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Abstract 

This paper investigates the assumption that consumer preferences are homothetic. Under this sim-
plifcation, price indexes like the Chained CPI (C-CPI-U) measure changes in the cost of living for a 
representative consumer. An active area of research explores departures from homotheticity and their 
impact on infation measurement. Recently, Hottman and Monarch (2018) fnd evidence of nonhomoth-
eticity in demand for imported goods and substantial heterogeneity in import price infation experienced 
by different income groups. This paper replicates their model and estimation method using consumer 
scanner data. While I fnd this data also rejects homotheticity, it is not clear that it is suitable for consumer 
price index estimation using Hottman and Monarch’s formula because unrestricted parameter estimates 
fall outside of theoretical bounds. 
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1 Introduction 

The Bureau of Labor Statistics (BLS) aims to measure changes in the cost of living with the Consumer Price Index 
(CPI). The purpose of this project is to evaluate the assumption that consumer preferences are homothetic, under 
which price indexes like the Chained CPI (C-CPI-U) measure changes in the cost of living. In consumer theory, 
homotheticity means that the rate at which a consumer unit is willing to substitute one good for another is independent 
of its income level (National Research Council, 2002). This implies homogeneity in expenditure patterns across 
income groups (i.e., consumer units spend the same share of their total expenditures on food and housing regardless of 
differences in income).1 On the one hand, homotheticity is a convenient simplifcation; under this assumption, we can 
combine prices and aggregate expenditure weights using relatively simple index number formulas that have a powerful 
interpretation. On the other hand, empirical studies generally reject homotheticity’s prediction of constant expenditure 
shares across income groups (Deaton and Muellbauer, 1980). For instance, the Consumer Expenditure (CE) survey 
shows higher income deciles are associated with lower shares spent on food and housing (Bureau of Labor Statistics, 
2017). Therefore, it is quite sensible to explore the impact of heterogeneous behavior on infation measurement. 

Recently, Hottman and Monarch (2018) (henceforth HM) proposed a model of nonhomothetic consumer prefer-
ences and a method for estimating it using detailed transactions data. The model yields cost of living indexes that 
allow heterogeneity across income groups, a changing basket of goods, and shifts in demand. HM estimate the model 
using detailed trade data, and fnd signifcant heterogeneity in import price infation across income groups. As the 
issue of nonhomotheticity is also quite relevant for consumer price index measurement, and so I replicate HM’s model 
and estimation method using household scanner data from Nielsen. This study fts with a broader mission at the BLS 
to investigate alternative data sources and price index formulas. 
∗The views expressed herein are those of the author and not necessarily those of the Bureau of Labor Statistics or the U.S. Department of Labor. 
1The CPI-U implicitly assumes expenditure homogeneity across other characteristics as well, such as age, number of consumer units in the 

group, etc. 
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There is a substantial literature on the challenges of cost of living measurement. A comprehensive review is 
beyond the scope of this paper, but I select a few relevant references. First of all, Groshen et al. (2017) describe 
recent and current efforts at BLS and other agencies to account for issues like quality change and new goods, as 
well as the budgetary and feasibility constraints that exist within production environments. Moreover, heterogeneity 
and aggregation across households are among many issues discussed at length in recommendations by the National 
Research Council’s Panel on Conceptual, Measurement, and Other Statistical Issues in Developing Cost-of-Living 
Indexes (National Research Council, 2002). It reviews a number of post-WWII studies that fnd that heterogeneity 
in consumption patterns does not necessarily translate into signifcant variation in of infation rates across income 
groups. However, modest differences have occurred for periods of time. For example, Cage, Garner, and Ruiz-
Castillo (2002) fnd that differences in housing expenditure shares drove slightly lower price infation among lower 
income groups during the 1980s. However, some more recent studies have found more substantial consequences for 
aggregate measurement. For example, Oulton (2008) fnds evidence that in the United Kingdom from 1974-2004, the 
poor experienced higher infation than the rich. While their results do not necessarily generalize to other countries, 
their fnding that of a “path-dependence bias” in conventional chained indexes of as large as +0.45% or -0.43% per 
year (depending on the base year for utility) is striking. 2 

