Science in Action

Hands-On and Interactive Computer Tasks From the 2009 Science Assessment

National Assessment of Educational Progress at Grades 4, 8, and 12
Contents

1. A New Generation of Testing
2. Introduction
3. Dig Deeper Online
4. A Look at the Tasks
8. What Did We Learn?
10. What Else Did We Learn?
11. What Are Students Doing in Science Classrooms?
12. Inside the Tasks
16. How Did Students Perform?
18. Technical Notes

What Is The Nation’s Report Card™?

The Nation’s Report Card™ informs the public about the academic achievement of elementary and secondary students in the United States. Report cards communicate the findings of the National Assessment of Educational Progress (NAEP), a continuing and nationally representative measure of achievement in various subjects over time.

Since 1969, NAEP assessments have been conducted periodically in reading, mathematics, science, writing, U.S. history, civics, geography, and other subjects. NAEP collects and reports information on student performance at the national and state levels, making the assessment an integral part of our nation’s evaluation of the condition and progress of education. Only academic achievement data and related background information are collected. The privacy of individual students and their families is protected.

NAEP is a congressionally authorized project of the National Center for Education Statistics (NCES) within the Institute of Education Sciences of the U.S. Department of Education. The Commissioner of Education Statistics is responsible for carrying out the NAEP project. The National Assessment Governing Board oversees and sets policy for NAEP.
A New Generation of Testing

Science education is not just about learning facts in a classroom—it’s about doing activities where students put their understanding of science principles into action. That’s why two unique types of activity-based tasks were administered as part of the 2009 National Assessment of Educational Progress (NAEP) science assessment. In addition to the paper-and-pencil questions, fourth-, eighth-, and twelfth-graders also completed hands-on and interactive computer tasks. These tasks help us understand not only what students know, but how well they are able to reason through complex problems and apply science to real-life situations. While performing the interactive computer and hands-on tasks, students manipulate objects and perform actual experiments, offering us richer data on how students respond to scientific challenges.

Here’s what we learned about student performance across the tasks:

1. Students were **successful** on parts of investigations that involved limited sets of data and making **straightforward observations** of that data.

2. Students were **challenged** by parts of investigations that contained **more variables** to manipulate or involved strategic decision making to collect appropriate data.

3. The percentage of students who could **select correct conclusions** from an investigation was **higher** than for those students who could select correct conclusions and **also explain** their results.

These three key discoveries will be discussed in more depth on pages 8 and 9.

EXPLORE THE TASKS

This report is the print companion to the NAEP interactive website at http://nationsreportcard.gov/science_2009/.
Introduction

Interactive computer and hands-on tasks were designed to assess how well students can perform scientific investigations, draw valid conclusions, and explain their results. As a part of the 2009 science assessment, a new generation of hands-on tasks was administered during which students worked with lab materials and other equipment to perform experiments. While hands-on tasks have been used in NAEP since the 1990s, these new tasks present students with more open-ended scenarios that require a deeper level of planning, analysis, and synthesis. For the first time, the NAEP science assessment also included interactive computer tasks in science.

The New Science Framework

The National Assessment Governing Board oversees the development of NAEP frameworks that describe the specific knowledge and skills that should be assessed in each subject. Frameworks incorporate ideas and input from subject area experts, school administrators, policymakers, teachers, parents, and others. The 2009 science framework was developed to keep the assessment content current with key developments in science standards, innovative assessment approaches, and recent research in both science and cognition.

The 2009 science framework recommends that new types of performance-based tasks be assessed, including hands-on tasks and interactive computer tasks. These activity-based tasks allow us to examine students’ abilities to combine their science knowledge with real-world investigative skills.

Hands-on tasks are 40-minute activities where students use materials and laboratory equipment to perform actual science experiments. These tasks provide students an opportunity to demonstrate a broad range of skills involved in doing science, but without many of the logistical constraints associated with the hands-on tasks. More than 2,000 students were administered the tasks at each of the three grades. The hands-on and interactive computer task assessments were given to separate national representative samples.

Predict, Observe, Explain

As suggested in the science framework, some of the hands-on tasks and interactive computer tasks use a Predict-Observe-Explain problem set to engage students in the scientific process.

