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Abstract 
Collinearities among explanatory variables in linear regression models affect estimates from survey data just as they do 
in non-survey data. Undesirable effects are unnecessarily infated standard errors, spuriously low or high t-statistics, 
and parameter estimates with illogical signs. The available collinearity diagnostics are not generally appropriate for 
survey data because the variance estimators they incorporate do not properly account for stratifcation, clustering, 
and survey weights. In this article, we derive condition indexes and variance decompositions to diagnose collinearity 
problems in complex survey data. The adapted diagnostics are illustrated with data based on a survey of health 
characteristics. 
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1 Introduction 

When predictor variables in a regression model are correlated with each other, this condition is referred to as collinear-
ity. Undesirable side effects of collinearity are unnecessarily high standard errors, spuriously low or high t-statistics, 
and parameter estimates with illogical signs or ones that are overly sensitive to small changes in data values. In ex-
perimental design, it may be possible to create situations where the explanatory variables are orthogonal to each other, 
but this is not true with observational data. Belsley (1991) noted that: "... in nonexperimental sciences, ..., collinearity 
is a natural law in the data set resulting from the uncontrollable operations of the data-generating mechanism and is 
simply a painful and unavoidable fact of life." In many surveys, variables that are substantially correlated are col-
lected for analysis. Few analysts of survey data have escaped the problem of collinearity in regression estimation, 
and the presence of this problem encumbers precise statistical explanation of the relationships between predictors and 
responses. 

Although many regression diagnostics have been developed for non-survey data, there are considerably fewer for 
survey data. The few articles that are available concentrate on identifying infuential points and infuential groups with 
abnormal data values or survey weights. Elliot (2007) developed Bayesian methods for weight trimming of linear and 
generalized linear regression estimators in unequal probability-of-inclusion designs. Li (2007a,b) and Li & Valliant 
(2011, 2009) extended a series of traditional diagnostic techniques to regression on complex survey data. Their papers 
cover residuals and leverages, several diagnostics based on case-deletion (DFBETA, DFBETAS, DFFIT, DFFITS, and 
Cook’s Distance), and the forward search approach. Although an extensive literature in applied statistics provides 
valuable suggestions and guidelines for data analysts to diagnose the presence of collinearity (e.g., Belsley et al. 1980; 
Belsley 1991; Farrar & Glauber 1967; Fox 1986; Theil 1971), almost none of this research touches upon diagnostics 
for collinearity when ftting models with survey data. One prior, survey-related paper on collinearity problems is (Liao 
& Valliant, 2010) which adapted variance infation factors for linear models ftted with survey data. 
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Suppose the underlying structural model in the superpopulation is Y = XT β + e. The matrix X is an n ×p matrix of 
predictors with n being the sample size; β is a p × 1 vector of parameters. The error terms in the model have a general 
variance structure e ∼ (0, σ2R) where σ2 is an unknown constant and R is a unknown n × n covariance matrix. 
Defne W to be the diagonal matrix of survey weights. We assume throughout that the survey weights are constructed 
in such a way that they can be used for estimating fnite population totals. The survey weighted least squares (SWLS) 
estimator is 

β̂SW = (X
T WX)−1XT WY ≡ A−1XT WY , 

W −1assuming A = XT X is invertible. Fuller (2002) describes the properties of this estimator. The estimator 
β̂SW is model unbiased for β under the model Y = XT β + e regardless of whether V arM (e) = σ2R is specifed 
correctly or not, and is approximately design-unbiased for the census parameter BU = (XU

T XU )
−1 XU

T Y U , in 
the fnite population U of N units. The fnite population values of the response vector and matrix of predictors are 
Y U = (Y1, ..., YN )

T , and XU = (X1, ..., Xp) with Xk being the N × 1 vector of values for covariate k. 

The remainder of the paper is organized as follows. Section 2 reviews results on condition numbers and variance 
decompositions for ordinary least squares. These are extended to be appropriate for survey estimation in section 3. 
The fourth section gives some numerical illustrations of the techniques. Section 5 is a conclusion. In most derivations, 
we use model-based calculations since the forms of the model-variances are useful for understanding the effects of 
collinearity. However, when presenting variance decompositions, we use estimators that have both model- and design-
based justifcations. 

2 Condition Indexes and Variance Decompositions in Ordinary Least Squares Estimation 

In this section we briefy review techniques for diagnosing collinearity in ordinary least squares (OLS) estimation 
based on condition indexes and variance decompositions. These methods will be extended in section 3 to cover 
complex survey data. 

2.1 Eigenvalues and Eigenvectors of XT X 

When there is an exact (perfect) collinear relation in the n × p data matrix X , we can fnd a set of values, v = 
(v1, . . . , vp), not all zero, such that 

v1X1 + · · · + vpXp = 0, or Xv = 0. (1) 

However, in practice, when there exists no exact collinearity but some near dependencies in the data matrix, it may be 
possible to fnd one or more non-zero vectors v such that Xv = a with a 6= 0 but close to 0. Alternatively, we might 
say that a near dependency exists if the length of vector a, kak, is small. To normalize the problem of fnding the set 
of v’s that makes kak small, we consider only v with unit length, that is, with kvk = 1. Belsley (1991) discusses 
the connection of the eigenvalues and eigenvectors of XT X with the normalized vector v and kak. The minimum 
length kak is simply the positive square root of the smallest eigenvalue of XT X . The v that produces the a with 
minimum length must be the eigenvector of XT X that corresponds to the smallest eigenvalue. As discussed in the 
next section, the eigenvalues and eigenvectors of X are related to those of XT X and have some advantages when 
examining collinearity. 