Hottman and Monarch (2018), whose work motivates this paper, fnd that higher income deciles in the U.S. expe-
rienced lower import price infation from 1998 to 2014. Unlike many previous studies, which simply aggregate price 
relatives with group-specifc expenditure weights, the HM model also allows for heterogeneous substitution patterns 
between very similar product varieties. However, they fnd that heterogeneity across sectoral spending patterns to 
be more important for driving differences in price infation. Finally, the HM proposal builds on previous efforts that 
use constant elasticity of substitution (CES) preferences to model consumer demand. Their model and identifcation 
strategy, for example, closely relate to price index methods that incorporate the impact of new goods and shifts in 
demand.3 

My initial results can be summarized as follows. Direct comparisons between my parameter estimates using Home-
scan and HM’s using trade data are diffcult due to substantial differences in data scope and detail. The Homescan 
data imply higher average price elasticities than HM’s estimates, though they are comparable to Broda and Weinstein 
(2010), who also use Homescan with a different model. Within the framework proposed by HM, I fnd the Home-
scan data also reject the standard homothetic CES model. However, unrestricted parameter estimates do not satisfy 
theoretical bounds, so I am cautious about the appropriateness of this model for index calculation using this particular 
dataset. 

This paper proceeds as follows. Section 2 reviews HM’s model and estimation procedure, while Section 3 describes 
the Homescan data and replication exercise. Section 4 presents and discusses the replication results. Finally, Section 
5 draws some preliminary conclusions and proposes some next steps. 

2 Review of model and estimation procedure 

In this section, I sketch the main elements of HM’s partial equilibrium model and reproduce their proposed cost of 
living index formulas. Consumer preferences, are based on the S-Branch utility tree of Brown and Heien (1972), while 
frms are assumed to be monopolistically competitive. Using the resulting demand and supply equations, HM use an 
extension of the Feenstra method to estimate the demand parameters that feed the cost of living index formula. 

2.1 Theoretical model 

2.1.1 Consumer preferences 

In each period t, households (indexed by h) choose quantities of product varieties (indexed by v) which belong to 
sectors (indexed by s). At the highest level of aggregation, consumer preferences are standard CES. Following HM’s 

2As an additional example, Handbury (2013) also uses Homescan data, though a different methodology, to estimate city-specifc price indexes 
that account for nonhomotheticity. 

3See Feenstra (1994), Broda and Weinstein (2006), Broda and Weinstein (2010), Hottman, Redding, and Weinstein (2016), and Redding and 
Weinstein (2016). This identifcation strategy is not without controversy—see Hausman (1996), for example. Estimators may also suffer from bias 
when time series are short in length (Soderbery, 2010, 2015). 
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notation, aggregate utility is given by: " # σ X σ−1 
σ−1 σ−1 
σ σVht = ϕ Q , (1)hst hst 

s∈S 

where Qhst is the consumption index for sector s, ϕhst is a demand shifter, σ is a substitution elasticity parameter, 
and S is the set of consumer goods sectors.4 

The departure from CES comes from the within-sector model, which compared to CES, includes an additional 
parameter αv for each variety. The sectoral consumption index is given by: 

σs 
σs−1 

" # X σs−1 σs−1 
σs σsQhst = ϕvt (qhvt − αv) , (2) 

v∈Gs 

where qhvt is household h’s quantity consumed of variety v in period t, σs is an elasticity parameter for sector s, 
Gs is the set of varieties in sector s, and ϕvt is a demand shifter.5 The αv can be loosely interpreted as subsistence 
quantities that must be consumed, though they are allowed to be negative. To satisfy regularity conditions for the 
utility maximization problem, σ, ϕhst, σs, and ϕvt must all be strictly positive, and we must have khv < αv < qhvt, 
where khv < 0 is a lower bound on αv .6 