Predict
Students provide a prediction for what might happen in a real-world science situation

Observe
Students conduct an investigation and observe what happens

Explain
Students explain what they have observed by interpreting data or drawing conclusions
Dig Deeper Online

http://nationsreportcard.gov/science_2009/

Take any of the nine interactive computer tasks and see how you would score

Go behind the scenes of a grade 12 hands-on task

PLANT A EXPERIMENT

1. Students’ prior knowledge assessed
 - Detailed Results

2. Students perform first sunlight investigation
 - Detailed Results

3. Students draw conclusions
 - Detailed Results

Only 23% of all fourth-graders displayed complex prior knowledge, did the experiment correctly, and were able to give complete explanations. (Follow the leftmost series of green disks)

- 59% Complex
- 31% Simple
- 10% Incorrect

- 49% Complete
- 10% Partial or Incorrect
- 23% Correct
- 8% Incorrect
- 8% Complete
- 8% Incorrect
- 2% Correct
- 2% Partial or Incorrect

- 23% Complete
- 26% Partial or Incorrect
- 2% Complete
- 8% Partial or Incorrect
- 8% Complete
- 15% Partial or Incorrect
- 1% Complete
- 7% Partial or Incorrect
- 2% Complete
- 6% Partial or Incorrect
- 4% Complete
- 2% Partial or Incorrect
A Look at the Tasks

Hands-On Tasks

The descriptions below provide an overview of the two hands-on tasks that were administered at each grade. To explore some of these tasks on the interactive website, visit the corresponding links.

Grade 4

How Seeds Travel
In this five-part task, students investigate the structural characteristics of nine types of seeds to determine whether they are spread by wind or by animals. Students finish the task by predicting which seeds might travel the farthest and designing a possible investigation to test which seeds travel farther by wind.

Electrical Circuits
In this four-part task, students learn to assemble a simple electrical circuit. Then students investigate the conductivity of objects and the effect of multiple components in a series circuit. Finally, students use their knowledge learned from comparing different circuits to design and conduct an investigation to determine which of two black boxes contains a light bulb.

http://nationsreportcard.gov/science_2009/hot_g4_scoring.asp

Grade 8

Magnetic Fields
In this three-part task, students design and conduct investigations based on observations of magnetic properties to determine what materials make up four metal bars. First, they use only the metal bars themselves. Students then repeat the investigation using a test magnet and compare the results of the investigations to confirm their conclusions. Finally, students design and conduct two different tests to compare the magnetic strength of a strong and a weak magnet.

http://nationsreportcard.gov/science_2009/hot_g8_scoring.asp

What's Cooking?
In this two-part task, students investigate physical and chemical properties of four common cooking ingredients. Then students use the results of their first investigation to identify the ingredients in a mixture.
Science in Action

Grade 12

Plant Pigments
In this two-part task, students investigate extracts from three unidentified organisms that were collected from the coastline of an island in the Pacific Ocean. Students determine what type of pigments each organism contains, and then they use their results together with other information to predict the type of organism that is most closely related to the unknown organisms.

Maintaining Water Systems
In this three-part task, students make a preliminary recommendation for which of two sites would be the better location for building a new town based on which site might have better water quality. Students then test water samples from both sites and determine whether the samples meet federal standards for various pollutants. Finally, students provide a final recommendation for the better site to build the town based on their results.

http://nationsreportcard.gov/science_2009/hot_g12_scoring.asp

Table 1.
Average percent correct score for all hands-on tasks in NAEP science, by selected student characteristics and grade: 2009

<table>
<thead>
<tr>
<th>Gender</th>
<th>Race/ethnicity</th>
<th>Eligibility for NSLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>All students</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>Grade 4</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>Grade 8</td>
<td>40</td>
<td>39</td>
</tr>
</tbody>
</table>

— Not available.

1 National School Lunch Program.

NOTE: Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian. Race categories exclude Hispanic origin.

EXPLORE THE TASKS
This report is the print companion to the NAEP interactive website at http://nationsreportcard.gov/science_2009/.
Interactive Computer Tasks

The descriptions below provide an overview of the three interactive computer tasks that were administered at each grade. To explore each of these tasks on the interactive website, visit http://nationsreportcard.gov/science_2009/ict_tasks.asp.