2.2 Singular-Value Decomposition, Condition Number and Condition Indexes 

The singular-value decomposition (SVD) of matrix X is very closely allied to the eigensystem of XT X , but with 
its own advantages. The n × p matrix X can be decomposed as X = UDV T , where UT U = V T V = Ip and 
D = diag(µ1, . . . , µp) is the diagonal matrix of singular values (or eigenvalues) of X . Here, the three components 
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in the decomposition are matrices with very special, highly exploitable properties: U is n × p (the same size as X) 
and is column orthogonal; V is p × p and both row and column orthogonal; D is p × p, nonnegative and diagonal. 
Belsley et al. (1980) felt that the SVD of X has several advantages over the eigen system of XT X , for the sake 
of both statistical usages and computational complexity. For prediction, X is the focus not the cross-product matrix 
XT X since Ŷ = Xβ̂. In addition, the lengths kak of the linear combinations (1) of X that are relate to collinearity 
are properly defned in terms of the square roots of the eigenvalues of XT X , which are the singular values of X . 
A secondary consideration, given current computing power, is that the singular value decomposition of X avoids the 
additional computational burden of forming XT X , an operation involving np2 unneeded sums and products, which 
may lead to unnecessary truncation error. 

The condition number of X is defned as κ(X) = µmax/µmin, where µmax and µmin are the maximum and min-
imum singular values of X . Condition indexes are defned as ηk = µmax/µk. The closer that µmin is to zero, the 
nearer XT X is to being singular. Empirically, if a value of κ or η exceeds a cutoff value of, say, 10 to 30, two or 
more columns of X have moderate or strong relations. The simultaneous occurrence of several large ηk’s is always 
remarkable for the existence of more than one near dependency. 

One issue with the SVD is whether the X’s should be centered around their means. Marquardt (1980) maintained 
that the centering of observations removes nonessential ill conditioning. In contrast, Belsley (1984) argues that mean-
centering typically masks the role of the constant term in any underlying near-dependencies. A typical case is a 
regression with dummy variables. For example, if gender is one of the independent variables in a regression and 
most of the cases are male (or female), then the dummy for gender can be strongly collinear with the intercept. The 
discussions following Belsley (1984) illustrate the differences of opinion that occur among practitioners (Wood, 1984; 
Snee & Marquardt, 1984; Cook, 1984). Moreover, in linear regression analysis, Wissmann et al. (2007) found that 
the degree of multicollinearity with dummy variables may be infuenced by the choice of reference category. In this 
article, we do not center the X’s but will illustrate the effect of the choice of reference category in Section 4. 

Another problem with the condition number is that it is affected by the scale of the x measurements (Steward, 1987). 
By scaling down any column of X , the condition number can be made arbitrarily large. This situation is known as 
artifcial ill-conditioning. Belsley (1991) suggests scaling each column of the design matrix X using the Euclidean 
norm of each column before computing the condition number. This method is implemented in SAS and the package 
perturb of the statistical software R (Hendrickx, 2010). Both use the root mean square of each column for scaling as its 
standard procedure. The condition number and condition indexes of the scaled matrix X are referred to as the scaled 
condition number and scaled condition indexes of the matrix X . Similarly, the variance decomposition proportions 
relevant to the scaled X (which will be discussed in next section) will be called the scaled variance decomposition 
proportions. 

2.3 Variance Decomposition Method 

To assess the extent to which near dependencies (i.e., having high condition indexes of X and XT X) degrade the 
estimated variance of each regression coeffcient, Belsley et al. (1980) reinterpreted and extended the work of Silvey 
(1969) by decomposing a coeffcient variance into a sum of terms each of which is associated with a singular value. In 
the remainder of this section, we review the results of ordinary least squares (OLS) under the model EM (Y ) = Xβ 
and V arM (Y ) = σ2In where In is the n × n identity matrix. These results will be extended to survey weighted least 
squares in section 3. Recall that the model variance-covariance matrix of the OLS estimator β̂ = (XT X)−1XT Y 
under the model with V arM (Y ) = σ2In is V arM (β̂) = σ2(XT X)−1. Using the SVD, X = UDV T , V arM (β̂) 
can be written as: 

V arM (β̂) = σ2[(UDV T )T (UDV T )]−1 = σ2V D−2V T (2) 

and the kth diagonal element in V arM (β̂) is the estimated variance for the kth coeffcient, β̂k. Using (2), V arM (β̂k) 
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can be expressed as: 

2vkj 
V ar(β̂k) = σ2Σp

j=1 2 (3) 
µj 

2 Σpwhere V = (vkj )p×p. Let φkj = vkj /µj 
2 , φk = j=1φkj and Q = (φkj )p×p = (V D−1) · (V D−1), where · 

is the Hadamard (elementwise) product. The variance-decomposition proportions are πjk = φjk/φk, which is the 
proportion of the variance of the kth regression coeffcient associated with the jth component of its decomposition in 

−1¯(3). Denote the variance decomposition proportion matrix as Π = (πjk)p×p = QT Q , where Q̄ is the diagonal 
matrix with the row sums of Q on the main diagonal and 0 elsewhere. 

If the model is EM (Y ) = Xβ, V arM (Y ) = σ2W −1 and weighted least squares is used, then 
β̂W LS = (XT WX)−1XT WY and V arM (β̂W LS ) = σ2(XT WX)−1 . The decomposition in (3) holds with 

W 1/2X̃ = X being decomposed as X̃ = UDV T . However, in survey applications, it will virtually never be the 
case that the covariance matrix of Y is σ2W −1 if W is the matrix of survey weights. Section 3 covers the more 
realistic case. 