The utility maximization problem is solved in two stages. First, for each sector s, qhvt is chosen to maximize the 
right hand side of Eq. 2 subject to a given sectoral budget allocation Yhst. The price of variety v is denoted by pvt, 
and the resulting expression also depends on a sectoral price aggregate given by 

X ! 1 
1−σs 

1−σs 
ϕσs−1Pst = pvt vt . (3) 

v∈Gs 

The maximized expression for Qhst is then substituted into Eq. 1 and the result is maximized by choosing the sectoral 
allocations {Yhst : s ∈ S} subject to total household expenditure Yht.7 Nonhomotheticity is evident when examining 
the utility-maximizing variety-level expenditure shares (shvt) and sector-level expenditure shares (Shst), given by 
Eq.’s 4 and 5. ⎛ ⎞ 

1−σs 
ϕσs −1 � �P 

pvtqhvt pvt ⎜ pvt vt ⎟ Yhst − j∈Gs 
αj pjt 

shvt ≡ = αv + ⎝P � �1−σs ⎠ (4)
Yhst Yhst pjt Yhst 

j∈Gs ϕjt P !� P P � 
ϕσ−1P 1−σ 

v∈Gs 
αvpvt hst st Yht − r∈S v∈Gr 

αv pvt 
Shst = + P (5)

ϕσ−1P 1−σYht Yhtr∈S hrt rt 

Examination of Eq. 4 reveals that what HM refer to as “within-sector” nonhomotheticity is governed by αv . If all 
αv terms are zero, then shvt no longer depends on Yhst and is therefore constant across households. “Cross-sector” 
nonhomotheticity shows up from both Shst’s dependence on both αv and the household-specifc sectoral demand 
shifter ϕhst. If either all the αv terms are zero, or ϕhst is constant over h, then Shst will also be constant across 
households. 

The cost of living infation for household h from time t to t + i is defned as the proportional change in its 
expenditure function, evaluated at a reference utility level Vhk. Using the indirect utility function to write Vhk in terms 

4In HM, given the focus on imports, S is defned as the set of tradable consumer goods sectors. 
5HM note that in principle, αv and the within-sector demand shifter ϕvt are household-level parameters, but they do not allow them to vary 

by household due to lack of variety specifc demand data at the household. However, the aggregate sectoral shifter ϕhst is estimated for different 
income deciles using CE data. I maintain HM’s approach to αv and ϕvt, despite having household data, because we observe households purchasing 
only a small subset of available varieties in any given period. ⎛ ⎞ 

−σs σs−1 � �⎜ p ⎟vt vt 6The lower bound for αv is defned as khv = − ⎝ � 
ϕ �1−σs ⎠ Yhst − 

P 
j∈Gs 

αj pjt . P pjt 
j∈Gs ϕjt 

7In this framework, total household expenditures equals household income exactly, since neither savings nor transfers are included in the model. 
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of a reference income level Yhk. The expression is given by Eq. 6, where the impact of within-sector and cross-sector 
nonhomotheticity is clear. 

ϕσ−1 P 1−σ 
1�P � 

σ−1 � P P � �P P � 
Pht+i s∈S hst+i st+i Yhk − s∈S v∈Gs 

αvpvt s∈S v∈Gs 
αvpvt+i 

= 1 + (6)
Pht 

�P 
ϕσ−1P 1−σ

� 
σ−1 Yhk Yhk 

s∈S hst st 

Statistical agencies typically calculate price indexes using weights from aggregate expenditure data, which is 
related to the notion of a “representative consumer.” In theory, if a statistical agency had enough data and reliable 
estimates of the model parameters, it might wish to calculate a version of Eq. 6 for each household, from which an 
average index could be computed that is either democratic (equal weight to each household) or plutocratic (weighted 
by total household expenditure)(National Research Council, 2002). In practice, however, this would be diffcult for 
many reasons. For example, an individual household purchases a relatively sparse subset of varieties out of the total 
set available, so even with consumer scanner datasets, calculating a household-level price index is no trivial task.8 