Grade 4

Mystery Plants
In this 40-minute extended task, students use a simulated greenhouse to determine the best sunlight or fertilizer amounts for two different plants. Students begin the task by showing their prior knowledge about how sunlight and nutrients are related to optimal plant growth. Then students run three separate investigations and draw their conclusions about the effect of sunlight and nutrients on the plant samples.

Cracking Concrete
In this 20-minute task, students investigate what happens to the volume of water when it freezes. Then students use the results of their investigations to predict and test what will happen when water freezes in the cracks of a concrete sidewalk.

Here Comes the Sun
In this 20-minute task, students use a time lapse simulation to make observations about the path of the sun as it relates to the amount of daylight. Students use this knowledge to determine the better of two locations for growing tomatoes.

Grade 8

Bottling Honey
In this 20-minute task, students investigate how four different liquids behave when they are poured and how temperature affects the flow rates of the liquids. Then students determine the best temperature range for bottling honey that will take the least amount of time while using as little energy as possible.

Playground Soil
In this 20-minute task, students investigate the permeability of soil samples from two sites a town is considering for a play area. Students use their results to help decide which site has the better water drainage and is therefore the better place for a grassy play area.

Planning a Park
In this 40-minute extended task, students help plan a new recreation area for a town using a small portion of an existing wildlife area. Students evaluate the potential impact that various locations of the recreation area would have on the population of the meadow vole and other animals. By the end of the task, students make a recommendation for the best placement of the new park.
Starlight
In this 20-minute task, students look at a way of classifying stars based on their temperatures and luminosities. Students then compare data on two stars, and predict how characteristics like their temperature and luminosity might change throughout their lives.

Energy Transfer
In this 20-minute task, students investigate which metal would be better for making the bottom of a cooking pan. While designing and conducting their investigations, students use a simulated calorimeter to test the specific heat capacities of two metals that could be used for the bottom of the pan.

The Phytoplankton Factor
In this 40-minute extended task, students investigate the role of phytoplankton (microscopic, plant-like organisms that live near the ocean surface) in the Earth’s carbon cycle. In addition, students analyze an authentic set of experimental data relating levels of iron and nutrients to the growth of phytoplankton, and use a resource library to research ocean locations where increased iron levels might affect phytoplankton growth.

Table 2.
Average percent correct score for all interactive computer tasks in NAEP science, by selected student characteristics and grade: 2009

<table>
<thead>
<tr>
<th>Gender</th>
<th>Race/ethnicity</th>
<th>Eligibility for NSLP¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All students</td>
<td>Male</td>
</tr>
<tr>
<td>Grade 4</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Grade 8</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>Grade 12</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

¹ National School Lunch Program.

NOTE: Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian. Race categories exclude Hispanic origin.

EXPLORE THE TASKS
What Did We Learn?

Key Discovery 1

Students were **successful** on parts of investigations that involved limited sets of data and making **straightforward** observations of that data.

FOR EXAMPLE

GRADE 4
80% of students could use a simulated greenhouse to test how three levels of sunlight affected plant growth. Students could use six different trays of the same plant type to test the three conditions, which allowed for a more straightforward observation.

GRADE 8
84% of students could use a simulated laboratory to test how much water flowed through two different soil samples. Students who did this correctly made the straightforward observation that one soil sample allowed more water flow than the other.

GRADE 12
75% of students could use test strips to test water samples for the levels of four pollutants, record the data, and interpret whether the results exceeded EPA standards. This part of the investigation was straightforward because students did not have to manipulate variables.

Key Discovery 2

Students were **challenged** by parts of investigations that contained **more variables** to manipulate or involved strategic decision making to collect appropriate data.

FOR EXAMPLE

GRADE 4
35% of students could select from nine possible fertilizer levels to test and determine those best for growth of a sun-loving plant. However, students had only six trays available during any single test run; therefore, students had to make strategic choices to assure that an adequate range of data was sampled.

GRADE 8
24% of students could appropriately decide how to manipulate four metal bars made of unknown materials to determine which ones were the magnets. Because students could use only the four bars for this investigation, they had to apply their knowledge of how to test for magnetic properties.