In the variance decomposition (3), other things being equal, a small singular value µj can lead to a large component 
of V ar(β̂k). However, if vkj is small too, then V ar(β̂k) may not be affected by a small µj . One extreme case is when 
vkj = 0. Suppose the kth and jth columns of X belong to separate orthogonal blocks. Let X ≡ [X1, X2] with 
XT 

1 X2 = 0 and let the singular-value decompositions of X1 and X2 be given, respectively, as X1 = U1D11V T 
11 

and X2 = U 2D22V T Since U 1 and U 2 are the orthogonal bases for the space spanned by the columns of X122. 
and X2 respectively, XT 

1 X2 = 0 implies U T 
1 U 2 = 0 and U ≡ [U1, U2] is column orthogonal. The singular value 

decomposition of X is simply X = UDU T , with: 2 � � 
D11 0 

D = (4)
0 D22 

and � � 
V 11 0 

V = . (5)
0 V 22 

Thus V 12 = 0. An analogous result clearly applies to any number of mutually orthogonal subgroups. Hence, if all 
the columns in X are orthogonal, all the vkj = 0 when k 6 j and πkj = 0 likewise. When vkj is nonzero, this is a = 
signal that predictors k and j are not orthogonal. 

Since at least one vkj must be nonzero in (3), this implies that a high proportion of any variance can be associated with 
a large singular value even when there is no collinearity. The standard approach is to check a high condition index 
associated with a large proportion of the variance of two or more coeffcients when diagnosing collinearity, since there 
must be two or more columns of X involved to make a near dependency. Belsley et al. (1980) suggested showing the 
matrix Π and condition indexes of X in a variance decomposition table as below. If two or more elements in the jth 

row of matrix Π are relatively large and its associated condition index ηj is large too, it signals that near dependencies 
are infuencing regression estimates. 

Condition Proportions of variance 
Index V arM ( ̂β1) V arM ( ̂β2) · · · V arM ( ̂βp) 
η1 π11 π12 · · · π1p 
η2 π21 π22 · · · π2p 
. . . . . . . . . . . . 
ηp πp1 πp2 · · · πpp 
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3 Adaptation in Survey-Weighted Least Squares 

3.1 Condition Indexes and Variance Decomposition Proportions 

In survey-weighted least squares (SWLS), we are more interested in the collinear relations among the columns in the 
T

matrix X̃ = W 1/2X instead of X , since β̂SW = ( X̃ X̃)−1X̃Ỹ . Defne the singular value decomposition of X̃ to 
be X̃ = UDV T , where U , V , and D are usually different from the ones of X , due to the unequal survey weights. 

The condition number of X̃ is defned as κ(X̃) = µmax/µmin, where µmax and µmin are maximum and minimum 
singular values of X̃ . The condition number of X̃ is also usually different from the condition number of the data 
matrix X due to unequal survey weights. Condition indexes are defned as 

ηk = µmax/µk, k = 1, ..., p (6) 

where µk is one of the singular values of X̃ . The scaled condition indexes and condition numbers are the condition 
˜indexes and condition numbers of the scaled X . 

Based on the extrema of the ratio of quadratic forms (Lin, 1984), the condition number κ(X̃) is bounded in the range 
of: 

1/2 1/2 
w wmaxmin κ(X) ≤ κ(X̃) ≤ κ(X), (7)
1/2 1/2 

w wmax min 

where wmin and wmax are the minimum and maximum survey weights. This expression indicates that if the survey 
weights do not vary too much, the condition number in SWLS resembles the one in OLS. However, in a sample with 
a wide range of survey weights, the condition number can be very different between SWLS and OLS. When SWLS 
has a large condition number, OLS might not. In the case of exact linear dependence among the columns of X , the 
columns of X̃ will also be linearly dependent. In this extreme case at least one eigenvalue of X will be zero, and both 
κ(X) and κ(X̃) will be infnite. As in OLS, large values of κ or of the ηk’s of 10 or more may signal that two or more 
columns of X have moderate to strong dependencies. 

The model variance of the SWLS parameter estimator under a model with V arM (e) = σ2R is: 

V arM (β̂SW ) = σ2(XT WX)−1XT W RW X(XT WX)−1 

(8)T 
= σ2(X̃ X̃)−1G, 

where 
G = (gij )p×p = XT W RW X(XT WX)−1 (9) 

is the misspecifcation effect (MEFF) that represents the infation factor needed to correct standard results for the effect 
of intracluster correlation in clustered survey data and for the fact that V arM (e) = σ2R and not σ2W −1 (Scott & 
Holt, 1982). 

Using the SVD of X̃ , we can rewrite V arM (β̂SW ) as 

V arM (β̂SW ) = σ2V D−2V T G. (10) 

The kth diagonal element in V arM (β̂) is the estimated variance for the kth coeffcient, β̂k. Using (10), V arM (β̂k) 
can be expressed as: 

V ar(β̂k) = σ2Σp vkj (11)j=1 µ2 λkj 
j 

where λkj = Σ
p
i=1vij gik. if R = W −1, then G = Ip, λkj = vkj , and (11) reduces to (3). However, the situation is 

more complicated when G is not the identity matrix, i.e., when the complex design affects the variance of an estimated 

5 

http:dependent.In


regression coeffcient. If predictors k and j are orthogonal, vkj = 0 for k 6 j and the variance in (11) depends only = 
on the kth singular value and is unaffected by gij ’s that are non-zero. If predictor k and several j’s are not orthogonal, 
then λkj has contributions from all of those eigenvectors and from the off-diagonal elements of the MEFF matrix G. 
The term λkj then measures both non-orthogonality of x’s and effects of the complex design. 