Moreover, estimation of common model parameters is usually done with aggregate demand data (e.g., see Broda and 
Weinstein (2010)). The theoretical property that allows the representative consumer formulation is known as “exact 
linear aggregation.” In the HM model, this condition requires that αv = 0 for non-continuing varieties.9 Under the 
additional restrictions, market demand for variety v is given by ⎛ ⎞⎛ ⎞ 

−σs 
ϕσs−1 X⎜ pvt vt ⎟ 

qvt = (αvnt) + ⎝P � �1−σs ⎠⎝Yt − (αj nt)pjt ⎠ , (7) 
pjt 

j∈Gsj∈Gs ϕjt 

where nt is the number of households in the U.S. at time t. This equation is used in estimating the underlying 
parameters. 

The change in the aggregate cost of living index from time t to t + i is given by: �P 
ϕσ−1 P 1−σ

� 1 � P P � P P 
σ−1 Yk −Pt+i s∈S st+i st+i s∈S v∈Gs 

(αvnt)pvt s∈S v∈Gs 
(αvnt+i)pvt+i 

Pt 
= �P 

ϕσ−1P 1−σ 
1 Yk 

+ 
Yk 

(8)� 
σ−1 

s∈S st st 

where Yk is the total expenditure level for some reference period. 

2.1.2 Firm behavior 

To complete the model, the market structure from the frm’s perspective is assumed as monopolistic competition.10 

For their main results, HM treat frms and varieties interchangeably, acting as if all varieties belong to separate frms. 
Marginal costs are increasing in quantity, given by 

cvt = δvt(1 + ωs)q ωs (9)vt , 

where ωs ≥ 0 governs the convexity of the cost function for sector s and δvt > 0 is a variety-level cost shifter. 

The frst order condition (FOC) of the frm’s proft maximization problem is 

εvt 
pvt = cvt, (10)

εvt − 1 

where εvt is the monopolistically competitive own-price elasticity of demand derived from the market demand equation 
7. � � 

∂qvt pvt qvt − αv nt
εvt ≡ − = σs (11)

∂pvt qvt qvt 

8Calculating aggregate chained price indexes using scanner data also presents many challenges. See, for example Ivancic, Diewert, and Fox 
(2011). 

9Also required is that Yhst > 
P 

αv pvt and αv > khv (the lower limit from earlier). The requirement is that αv “is such that each v∈S 
household income group buys some amount of each variety in each time period t that has positive sales in the aggregate at that time t.” 

10HM also consider an oligopoly model as a robustness check. 
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The FOC implies that εvt > 1. The convexity of demand perceived by frm is 

∂2 qvt(pvt ) 

∂2 
pvt ∂2pvt �� pvt(qvt) − � �

∂qvt (pvt)qvt ∂2qvt ∂pvt σs + 1 qvt 
ζvt ≡ − = = . (12)

∂pvt(qvt) σsεvt qvt − αvnt 
∂qvt 

The frm’s second order condition requires that ζvt < 2. Combining Eq.’s 10 and 11 gives the frm’s pricing equation 

εvt ωspvt = δvt(1 + ωs)qvt (13)
εvt − 1 

in which the markup over marginal cost can be rewritten as 

εvt (qvt − αvnt) σs 
= . (14)

εvt − 1 (qvt − αv nt) σs − qvt 

Specifcation of the frm’s pricing equation is important for identifying the demand side parameters, since observed 
prices and quantities are set simultaneously in a market equilibrium. 

2.2 Estimation 

HM estimate the model in two stages. First, they estimate the parameters of the variety demand and price functions 
(i.e. σs, ωs, and αv for v ∈ Gs, and s ∈ S) at the aggregate market level. Second, they estimate the aggregate 
substitution elasticity parameter, σ using sectoral expenditures by household income group. 