GRADE 12
25% of students designed and conducted an investigation using a simulated calorimeter, and related patterns in temperature changes in two different metals to decide which metal has the higher specific heat capacity. Students had to interpret this complex set of data and relate it to their knowledge that the metal with the higher specific heat capacity caused the temperature of the water to change more than the metal with the lower specific heat capacity.
Key Discovery 3

The percentage of students who could select correct conclusions from an investigation was higher than for those students who could select correct conclusions and also explain their results.

Table 3 provides a summary of the results used to support the three key discoveries from the hands-on and interactive computer tasks. The mean percent correct represents the proportion of students who answered multiple-choice questions correctly and accounts for at least partial credit on constructed-response questions. Science content experts examined all of the scored tasks to find the patterns in the results. The table shows the minimum, maximum, and median percent correct to demonstrate the ranges of student performances on the skills identified within each of the key discoveries.

Table 3.
Percent correct supporting key discoveries for hands-on and interactive computer tasks in NAEP science at grades 4, 8, and 12: 2009

<table>
<thead>
<tr>
<th>Key Discovery</th>
<th>Number of items across grades and assessment type</th>
<th>Percent correct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Key Discovery 1: Straightforward observations</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>Key Discovery 2: Strategic decision making</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Key Discovery 3: Correct conclusion</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>Key Discovery 3: Explain results</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

FOR EXAMPLE

GRADE 4
71% of students could select the correct conclusion about how volume changes when ice melted into water, while 15% could select the correct conclusion and support this conclusion with evidence from the investigation.

GRADE 8
88% of students could select the liquid that flowed at the same rate as water at a given temperature, while 54% could select the correct liquid and support this conclusion in writing using evidence from their investigation.

GRADE 12
55% of students were able to select the correct temperature changes that occurred when a warm solid object was placed into cool water, while 27% were able to make the correct selections and explain how heat was transferred from a warmer to a cooler substance.

Both the hands-on and interactive computer tasks can be successfully administered in a large-scale assessment setting, using standardized, controlled procedures so as to ensure the collection of valid assessment data.

EXPLORE THE TASKS
This report is the print companion to the NAEP interactive website at http://nationsreportcard.gov/science_2009/.
What Else Did We Learn?

Results for the interactive computer and hands-on tasks can also be reported by race/ethnicity, gender, and eligibility for the National School Lunch Program. Many of the results for groups are consistent with the findings from the main paper-and-pencil NAEP science test; however, there were some differences. The full results by student group are available in tables 1 and 2, and the main paper-and-pencil science results are available online at http://nationsreportcard.gov/science_2009.

- Female students in all three grades **scored higher** than males on the hands-on tasks, though males **scored higher** on the traditional paper-and-pencil science assessment. There was **no gender gap** in interactive computer tasks.

- At grades 4 and 12, Hispanic students **scored higher** than their Black peers on both the hands-on tasks and interactive computer tasks.

- White and Asian/Pacific Islander students in all three grades **scored higher** than their Black and Hispanic peers on both the hands-on tasks and interactive computer tasks.

- There was **no score gap** between White and Asian/Pacific Islander students in any of the three grades on the interactive computer and hands-on tasks; however, on the main science assessment, White students **scored higher** at grades 4 and 8.

- There was an **achievement gap** at grades 4 and 8 between students from higher- and lower-income families in both the hands-on tasks and the interactive computer tasks.
What Are Students Doing in Science Classrooms?

As part of the main paper-and-pencil 2009 science assessment, students and teachers answered survey questions about science learning and instruction. These examples provide some context for student performance on the interactive computer and hands-on tasks in science. The full results for these contextual variables are in tables A–D on page 19.

• **39%** of fourth-graders and **57%** of eighth-graders had teachers who reported at least a moderate emphasis on developing scientific writing skills.

• **28%** of twelfth-graders reported writing a report on a science project at least once a week.

• **51%** of twelfth-graders reported designing a science experiment at least once every few weeks.

• **53%** of all twelfth-graders reported that they were currently taking a science course.