Consequently, we can defne variance decomposition proportions and analogous to those for OLS but their interpre-
tation is less straightforward. Let φkj = vkj λkj /µ

2 
j , φk = Σp

j=1φkj and Q = (φkj )p×p = (V D−2) · (V T G)T . 
The variance-decomposition proportions are πjk = φjk/φk, which is the proportion of the variance of the kth regres-
sion coeffcient associated with the jth component of its decomposition in (11). Denote the variance decomposition 
proportion matrix as 

−1 
Π = (πjk)p×p = QT Q̄ , (12) 

¯where Q is the diagonal matrix with the row sums of Q on the main diagonal and 0 elsewhere. The interpretation of 
the proportions in (12) is not as clear-cut as for OLS because the effect of the MEFF matrix. Section 3.2 discusses the 
interpretation in more detail in the context of stratifed cluster sampling. 

Analogous to the method for OLS regression, a variance decomposition table can be formed like the one at the end of 
section 2. When two or more independent variables are collinear (or “nearly dependent"), one singular value should 
make a large contribution to the variance of the parameter estimates associated with those variables. For example, if 
the proportions π31 and π32 for the variances of β̂SW 1 and β̂SW 2 are large, this would say that the third singular value 
makes a large contribution to both variances and that the frst and second predictors in the regression are, to some 
extent, collinear. As shown in section 2.3, when the kth and jth columns in X are orthogonal, vkj = 0 and the jth 
singular value’s decomposition proportion πjk on V ar(β̂k) will be 0. 

Several special cases are worth noting. If R = W −1 as assumed in WLS, then G = I . The variance decomposition 
in (11) has the same form as (2) in OLS. However, having R = W −1 in survey data would be unusual since survey 
weights are not typically computed based on the variance structure of a model. Note that V is still different from the 
one in OLS and is one component of the SVD of X̃ instead of X . Another special case here is when R = I and the 
survey weights are equal, in which case the OLS results can be used. However, when the survey weights are unequal, 
even when R = I , the variance decomposition in (11) is different from (2) in OLS since G 6= I . In the next section, 
we will consider some special models that take the population features such as clusters and strata into account when 
estimating this variance decomposition. 

3.2 Variance Decomposition for A Model with Stratifed Clustering 

The model variance of β̂SW in (8) contains the unknown R that must be estimated. In this section, we present 
an estimator for β̂SW that is appropriate for a model with stratifed clustering. The variance estimator has both 
model-based and design-based justifcation. Suppose that in a stratifed multistage sampling design, there are strata 
h = 1, ..., H in the population, clusters i = 1, ..., Nh in stratum h and units t = 1, ..., Mhi in cluster hi. We select 
clusters i = 1, ..., nh in stratum h and units t = 1, ..., mhi in cluster hi. Denote the set of sample clusters in stratum hP 
by sh and the sample of units in cluster hi as shi. The total number of sample units in stratum h is mh = i∈sh 

mhi,PHand the total in the sample is m = h=1 mh. Assume that clusters are selected with varying probabilities and with 
replacement within strata and independently between strata. The model we consider is: 

TEM (Yhit) = x h = 1, . . . ,H, i = 1, . . . , Nh, t = 1, . . . ,Mhihitβ 
T = i0CovM (εhit, εhi0t0 ) = 0 where εhit = Yhit − xhitβ, i 6 (13) 

CovM (εhit, εh0i0t0 ) = 0 h 6= h0 . 
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Units within each cluster are assumed to be correlated but the particular form of the covariances does not have to be 
specifed for this analysis. The estimator β̂SW of the regression parameter can be written as: 

HX X T 
β̂SW = (X̃ X̃)−1XT

hiW hiY hi (14) 
h=1 i∈sh 

where Xhi is the mhi × p matrix of covariates for sample units in cluster hi, W hi = diag(wt), t ∈ shi, is the 
diagonal matrix of survey weights for units in cluster hi and Y hi is the mhi × 1 vector of response variables in cluster 
hi. The model variance of ˆ is:βSW 

T 
V arM (β̂SW ) = ( X̃ X̃)−1Gst (15) 

where " # 
HX X T 

Gst = Xhi
T W hiRhiW hiXhi (X̃ X̃)−1 

h=1 i∈sh " # (16)
HX T 

= Xh
T W hRhW hXh (X̃ X̃)−1 

h=1 

with Rhi = V arM (Y hi), W h = diag(W hi), and Rh = Blkdiag(Rhi), W h = diag(W hi), 
XT = (XT

h1, X
T ), i ∈ sh. = (XT 

1 , X2 
T , ..., XT 

h2, ..., X
T Expression (16) is a special case of (9) with XT

H ),h h,nh 

where Xh is the mh × p matrix of covariates for sample units in stratum h, W = diag(W hi), for h = 1, ..., H and 
i ∈ sh and R = Blkdiag(Rh). 

Based on the development in Scott & Holt (1982, sec. 4), the MEFF matrix Gst can be rewritten for a special case of 
Rh in a way that will make the decomposition proportions in (12) more understandable. Consider the special case of 
(13) with 

CovM (ehi) = σ2(1 − ρ)Imhi + σ2ρ1mhi 1
T 
mhi 

where Imhi is the mhi × mhi identity matrix and 1mhi is a vector of mhi 1’s. In that case, X 
XT

h W hRhW hXh = (1 − ρ)XT
h W 2 

hXh + ρ mhiX
T 

hiXBhi BhiW 2 

i∈sh 

−1 1Twhere XBhi = m Xhi. Suppose that the sample is self-weighting so that W hi = . After some hi 1mhi mhi 
wImhi 

simplifcation, it follows that 
Gst = w[Ip + (M − Ip)ρ] PH P 

where Ip is the p × p identity matrix and M = ( mhiX
T
BhiXBhi)(X

T WX)−1. Thus, if the sample h=1 i∈sh 

is self-weighting and ρ is very small, then Gst ≈ wIp and V arM (β̂SW ) in (15) will be approximately the same 
as the OLS variance. If so, the SWLS variance decomposition proportions will be similar to the OLS proportions. 