2.2.1 Stage One 

The frst stage of estimation extends the method of Feenstra (1994), which uses heteroskedasticity across varieties to 
identify the sector-link demand parameters.11 While the generalized-CES model allows different subsistence quantities 
αv for every variety v, as part of their empirical specifcation, HM restrict these in the following way: h i1 

βjαv = min (qvt|qvt > 0) , for v ∈ Gj , j ∈ {C, E} (15)s sn1 t 

where n1 is the number of households in period 1, GC is the set of “continuing” varieties in sector s that are present s 
in the data (i.e. have positive quantity sold in the aggregate) for the entire sample period, and GE is the set of “non-s 
continuing” varieties that are missing from the data in one or more periods. This specifcation is notable because it 
pins down the subsistence quantities in two aspects. First, it requires them to be proportional to minimum quantity 
demanded observed in the data for variety v,min (qvt|qvt > 0). Second, the coeffcient to estimate, βj , is only allowed s 

t 
two possible values. The frst aspect seems quite natural. As HM explain, in the case where βC = 1, for example, s 
the total subsistence quantity for a variety v ∈ GC sold in period 1 is αvn1, which is just the minimum quantity of s 
that variety observed. The second aspect, limiting to only two possible parameter values is by necessity, otherwise the 
model is not identifed. 

Estimation of σs , ωs, βC , and βE for each s ∈ S is complicated by the fact that market price and quantity s s 
are determined in equilibrium, which is described by Eq. 7 and Eq. 13. The essence of the Feenstra method for 
identifcation is to use the variation in a variety’s prices and quantity both over time and with respect to a reference 
variety in the same sector. Starting from Eq. 7, multiplying both sides by pvt, taking logs, differencing over time and 
with respect to another variety k, we have: 

Δk,t ln (pvtqvt − αvntpvt) = (1 − σs)Δk,t ln pvt + νvt, (16) 

where νvt = (1 − σs) [Δt ln ϕkt − Δt ln ϕvt]. The notation Δk,t represents the double difference, and νvt is the 
unobserved error. Similarly for the supply side, we start with the supply-side Eq. 13, multiply both sides by p ωs , take vt 
logs, and double difference to get: 

11Feenstra assumes standard CES preferences and constant demand over time. Broda and Weinstein (2006) and Broda and Weinstein (2010) also 
use a variation of Feenstra’s method. 
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� � 
Δk,t ln pvt 

ωs 1
Δk,t ln 

εvt 
= Δk,t ln (pvtqvt) + + κvt, (17)
1 + ωs 1 + ωs εvt − 1 

1where κvt = 1+ωs 
[Δt ln δvt − Δt ln δkt] is the unobserved error. 

The identifying assumption is that for each variety, the double-differenced demand and supply shocks are orthog-
onal to each other, implying: 

G(βs) = Et [uvt(βs)] = 0, (18) � �0
where βs = σs, βs

C , βs
E , ωs , and uvt = νvtκvt. The t subscript on the expectations operator is to emphasize that 

the population moment is for the time series generated by variety v.12 HM argue that double-differencing removes 
“variation in prices due to markup variation and movements along upward sloping supply curves”, and that “remaining 
supply shocks take the form of idiosyncratic shifts in the intercept of the variety-level supply curve and are unlikely to 
be correlated with idiosyncratic shifts in the intercept of the variety-level demand curve.” As a robustness check, they 
fnd similar results using only multi-product frms and take differences relative to reference varieties within the same 
frm, which amounts to removing frm-time fxed effects. 

The estimator that makes use of 18 is Generalized Method of Moments (GMM).13 For each sector, supposing the 
estimation sample consists of Ns varieties, then the Ns sample analogs of Eq. 18 are stacked to form the following 
objective function: 

β̂s = argmin {G ∗ (βs)
0WG ∗ (βs)} , (19)

βs 

where G∗(βs) is the stacked sample analogs of Eq. 18 (written in terms of observables), and W is a weighting 
matrix.14 HM use a one-step estimator where W , following Broda and Weinstein (2006), is formed to give more 
weight to varieties if they are either present in the data for more time periods or have larger market shares. 