• **92%** of fourth-graders and **98%** of eighth-graders had teachers who reported doing hands-on activities with students at least monthly.
Inside the Tasks

Hands-On Task—Maintaining Water Systems

For this task, grade 12 students were asked to investigate the best site for building a new town based on the quality of a given water supply. Using the provided laboratory equipment and materials, students had to test water samples for levels of specific pollutants and evaluate water treatment processes.

Below are the results for each step of the experiment students performed.

Step 1: Predict
Students made a preliminary recommendation for the site of a new town based on the information provided about the quality of water sources.

64% of students explained their preliminary recommendations with valid support based on the materials in their kits.

Step 2: Observe
Students performed water tests and evaluated data in comparison to national drinking water standards.

75% of students could perform a straightforward investigation to test the water samples and accurately tabulate data.

Step 3: Explain
Students made a final recommendation for the site of a new town based on all of their data. Regardless of their performance on the first two steps, twelfth-graders struggled to explain their results.

11% of students were able to provide a valid final recommendation by supporting their conclusions with details from the data.

Steps 4 and 5: Extend
Students extended their inquiries by matching pollutants to specific water treatment steps and describing these processes in detail.

14% of students were able to correctly evaluate water treatment steps and select those that would be needed to remove pollutants that exceed national drinking water standards.

28% of students were able to describe scientific processes used to remove water pollutants.
Table 4.
Percentage of twelfth-grade students who successfully completed each step of the Maintaining Water Systems hands-on task in NAEP science, by selected student characteristics: 2009

<table>
<thead>
<tr>
<th>Step</th>
<th>Male</th>
<th>Female</th>
<th>White</th>
<th>Black</th>
<th>Hispanic</th>
<th>Asian/ Pacific Islander</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predict</td>
<td>63</td>
<td>64</td>
<td>68</td>
<td>39</td>
<td>58</td>
<td>76</td>
</tr>
<tr>
<td>Observe</td>
<td>74</td>
<td>76</td>
<td>84</td>
<td>50</td>
<td>59</td>
<td>66</td>
</tr>
<tr>
<td>Explain</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>Extend</td>
<td>17</td>
<td>11</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Extend</td>
<td>30</td>
<td>27</td>
<td>31</td>
<td>13</td>
<td>19</td>
<td>39</td>
</tr>
</tbody>
</table>

NOTE: Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian. Race categories exclude Hispanic origin.

Interactive Computer Task—Mystery Plants

Grade 4 students designed and conducted three different experiments in this task, with the difficulty increasing as they proceeded. They were given a series of simulations and asked to determine the following:

Experiment 1: What are the best sunlight conditions for growth for Plant A (a sun-loving plant)?

Experiment 2: What are the best sunlight conditions for growth for Plant B (a shade-tolerant plant)?

Experiment 3: What are the best fertilizer amounts for growth for Plant A?

All of the experiments above required students to make predictions and observations and to explain their conclusions. Below are the results for each step of the three experiments that students performed.

Step 1: Predict
Students were asked about the sunlight and fertilizer that plants need. They were assessed on their ability to understand that different plants need different amounts of each.

59% of students displayed complex prior knowledge in experiments 1 and 2, understanding that different plants have different sunlight needs.

56% of students displayed complex prior knowledge in experiment 3, understanding that different plants have different fertilizer needs.

Step 2: Observe
Students were asked to observe and test across the range of available sunlight and fertilizer amounts, and investigate how these amounts correspond to the growth of the plants.

At least 80% of students correctly performed this step in experiments 1 and 2, which involved limited sets of data and straightforward observations.

35% of students could correctly perform experiment 3, which contained more variables and required them to make strategic decisions about the best fertilizer levels for growth of a sun-loving plant.

Step 3: Explain
Students were required to select the correct conclusion for each investigation and provide an explanation for each.

While a higher percentage of students could select the correct conclusion for each of the three experiments, 36% of students could explain their conclusions with supporting evidence from their investigation in experiment 1, 29% in experiment 2, and 46% in experiment 3.

14 The Nation’s Report Card
Table 5.
Percentage of fourth-grade students who successfully completed each step of the Mystery Plants (Experiment 1: Sunlight for Plant A) interactive computer task in NAEP science, by selected student characteristics: 2009

<table>
<thead>
<tr>
<th>Gender</th>
<th>Race/ethnicity</th>
<th>Eligibility for NSLP¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Step 1 Predict</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Step 2 Observe</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>Step 3 Explain</td>
<td>34</td>
<td>37</td>
</tr>
</tbody>
</table>

¹ National School Lunch Program.