TIn regression problems, ρ often is small since it is the correlation of the errors, εhit = Yhit − xhitβ, for different 
units rather than for Y hit’s. This is related to the phenomenon that design effects for regression coeffcients are often 
smaller than for means-a fact frst noted by Kish & Frankel (1974). In applications where ρ is larger, the variance 
decomposition proportions in (12) will still be useful in identifying collinearity although they will be affected by 
departures of the model errors from independence. 

Denote the cluster-level residuals as a vector, ehi = Y hi − Xhiβ̂SW . The estimator of (15) that we consider was 
originally derived from design-based considerations. A linearization estimator, appropriate when clusters are selected 
with replacement, is: 

T 
varL(β̂SW ) = ( X̃ X̃)−1ĜL (17) 
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with the estimated misspecifcation effect as " # 
HX Xnh T∗ ∗ ∗ ∗ ĜL = (ĝij )p×p = (zhi − z̄h)(zhi − z̄h)

T (X̃ X̃)−1 , (18) 
nh − 1 

h=1 i∈sh P∗ 1 ∗ ∗ = XT ˆwhere z̄ = z and z hiW hiehi with ehi = Y hi − Xhi , and the variance-covariance matrix h i∈s hi hi βSW nh h iPHˆ nh T 1 TR can be estimated by R = Blkdiag(ehie ) − ehe .h=1 nh−1 hi nh h 

Expression (17) is used by the Stata and SUDAAN packages, among others. The estimator varL(β̂SW ) is consistent 
and approximately design-unbiased under a design where clusters are selected with replacement (Fuller, 2002). The 
estimator in (17) is also an approximately model-unbiased estimator of (15) (see Liao, 2010). Since the estimator 
varL(β̂SW ) is also currently available in software packages, we will use it in the empirical work in section 4. 

Using (12) derived in section 2, the variance decomposition proportion matrix Π for varL(β̂SW ) can then be written 
as 

−1 
Π = (πjk)p×p = QT Q̄ (19)L L 

ˆ ¯with QL = (φkj )p×p = (U 2D−2) · (U2 
T GL)

T and QL is the diagonal matrix with the row sums of QL on the main 
diagonal and 0 elsewhere. 

4 Numerical Illustrations 

In this section, we will illustrate the collinearity measures described in section 3 and investigate their behaviors using 
the dietary intake data from 2007-2008 National Health and Nutrition Examination Survey (NHANES). 

4.1 Description of the Data 

The dietary intake data are used to estimate the types and amounts of foods and beverages consumed during the 24-
hour period prior to the interview (midnight to midnight), and to estimate intakes of energy, nutrients, and other food 
components from those foods and beverages. NHANES uses a complex, multistage, probability sampling design; 
oversampling of certain population subgroups is done to increase the reliability and precision of health status indicator 
estimates for these groups. Among the respondents who received the in-person interview in the mobile examination 
center (MEC), around 94% provided complete dietary intakes. The survey weights were constructed by taking MEC 
sample weights and further adjusting for the additional nonresponse and the differential allocation by day of the week 
for the dietary intake data collection. These weights are more variable than the MEC weights. The data set used in 
our study is a subset of 2007-2008 data composed of female respondents aged 26 to 40. Observations with missing 
values in the selected variables are excluded from the sample which fnally contains 672 complete respondents. The 
fnal weights in our sample range from 6,028 to 330,067, with a ratio of 55:1. The U.S. National Center for Health 
Statistics recommends that the design of the sample is approximated by the stratifed selection with replacement of 32 
PSUs from 16 strata, with 2 PSUs within each stratum. 

4.2 Study One: Correlated Covariates 

In the frst empirical study, a linear regression model of respondent’s body mass index (BMI) was considered. The 
explanatory variables considered included two demographic variables, respondent’s age and race (Black/Non-black), 
four dummy variables for whether the respondent is on a special diet of any kind, on a low-calorie diet, on a low-fat 
diet, and on a low-carbohydrate diet (when he/she is on diet, value equals 1, otherwise 0), and ten daily total nutrition 
intake variables, consisting of total calories (100kcal), protein (100gm), carbohydrate (100gm), sugar (100gm), dietary 
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fber (100gm), alcohol (100gm), total fat (100gm), total saturated fatty acids (100gm), total monounsaturated fatty 
acids (100gm), and total polyunsaturated fatty acids (100gm). The correlation coeffcients among these variables are 
displayed in Table 2. Note that the correlations among the daily total nutrition intake variables are often high. For 
example, the correlations of the total fat intakes with total saturated fatty acids, total monounsaturated fatty acids and 
total polyunsaturated fatty acids are 0.85, 0.97 and 0.93. 

Three types of regressions were ftted for the selected sample to demonstrate different diagnostics. More details about 
these three regression types and their diagnostic statistics are displayed in Table 1. 
TYPE1: OLS regression with estimated σ2; the diagnostic statistics are obtained using the standard methods reviewed 
in section 2; 
TYPE2: WLS regression with estimated σ2 and assuming R = W −1; the scaled condition indexes are estimated 
using (6) and the scaled variance decomposition proportions are estimated using (12). With R = W −1, these are the 
variance decompositions that will be produced by standard software using WLS and specifying the weights to be the 
survey weights; 
TYPE3: SWLS with estimated R̂, when σ2R is unknown; the scaled condition indexes are estimated using (6); the 
scaled variance decomposition proportions are estimated using (12). 