Substituting for νvt and κvt and rearranging the expectation in 18 yields: �2 � � 
Et 

h� 
Δk,t ln pvt 

i 
= 

ωs E Δk,t ln (pvtqvt)Δk,t ln pvt 
1 + ωs 

1 � � 
− E Δk,t ln pvtΔk,t ln (pvtqvt − αvntpvt)
σs − 1 � � 

+ 
ωs E Δk,t ln (pvtqvt)Δk,t ln (pvtqvt − αvntpvt) (20)

(1 + ωs)(σs − 1) � � �� 
1 

Δk,t ln pvtΔk,t ln 
εvt 

+ E 
1 + ωs εvt − 1 � � �� 

1 εvt 
+ E Δk,t ln (pvtqvt − αvntpvt)Δ

k,t ln 
(1 + ωs)(σs − 1) εvt − 1 

The sample analog G∗(βs) is formed from the time averages of the quantities in Eq. 2.2.1, and similar in spirit 
to Feenstra (1994), the GMM estimator is implemented using weighted nonlinear least squares. Identifcation comes 
from sector s having more varieties than parameters, and from variation in the second moment terms that comprise 
Eq. 2.2.1 across v. 

2.2.2 Stage Two 

HM’s second stage estimates the aggregate elasticity parameter σ using sectoral price aggregates Pst (defned in Eq. 
3) and variation in sectoral expenditures across household income deciles (Yhst).15 The double-differenced sectoral 

12In Feenstra (1994), the asymptotic arguments hold Ns fxed while T →∞. 
13See Hansen (1982). 
14Note that pvt, qvt, and nt (and derived quantities) are the observables in the estimating equation. The markup term εvt depends on these 

εvt−1 
and the unknown parameters, as shown in Eq. 14. 

15Before calculation of Pst, the demand shifters ϕvt are recovered under the normalization that g = ϕv = 1 where the tilde denotes the ϕvt f
geometric mean. 
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demand equation is X 
Δk,t ln(Yhst − αvpvt) = (1 − σ)Δk,t ln(Pst) + νhst, (21) 

v∈Gs 

where νhst = (σ−1)Δk,t ln ϕhst is the double differenced error. Pooled across household income deciles, sectors, and 
time, this is estimated via instrumental variables.16 The instrument for Pst is a measure of the “change in dispersion 
of quality-adjusted variety-level prices within a sector” given by: 

Δk,t 1 
ln 

⎛ ⎜⎜⎝ 1 Nv 

� 
� X �1−σs 

pvt 
ϕvt �1−σs^ 

⎞ ⎟⎟⎠ . (22)
σs − 1 st v∈Gst pvt 

ϕvt 

Validity of this instrument is argued in Hottman, Redding, and Weinstein (2016). 

3 Data and replication 

Hottman and Monarch utilize administrative data on import prices and quantities from the Linked-Longitudinal Firm 
Trade Transaction Database (LFTTD). The issues they raise are also relevant for consumer prices. As previously 
stated, their methods require linked price and quantity data over time for detailed items. One obstacle to using data 
collected by the BLS with this method is that price quotes are collected in a separate survey and at a higher frequency 
than the expenditure data used to calculate weights. 

3.1 Homescan 

I utilize the Homescan database published by Nielsen, which has been used in previous studies of consumer demand 
and price index measurement.17 In 2012, BLS purchased data covering purchases made from 2008 to 2010. The panel 
consists of roughly 60,000 U.S. households recording roughly 58 million transactions per year. Panelists are instructed 
to scan the bar codes of every good they purchase. Collected data include quantity, dollar value of the transaction, 
brand, as well as Nielsen’s codes for department, product group, product module. The dataset also includes information 
on the retail outlets and demographic information on the sample households. Nielsen includes demographic weights 
to aggregate the household data to nationally representative sums and averages. To a degree, panelists select into the 
sample, however, so we must assume their unobservable characteristics are representative of the broader population. 