NOTE: Black includes African American, Hispanic includes Latino, and Pacific Islander includes Native Hawaiian. Race categories exclude Hispanic origin.

Try it out! Go online to take Mystery Plants, or any of the other interactive computer tasks, and see how you would score.

How Did Students Perform?

A step-by-step look at Experiment 1 of Mystery Plants

What prior knowledge did students bring to the problem?

Over one-half (59%) of all fourth-graders began the task with the understanding that different plants have different sunlight needs. Approximately 31% thought that all plants needed more sunlight to grow best. About 10% thought that sunlight didn’t affect plants or thought that plants needed only a little bit of sunlight.

How well did students perform when using the simulated greenhouse?

Regardless of the prediction made based on their prior knowledge, fourth-graders were able to perform this straightforward observation. Almost half (49%) of students showed complex prior knowledge and performed the experiment correctly, and about 80% of all students were able to perform this step correctly.

How well could students explain their conclusion?

23% of fourth-graders displayed complex prior knowledge, conducted the experiment correctly, and were able to explain the findings (as seen by following the leftmost series of green disks). However, the bottom row of disks shows that 36% of students were able to provide a complete explanation, so some students who did not have complex prior knowledge or did not complete the experiment correctly were able to give complete explanations.
Visit the interactive website to explore more detailed results on how students performed at each step of the experiments.

EXPLORE THE TASKS
This report is the print companion to the NAEP interactive website at http://nationsreportcard.gov/science_2009/.
Technical Notes

Assessment Design
Science Interactive Computer Tasks (ICTs) and Hands-On Tasks (HOTs) were administered in 2009 at grades 4, 8, and 12. The two assessments were given to separate nationally representative samples; therefore, the results are not linked to each other or to the main operational science assessment. See http://nationsreportcard.gov/science_2009/ict_indepth.asp for more details on example tasks in the assessments.

Sampling and Accommodations
The target population for the ICT and HOT assessments consisted of fourth-, eighth-, and twelfth-graders enrolled in public and private schools nationwide. Each school that participated in the assessment, and each student assessed, represents a portion of the population of interest. Results are weighted to make appropriate inferences between the student samples and the respective populations from which they are drawn. While part of the sample, there were insufficient American Indian/Alaska Native students assessed to permit reporting. In addition, participation rates fell below the 70 percent guideline for private schools, and therefore results cannot be reported separately.

The results for the ICT and HOT assessments are based on administration procedures that allowed accommodations for students with disabilities (SD) and English language learners (ELL) selected to participate in the two assessments. Appropriate accommodations were determined by school officials. Read-aloud accommodations were provided for HOTs and short ICTs, but were not provided for the extended ICTs. As a result, a small portion of students in the ICT assessment who required read-aloud accommodations were only given the two short ICTs at that grade level. See tables showing the accommodations and participation rates at http://nationsreportcard.gov/science_2009/ict_tech_notes.asp.

National School Lunch Program
NAEP collects data on student eligibility for the National School Lunch Program (NSLP) as an indicator of low income. Under the guidelines of NSLP, children from families with incomes below 130 percent of the poverty level are eligible for free meals. Those from families with incomes between 130 and 185 percent of the poverty level are eligible for reduced-price meals. (For the period July 1, 2008, through June 30, 2009, for a family of four, 130 percent of the poverty level was $27,560, and 185 percent was $39,220.) Some schools provide free meals to all students irrespective of individual eligibility, using their own funds to cover the costs of noneligible students. Under special provisions of the National School Lunch Act intended to reduce the administrative burden of determining student eligibility every year, schools can be reimbursed based on eligibility data for a single base year. Participating schools might have high percentages of eligible students and report all students as eligible for free lunch. Because students’ eligibility for free or reduced-price school lunch may be underreported at grade 12, the results are not included in this report but are available on the website at http://nationsreportcard.gov/science_2009/.