Table 1: Regression Models and their Collinearity Diagnostic Statistics used in this Experimental Study 
Type Regression Weight var(β̂) var( ̂βk ) Matrix for Variance Decomposition Proportion πjk 

Method matrix Condition 
W a Indexes b 

TYPE1 

TYPE2 

TYPE3 

OLS 

WLS 

SWLS 

I 

W 

W 

σ̂2(XT X)−1 

σ̂2(XT W X)−1 

σ̂2(XT W X)−1XT W R̂W X(XT W X)−1 h iPHˆ nh T 1 TR = h=1 nh−1 Blkdiag(ehiehi) − ehe 
nh h 

u 2 

σ2Σp 2kj c 
j=1 µ2 

j 
u 2 

σ2Σp 2kj d 
j=1 µ2 

j 
p 

σ2Σp u2kj Σi=1 ̂giku2ij e 
j=1 µ2 

j 

XT X 

XT W X 

XT W X 

u 2 2 
2kj u 

/Σp 2kj 
µ2 j=1 2 
j µj 

u 2 2 
2kj u 

/Σp 2kj 
µ2 j=1 2 
j µ

p j 
p

u2kj Σi=1 ̂giku2ij ˆ
/Σp u2kj Σi=1giku2ij 

µ2 j=1 2 
j µj 

aIn all the regression models, the parameters are estimated by: β̂ = (XT WX)−1XT WY . 
bThe eigenvalues of this matrix will be used to compute the Condition Indexes for the corresponding regression model. 
cThe terms u2kj and µj are from the singular value decomposition of the data matrix X . 
dThe terms u2kj and µj are from the singular value decomposition of the weighted data matrix X̃ = W 1/2X . 
eThe terms u2kj and µj are from the singular value decomposition (SVD) of the weighted data matrix X̃ . The term ĝik is the unit 

element of misspecifcation effect matrix Ĝ. 

Their diagnostic statistics, including the scaled condition indexes and variance decomposition proportions are reported 
in Tables 3, 4 and 5, respectively. To make the tables more readable, only the proportions that are larger than 0.3 are 
shown. Proportions that are less than 0.3 are shown as dots. Note that some terms in decomposition (12) can be 
negative. This leads to the possibility of some "proportions" being greater than 1. This occurs in fve cases in Table 
5. Belsley et al. (1980) suggest that a condition index of 10 signals that collinearity has a moderate effect on standard 
errors; an index of 100 would indicate a serious effect. In this study, we consider a scaled condition index greater than 
10 to be relatively large, and ones greater than 30 as large and remarkable. Furthermore, the large scaled variance-
decomposition proportions (greater than 0.3) associated with each large scaled condition index will be used to identify 
those variates that are involved in a near dependency. 

In Tables 3, 4 and 5, the weighted regression methods, WLS and SWLS, used the survey-weighted data matrix X̃
to obtain the condition indexes while the unweighted regression method, OLS, used the data matrix X . The largest 
scaled condition index in WLS and SWLS is 566, which is slightly smaller than the one in OLS, 581. Both of these 
values are much larger than 30 and, thus, signal a severe near-dependency among the predictors in all three regression 
models. Such large condition numbers imply that the inverse of the design matrix, XT WX , may be numerically 
unstable, i.e., small changes in the x data could make large changes in the elements of the inverse. 

The values of the decomposition proportions for OLS and WLS are very similar and lead to the same predictors being 
identifed as potentially collinear. Results for SWLS are somewhat different as sketched below. In OLS and WLS, 
six daily total nutrition intake variables–calorie, protein, carbohydrate, alcohol, dietary fber and total fat–are involved 
in the dominant near-dependency that is associated with the largest scaled condition index. Four daily fat intake 
variables, total fat, total saturated fatty acids, total monounsaturated fatty acids and total polyunsaturated fatty acids, 
are involved in the secondary near-dependency that is associated with the second largest scaled condition index. A 
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moderate near-dependency between intercept and age is also shown in all three tables. The associated scaled condition 
index is equal to 38 in OLS and 37 in WLS and SWLS. However, when SWLS is used, sugar, total saturated fatty acids 
and total polyunsaturated fatty acids also appear to be involved in the dominant near-dependency as shown in Table 
5. While, only three daily fat intake variables, total saturated fatty acids, total monounsaturated fatty acids and total 
polyunsaturated fatty acids, are involved in the secondary near-dependency that is associated with the second largest 
scaled condition index. Thus, when OLS or WLS is used, the impact of near-dependency among sugar, total saturated 
fatty acids, total polyunsaturated fatty acids and the six daily total nutrition intake variables is not as strong as the ones 
in SWLS. If conventional OLS or WLS diagnostics are used for SWLS, this near-dependency might be overlooked. 

Rather than using the scaled condition indexes and variance decomposition method (in Tables 3, 4 and 5), an ana-
lyst might attempt to identify collinearities by examining the unweighted correlation coeffcient matrix in Table 2. 
Although the correlation coeffcient matrix shows that almost all the daily total nutrition intake variables are highly 
or moderately pairwise correlated, it cannot be used to reliably identify the near-dependencies among these variables 
when used in a regression. For example, the correlation coeffcient between "on any diet" and "on low-calorie diet" is 
relatively large (0.73). This near dependency is associated with a scaled condition index equal to 11 (larger than 10, 
but less than the cutoff of 30) in OLS and WLS (shown in Table 3 and 4) and is associated with a scaled condition 
index equal to 2 (less than 10) in SWLS (shown in Table 5). The impact of this near dependency appears to be not 
very harmful not matter which regression method is used. On the other hand, alcohol is weakly correlated with all the 
daily total nutrition intake variables but is highly involved in the dominant near-dependency shown in the last row of 
Tables 3-5. 
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After the collinearity patterns are diagnosed, the common corrective action would be to drop the correlated variables, 
reft the model and reexamine standard errors, collinearity measures and other diagnostics. Omitting X’s one at a 
time may be advisable because of the potentially complex interplay of explanatory variables. In this example, if the 
total fat intake is one of the key variables that an analyst feels must be kept, sugar might be dropped frst followed by 
protein, calorie, alcohol, carbohydrate, total fat, dietary fber, total monounsaturated fatty acids, total polyunsaturated 
fatty acids and monounsaturated fatty acids. Other remedies for collinearity could be to transform the data or use some 
specialized techniques such as ridge regression and mixed Bayesian modeling, which require extra (prior) information 
beyond the scope of most research and evaluations. 