One great advantage of a dataset like Homescan is its disaggregation.18 Transaction quantities and values are 
reported at the level of the universal product code (UPC). Industry best practices include using different UPCs for 
different product varieties. Because of this, Broda and Weinstein (2010) argue it is reasonable to assume that products 
with the same UPC are homogenous, and that products with different UPCs differ among some dimension that affects 
consumer willingness to pay. Therefore, one key strength of scanner data is that for the included sectors of the econ-
omy, a much greater number of individual products is observed than can be sampled for the CPI. This granular detail 
is attractive for implementation of the Hottman and Monarch model of consumer preferences of product varieties. 
On the other hand, Homescan covers only a subset of consumer expenditure categories, mainly consisting of food, 
personal care, and other general merchandise categories found in grocery and retail chain stores. As noted by Broda 
and Weinstein (2010), Homescan coverage overlaps signifcantly with the entry level item (ELI) categories covered by 
the CPI. However, over 2008 to 2010, the weighted sum of annual expenditures across panelists in Homescan equal 
about only 7% of total yearly consumer expenditures as measured by the CE.19 Therefore, caution should be taken 
when generalizing inferences drawn from Homescan or other similar scanner datasets about consumer behavior. 

HM defne a sector as the four-digit Harmonized System (HS) code associated with a variety. They defne variety as 
a unique frm-10 digit HS code pair. I treat the product groups defned by Nielsen as the sectors in HM’s model, while 
I treat UPCs as varieties. Estimating parameters at the product group-level is consistent with Broda and Weinstein 

16Recall the Yhst are choice variables in the consumer’s utility maximization problem, so they are determined in equilibrium along with prices. 
17See, for example Broda and Weinstein (2010) and Hottman, Redding, and Weinstein (2016). 
18See Broda and Weinstein (2010) for a more detailed description of the data. 
19Author’s calculation using Bureau of Labor Statistics (2013). 
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(2010) and Hottman, Redding, and Weinstein (2016), though these papers also include a nesting below the sector 
level.20 A key difference is that the data is less aggregated in Homescan—in HM’s data some closely related varieties 
may be aggregated into the same frm-HS10 pairs. As a consequence, I expect to measure somewhat more elastic 
substitution patterns in the Homescan data. 

3.2 Data cleaning and preparation 

While HM use annual trade data, I follow Broda and Weinstein (2010) by aggregating the sales and quantity data to 
the quarterly level, and then from these calculate unit-value prices for each UPC. As in HM, I winsorize the data by 
removing observations with double differenced prices or sales values that are either in the top or bottom one percent. 
Since the Feenstra method relies on sample moments over time, HM also restrict their estimation sample to varieties 
present in the data for at least six time periods, as a large proportion of varieties are present for only one or two time 
periods. With three years of Homescan, I cannot make as strict a requirement, but I make a similar one in spirit. 
Moreover, it is quite common for UPCs in Homescan to enter and drop out of the dataset multiple times. Therefore, I 
require UPCs to be present for at least fve quarter-to-quarter price changes, meaning a variety must be present for at 
least six pairs of consecutive quarters. 

A related challenge concerns sorting UPCs into “continuing” and “non-continuing” varieties for purposes of es-
timating βC and βE . HM consider a variety to be “continuing” if it is present in the data in every period, grouping v v 
all other varieties as “non-continuers.” As their dataset covers the vast majority of U.S. imports, this is likely to be 
a reliable way of sorting. However, the number of UPCs in Homescan far outweighs the number of transactions per 
household in the sample each year, meaning the set of UPC’s observed in the data is subject to sampling error. As a 
consequence, it is diffcult to assess whether or not the disappearance and reappearance of UPC in consecutive periods 
truly represents the exit and re-entry of a good.21 

HM estimate the aggregate elasticity parameter σ using household income decile level sectoral expenditures Yhst 
based on CE and Census data. As a preliminary exercise, I avoid issues of mapping UPCs and Nielsen product groups 
to CE or Census categories by exploiting the demographic variables included the Homescan dataset. I follow the 
method described by Handbury (2013) to adjust the categorical income variables in Homescan for characteristics like 
family size. I then average the sectoral expenditures within the deciles of this adjusted income measure. A future step 
will be to better estimate group specifc expenditures using non-categorical income data from the CE. 