Reporting Results
As with all other NAEP assessments, student responses to constructed-response items were scored according to standard scoring procedures. The data from scoring were then analyzed to create summaries of student performance, as shown in this report. As shown in the summary of major results and the examples for ICTs and HOTs, an item percentage correct statistic was used to summarize student performance. This statistic represents the percentage of examinees who received a correct score on the question for a multiple-choice or dichotomous constructed-response question. For a multilevel constructed-response question, the item percentage correct statistic is calculated by summing a weighted percentage of students attaining each score level. The weight is based on the number of levels in the scoring criteria for the question.

Student performance across the three ICTs or two HOTs per grade level was also summarized as a student percent correct score. This percentage was calculated as the total score for a student across multiple tasks in the assessment and then divided by the maximum possible score for the questions the student attempted and multiplied by 100. For example, suppose a student attempted five questions in the first ICT task, four in the second task, and four in the third task, yielding a total score of 30. (Note that constructed-response items are “weighted” based on the number of score categories, e.g., a 4-category item has a weight of 3 with students getting 0, 1, 2, or 3 points credit on the item.) In addition, suppose that the maximum possible score for the 13 items the student attempted is 45. Then the student’s percent correct score would be 30 divided by 45 multiplied by 100, which equals 67. The sum of scores for those items that students attempted, not all the items that appeared in an assessment, is used as
the denominator of the student percent correct score. This method is used because NAEP assessments are intended to be non-speeded, implying that students should not be penalized for failing to reach particular questions because of time limitations. More information on the percent correct scores is available at http://nationsreportcard.gov/science_2009/ict_tech_notes.asp.

Interpreting the Results
NAEP reports results using widely accepted statistical standards; findings are reported on a statistical significance level set at .05 with appropriate adjustments for multiple comparisons. Only those differences that are found to be statistically significant are discussed as higher or lower.

Table A.
Percentage of students in NAEP science, by teachers’ responses to a question about emphasizing the development of scientific writing skills when teaching science and grade: 2009

<table>
<thead>
<tr>
<th>To what extent do you emphasize developing scientific writing skills in teaching science to your class?</th>
<th>Not at all</th>
<th>Small extent</th>
<th>Moderate extent</th>
<th>Large extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4</td>
<td>14</td>
<td>47</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Grade 8</td>
<td>4</td>
<td>38</td>
<td>41</td>
<td>16</td>
</tr>
</tbody>
</table>

NOTE: Detail may not sum to totals because of rounding.

Table B.
Percentage of students in NAEP science, by teachers’ responses to a question about students doing hands-on activities or investigations in science class and grade: 2009

<table>
<thead>
<tr>
<th>About how often do your science students do hands-on activities or investigations in science?</th>
<th>Never or hardly ever</th>
<th>Once or twice a month</th>
<th>Once or twice a week</th>
<th>Every day or almost every day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 4</td>
<td>8</td>
<td>42</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>Grade 8</td>
<td>2</td>
<td>25</td>
<td>56</td>
<td>17</td>
</tr>
</tbody>
</table>

NOTE: Detail may not sum to totals because of rounding.

Table C.
Percentage of students in twelfth-grade NAEP science, by their responses to a question about doing various activities during the year in science class: 2009

<table>
<thead>
<tr>
<th>In your science class this year, how often do you do the following activities?</th>
<th>Never or hardly ever</th>
<th>Once every few weeks</th>
<th>About once a week</th>
<th>Two to three times a week</th>
<th>Every day or almost every day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write a report on your science project or activity</td>
<td>39</td>
<td>33</td>
<td>20</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Design a science experiment</td>
<td>49</td>
<td>28</td>
<td>16</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE: Detail may not sum to totals because of rounding.

Table D.
Percentage of students in twelfth-grade NAEP science, by their responses to a question about taking a science course: 2009

<table>
<thead>
<tr>
<th>Are you currently taking a science course?</th>
<th>Percentage of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>53</td>
</tr>
<tr>
<td>No</td>
<td>47</td>
</tr>
</tbody>
</table>

NOTE: Detail may not sum to totals because of rounding.

U.S. Department of Education

The National Assessment of Educational Progress (NAEP) is a congressionally authorized project sponsored by the U.S. Department of Education. The National Center for Education Statistics, within the Institute of Education Sciences, administers NAEP. The Commissioner of Education Statistics is responsible by law for carrying out the NAEP project.