To demonstrate how the collinearity diagnostics can improve the regression results in this example, Table 6 presents 
the SWLS regression analysis output of the original models with all the explanatory variables and a reduced model 
with fewer explanatory variables. In the reduced model, all of the dietary intake variables are eliminated except total 
fat intake. After the number of correlated offending variables is reduced, the standard error of total fat intake is only the 
one forty-sixth of its standard error in the original model. The total fat intake becomes signifcant in the reduced model. 
The reduction of correlated variables appears to have substantially improved the accuracy of estimating the impact of 
total fat intake on BMI. Note that the collinearity diagnostics do not provide a unique path toward a fnal model. 
Different analysts may make different choices about whether particular predictors should be dropped or retained. 

Table 6: Regression Analysis Output using TYPE3: SWLS 
Original Model Reduced Model 

Variable Coeffcient SEa Coeffcient SE 
Intercept 24.14***b 2.77 24.20*** 2.69 
Age 0.06 0.08 0.06 0.08 
Black 3.19*** 1.04 3.67*** 0.98 
on any Dietc 1.79 1.52 1.28 1.80 
on Low-calorie Diet 4.09** 1.50 4.59** 1.69 
on Low-fat Diet 3.67 2.86 3.87 3.76 
on Low-carb Diet 0.46 3.51 0.87 3.86 
Calorie -0.88 2.36 
Protein 7.05 9.59 
Carbohydrate 3.69 9.62 
Sugar -0.31 1.11 
Dietary Fiber -14.52* 5.89 
Alcohol 2.09 16.47 
Total Fat 29.34 31.37 1.47* 0.68 
Total Saturated Fatty Acids -15.90 20.18 
Total Monounsaturated Fatty Acids -22.40 23.01 
Total Polyunsaturated Fatty Acids -27.69 21.10 
Intracluster Coeffcient ρ 0.0366 0.0396 

astandard error 
bp-value: *, 0.05; **, 0.01; ***, 0.005 
cThe reference category is "not being on diet" for all the on-diet variables here. 

4.3 Study Two: Reference Level for Categorical Variables 

As noted earlier, using non-survey data, dummy variables can also play an important role as a possible source for 
collinearity. The choice of reference level for a categorical variable may affect the degree of collinearity in the data. 
To be more specifc, choosing a category that has a low frequency as the reference and omitting that level in order to ft 
the model may give rise to collinearity with the intercept term. This phenomenon carries over to survey data analysis 
as we now illustrate. 

We employed the four on-diet dummy variables used in the previous study, which we denote this section as “on 
any diet" (DIET), “on low-calorie diet" (CALDIET), “on low-fat diet" (FATDIET) and “one low-carbohydrate diet" 
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(CARBDIET). The model considered here is: 

BMIhit = β0 + βblack ∗ blackhit + βTOTAL.FAT ∗ TOTAL.FAThit + βDIET ∗ DIEThit+ 
βCALDIET ∗ CALDIEThit + βFATDIET ∗ FATDIEThit+ (20) 

βCARBDIET ∗ CARBDIEThit + εhit 

where subscript hit stands for the tth unit in the selected PSU hi, black is the dummy variable of black (black=1 and 
non-black=0), and TOTAL.FAT is the variable of daily total fat intake. According to the survey-weighted frequency 
table, 15.04% of the respondents are “on any diet", 11.43% of them are “on low-calorie diet", 1.33% of them are 
“on low-fat diet" and 0.47% of them are “on low-carbohydrate diet". Being on a diet is, then, relatively rare in this 
example. If we choose the majority level, “not being on the diet", as the reference category for all the four on-diet 
dummy variables, we expect no severe collinearity between dummy variables and the intercept, because most of values 
in the dummy variables will be zero. However, when ftting model (20), assume that an analyst is interested to see 
the impact of “not on any diet" on respondent’s BMI and reverses the reference level of variable DIET in model 
(20) into “being on the diet". This change may cause a near dependency in the model because the column in X for 
variable DIET will nearly equal the column of ones for the intercept. The following empirical study will illustrate the 
impact of this change on the regression coeffcient estimation and how we should diagnose the severity of the resulting 
collinearity. 

Table 7 and 8 present the regression analysis output of the model in (20) using the three regression types, OLS, WLS 
and SWLS, listed in Table 1. Table 7 is modeling the effects of on-diet factors on BMI by treating “not being on the 
diet" as the reference category for all the four on-diet variables. While Table 8 changes the reference level of variable 
DIET from “not on any diet" into “On any diet" and models the effect of “not on any diet" on BMI. The choice of 
reference level effects the sign of the estimated coeffcient for variable DIET but not its absolute value or standard 
error. The size of the estimated intercept and its SE are different in Tables 7 and 8, but the estimable functions, like 
predictions, will of course, be the same with either set of reference levels. The SE of the intercept is about three times 
larger when “on any diet" is the reference level for variable DIET (Table 8) than when it is not (Table 7). 

