of Recommendations for NCES for the Schools and Staffing Survey (SASS)
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper
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No. Title NCES contact
1999-03  Evaluation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection, Beth Young
Processing, and Editing Cycle
2000-10 A Research Agendafor the 19992000 Schools and Staffing Survey Dan Kasprzyk
Schools— safety and discipline
97-09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman
Science
2000-11  Financial Aid Profile of Graduate Studentsin Science and Engineering AuroraD’ Amico
200107 A Comparison of the National Assessment of Educational Progress (NAEP), the Third Arnold Goldstein
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
Softwar e evaluation
200003  Strengthsand Limitations of Using SUDAAN, Stata, and WesVarPC for Computing Ralph Lee
Variances from NCES Data Sets
Staff
9742 Improving the Measurement of Staffing Resources at the School Level: The Development  Mary Rollefson
of Recommendations for NCES for the Schools and Staffing Survey (SASS)
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper Dan Kasprzyk
Staff — higher education institutions
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists Linda Zimbler
Staff —nonprofessional
2000-13  Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of Kerry Gruber
Data (CCD)
State
1999-03  Evauation of the 1996-97 Nonfiscal Common Core of Data Surveys Data Collection, Beth Young
Processing, and Editing Cycle
Statistical methodology
97-21 Statistics for Policymakers or Everything Y ou Wanted to Know About Statistics But Susan Ahmed
Thought Y ou Could Never Understand
Statistical standards and methodology
200105 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales
Studentswith disabilities
95-13 Assessing Students with Disabilities and Limited English Proficiency James Houser
Survey methodology
96-17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report Andrew G. Malizio
97-15 Customer Service Survey: Common Core of Data Coordinators Lee Hoffman
97-35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996 Kathryn Chandler
National Household Education Survey
98-06 National Education Longitudina Study of 1988 (NEL S:88) Base Y ear through Second Ralph Lee
Follow-Up: Final Methodology Report
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field  AuroraD’ Amico
Test Report
98-16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey Stephen Broughman
199907  Collection of Resource and Expenditure Daa on the Schools and Staffing Survey Stephen Broughman
1999-17  Secondary Use of the Schools and Staffing Survey Data Susan Wiley
2000-01 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report Linda Zimbler
200002  Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps VaenaPisko
200004  Selected Papers on Education Surveys. Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk

1999 AAPOR Mestings



No. Title NCES contact
2000-12  Coverage Evauation of the 1994-95 Public Elementary/Secondary School Universe Beth Y oung
Survey
2000-17  National Postsecondary Student Aid Study:2000 Field Test Methodology Report Andrew G. Malizio
2001-04  Beginning Postsecondary Students Longitudinal Study: 1996—2001 (BPS:1996/2001) Paula Knepper
Field Test Methodology Report
200107 A Comparison of the National Assessment of Educational Progress (NAEP), the Third Arnold Goldstein
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
2001-09  An Assessment of the Accuracy of CCD Data: A Comparison of 1988, 1989, and 1990 John Sietsema

CCD Datawith 1990-91 SASS Data

Teachers
98-13 Response Variance in the 1994-95 Teacher Follow-up Survey
1999-14  1994-95 Teacher Followup Survey: Data File User's Manual, Restricted-Use Codebook
2000-10 A Research Agendafor the 19992000 Schools and Staffing Survey

Teachers—instructional practices of
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

Teachers— opinionsregarding safety
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper

Teachers— performance evaluations
1999-04  Measuring Teacher Qualifications

Teachers— qualifications of
1999-04  Measuring Teacher Qualifications

Teachers— salaries of
94-05 Cost-of-Education Differentials Across the States

Training
2000-16a  Lifelong Learning NCES Task Force: Final Report Volume
2000-16b  Lifelong Learning NCES Task Force: Final Report Volume 11

Variance estimation
200003  Strengthsand Limitations of Using SUDAAN, Stata, and WesVarPC for Computing
Variances from NCES Data Sets
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Meetings

Violence
97-09 Status of Data on Crime and Violence in Schools: Final Report

Vocational education
95-12 Rural Education Data User’s Guide
199905  Procedures Guide for Transcript Studies
199906 1998 Revision of the Secondary School Taxonomy
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