Arne Duncan
Secretary
U.S. Department of Education

John Q. Easton
Director
Institute of Education Sciences

Jack Buckley
Commissioner
National Center for Education Statistics

Peggy G. Carr
Associate Commissioner for Assessment
National Center for Education Statistics

The National Assessment Governing Board

In 1988, Congress created the National Assessment Governing Board to set policy for the National Assessment of Educational Progress, commonly known as The Nation’s Report Card™. The Governing Board is an independent, bipartisan group whose members include governors, state legislators, local and state school officials, educators, business representatives, and members of the general public.

Honorable David P. Driscoll, Chair
Former Commissioner of Education
Melrose, Massachusetts

Mary Frances Taymans, Vice Chair
Nonpublic School Representative
Bethesda, Maryland

Andrés Alonso
Chief Executive Officer
Baltimore City Public Schools
Baltimore, Maryland

David J. Alukonis
Former Chairman
Hudson School Board
Hudson, New Hampshire

Louis M. Fabrizio
Data, Research and Federal Policy Director
North Carolina Department of Public Instruction
Raleigh, North Carolina

Honorable Anitere Flores
Senator
Florida State Senate
Miami, Florida

Alan J. Friedman
Consultant
Museum Development and Science Communication
New York, New York

Shannon Garrison
Fourth-Grade Teacher
Solano Avenue Elementary School
Los Angeles, California

Doris R. Hicks
Principal and Chief Executive Officer
Dr. Martin Luther King, Jr. Charter School for Science and Technology
New Orleans, Louisiana

Honorable Terry Holliday
Commissioner of Education
Kentucky Department of Education
Lexington, Kentucky

Richard Brent Houston
Principal
Shawnee Middle School
Shawnee, Oklahoma

Hector Ibarra
Middle School Science Teacher
Belin-Blank International Center and Talent Development
Iowa City, Iowa

Honorable Tom Luna
Idaho Superintendent of Public Instruction
Boise, Idaho

Honorable Jack Markell
Governor of Delaware
Wilmington, Delaware

Tonya Miles
General Public Representative
Mitchellville, Maryland

Dale Nowlin
Twelfth-Grade Teacher
Columbus North High School
Columbus, Indiana

Honorable Sonny Perdue
Former Governor of Georgia
Atlanta, Georgia

Susan Pimentel
Educational Consultant
Hanover, New Hampshire

W. James Popham
Professor Emeritus
Graduate School of Education and Information Studies
University of California, Los Angeles

Andrew C. Porter
Dean
Graduate School of Education
University of Pennsylvania
Philadelphia, Pennsylvania

B. Fielding Rolston
Chairman
Tennessee State Board of Education
Kingsport, Tennessee

Cary Sneider
Associate Research Professor
Portland State University
Portland, Oregon

Blair Taylor
President and CEO
Los Angeles Urban League
Los Angeles, California

Honorable Leticia Van de Putte
Senator
Texas State Senate
San Antonio, Texas

Eileen L. Weiser
General Public Representative
Ann Arbor, Michigan

Honorable Sonny Perdue
Former Governor of Georgia
Atlanta, Georgia

John Q. Easton (Ex officio)
Director
Institute of Education Sciences
U.S. Department of Education
Washington, D.C.

Cornelia S. Orr
Executive Director
National Assessment Governing Board
Washington, D.C.

More Information

The report release site is http://nationsreportcard.gov. The NCES Publications and Products address is http://nces.ed.gov/pubsearch. For ordering information, write to ED Pubs U.S. Department of Education P.O. Box 22207 Alexandria, VA 22304 or call toll free 1-877-4-ED-Pubs or order online at http://www.edpubs.gov.

THE NATION’S REPORT CARD

Science in Action: Hands-On and Interactive Computer Tasks From the 2009 Science Assessment

June 2012

Suggested Citation

Content Contact

Emmanuel Sikali • 202-502-7419 emmanuel.sikali@ed.gov

This report was prepared for the National Center for Education Statistics under Contract No. ED-07-CO-0107 with Educational Testing Service. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.

“The Department of Education’s mission is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.”

www.ed.gov