Table 7: Regression Analysis Output: When “not on any diet" is the Reference Category for DIET variable 
in the Model 

Regression Intercept black total.fat on any diet on low-calorie diet on low-fat on low-carb diet 
Type diet 
TYPE1 27.22***a 3.20*** 0.95 3.03 1.75 2.75 -1.48 
OLS (0.61)b (0.70) (0.72) (1.94) (2.03) (2.72) (3.66) 
TYPE2 26.13*** 3.65*** 1.44* 1.39 4.46* 3.86 0.94 
WLS (0.58) (0.82) (0.67) (1.67) (1.79) (2.59) (4.22) 
TYPE3 26.13*** 3.65*** 1.44* 1.39 4.46** 3.86 0.94 
SWLS (0.64) (0.99) (0.63) (1.80) (1.70) (3.73) (3.87) 

ap-value: *, 0.05; **, 0.01; ***, 0.005 
bStandard errors are in parentheses under parameter estimates. 

Table 8: Regression Analysis Output: When “on any diet" is the Reference Category for DIET variable in 
the Model 

Regression Intercept black total.fat not on any on low-calorie diet on low-fat on low-carb diet 
Type diet diet 
TYPE1 30.25***a 3.20*** 0.95 -3.03 1.75 2.75 -1.48 
OLS (2.00)b (0.70) (0.72) (1.94) (2.03) (2.72) (3.66) 
TYPE2 27.52*** 3.65*** 1.44* -1.39 4.46* 3.86 0.94 
WLS (1.71) (0.82) (0.67) (1.67) (1.79) (2.59) (4.22) 
TYPE3 27.52*** 3.65*** 1.44* -1.39 4.46** 3.86 0.94 
SWLS (1.75) (0.99) (0.63) (1.80) (1.70) (3.73) (3.87) 

ap-value: *, 0.05; **, 0.01; ***, 0.005 
bStandard errors are in parentheses under parameter estimates. 

When choosing “not being on diet" as the reference category for all the four on-diet dummy variables in Table 9, the 
scaled condition indexes are relatively small and do not signify any remarkable near-dependency regardless of the 
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type of regression. Only the last row for the largest condition index is printed in Tables 9 and 10. Often, the reference 
category for a categorical predictor will be chosen to be analytically meaningful. In this example, using “not being on 
diet" for each of the four diet variables would be logical. 

In Table 10, when “on any diet" is chosen as the reference category for variable DIET, the scaled condition indexes 
are increased and show a moderate degree of collinearity (condition index larger than 10) between the on-diet dummy 
variables and the intercept. Using the table of scaled variance decomposition proportions, in OLS and WLS, dummy 
variable for “not on any diet"" and “on low-calorie diet" are involved in the dominant near-dependency with the inter-
cept; however, in SWLS, only the dummy variable for "not on any diet" is involved in the dominant near-dependency 
with the intercept and the other three on-diet variables are much less worrisome. 

Table 9: Largest Scaled Condition Indexes and Its Associated Variance Decomposition Proportions: When 
“not on any diet" is the Reference Category for variable DIET in the Model 

Scaled Scaled Proportion of the Variance of 
Condition Intercept gender total.fat on any diet on low-calorie diet on low-fat diet on low-carb 
Index diet 
TYPE1: OLS 
6 0.005 0.000 0.016 0.949 0.932 0.157 0.200 
TYPE2: WLS 
6 0.013 0.008 0.020 0.938 0.926 0.189 0.175 
TYPE3: SWLS 
6 0.006 0.007 0.013 0.686 0.741 0.027 0.061 

Table 10: Largest Scaled Condition Indexes and Its Associated Variance Decomposition Proportions: When 
“on any diet" is the Reference Category for variable DIET in the Model 

Scaled Scaled Proportion of the Variance of 
Condition Intercept gender total.fat not on any diet on low-calorie diet on low-fat diet on low-carb 
Index diet 
TYPE1: OLS 
17 0.982 0.001 0.034 0.968 0.831 0.155 0.186 
TYPE2: WLS 
17 0.982 0.011 0.029 0.968 0.820 0.182 0.160 
TYPE3: SWLS 
17 0.897 0.018 -0.006 0.971 0.318 0.014 -0.019 

5 Conclusion 

Dependence between predictors in a linear regression model ftted with survey data affects the properties of parameter 
estimators. The problems are the same as for non-survey data: standard errors of slope estimators can be infated and 
slope estimates can have illogical signs. In the extreme case when one column of the design matrix is exactly a linear 
combination of others, the estimating equations cannot be solved. The more interesting cases are ones where predictors 
are related but the dependence is not exact. The collinearity diagnostics that are available in standard software routines 
are not entirely appropriate for survey data. Any diagnostic that involves variance estimation needs modifcation to 
account for sample features like stratifcation, clustering, and unequal weighting. This paper adapts condition numbers 
and variance decompositions, which can be used to identify cases of less than exact dependence, to be applicable for 
survey analysis. 

A condition number of a survey-weighted design matrix W 1/2X is the ratio of the maximum to the minimum eigen-
value of the matrix. The larger the condition number the more nearly singular is XT WX , the matrix which must 
be inverted when ftting a linear model. Large condition numbers are a symptom of some of the numerical problems 
associated with collinearity. The terms in the decomposition also involve "misspecifcation effects" if the model errors 
are not independent as would be the case in a sample with clustering. The variance of an estimator of a regression 
parameter can also be written as a sum of terms that involve the eigenvalues of W 1/2X . The variance decompositions 
for different parameter estimators can be used to identify predictors that are correlated with each other. After identify-
ing which predictors are collinear, an analyst can decide whether the collinearity has serious enough effects on a ftted 
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model that action should be taken. The simplest step is to drop one or more predictors, reft the model, and observe 
how estimates change. The tools we provide here allow this to be done in a way appropriate for survey-weighted 
regression models. 
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