3.3 Constraints 

Finally, deriving the partial equilibrium for each sector requires regularity of the household’s utility maximization 
problem and the frm’s proft maximization problem, and this implies several constraints on the parameters and on 
dependent quantities like the own-price elasticities of demand. While acknowledging that these conditions will not 
necessarily hold in general, HM ensure they hold in their data either by constraining the parameters directly or by 
adding penalty terms to Eq. 19. The conditions are: βs

C < 1, βs
E ≤ 0, εvt ≥ 1.01, ωs ≥ 0, ζvt ≤ 1.99, and 

khv < αv .22 I estimate Eq. 19 unconstrained, with constraints on βC and βE only, and with constraints and penalties s s 
for βs

C , βs
E , ωs, εvt, and ζvt.23 

4 Results 

This section summarizes my results. Reporting the estimates for each sector is infeasible. To match HM’s reporting, 
Tables 1 and 2 summarize the estimates with the 10th percentile, median, and 90th percentile across sectors. The IV 
estimates of the top-level σ are presented along with their 95% confdence intervals and associated OLS estimates 

20While Homescan only has 122 product groups versus around 980 sectors in HM’s analysis, their scope is presumably broader considering 
LFTTD has the universe of imported goods whereas Homescan covers only a small portion of consumer expenditures. 

21Like HM report for the trade data, continuers in the Homescan data tend to have higher sales than noncontinuers. I also test an alternative, 
weaker rule whereby a variety is considered “continuing” if it is present in the frst and last quarter of data, but found this had little impact on results. 

22These are the conditions stated in HM’s paper. To ensure αv < qvt, it must be that βC < n1/nt, which likely was always the case with HM’s s 
estimates. 

23I did not impose khv < αv for computational reasons, but found that it held in 99.64% of observations when βC , βE , ωs, εvt, and ζvt weres s 
constrained. 
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for reference.24 Column 1 contains the results reported by HM using supplier trade data, while columns 2 through 5 
present my replications using Homescan, where I have varied the estimator and constraints. As outlined in Section 
3, HM’s study and this replication are based on different data sources, so I do not expect our estimates to line up 
precisely. Nevertheless, I hope to make a similar evaluation of within-sector nonhomotheticity. Later in this section, I 
speculate on other potential reasons for differences between my results and HM’s. 

4.1 Estimates 

Table 1: Summaries of parameter estimates 

HM Replications with Homescan 
(1) (2) (3) (4) (5) 

σs 

10% 3.06 8.21 10.07 7.85 6.88 
Median 4.93 13.79 16.43 12.25 11.73 
90% 8.59 21.07 25.93 18.06 17.36 
ωs 
10% 0.16 0.13 0.11 0.12 0.11 
Median 0.44 0.22 0.19 0.21 0.17 
90% 1.59 0.37 0.29 0.32 0.27 
βC 
s 

10% 9.96E-05 0.43 0.46 0.40 0.38 
Median 0.33 0.63 0.62 0.58 0.45 
90% 0.39 0.82 0.81 0.77 0.46 
βE 
s 

10% -5.97E-05 0.44 0.49 -6.5E-13 -6.0E-13 
Median -2.55E-09 0.66 0.69 0.00 -2.1E-38 
90% -1.08E-10 0.82 0.83 0.00 0.00 
σ 
OLS est 0.82 3.54 3.89 3.86 3.91 
IV est 2.78 2.59 4.67 4.69 4.93 
IV 95% CI [2.60, 2.97] [1.89, 3.29] [3.85, 5.50] [4.08, 5.31] [4.31, 5.55] 
# sectors 980 113 113 113 113 
Stage 1 GMMa One step One step Two step One step One step 
Constraintsb Yes No No βj onlys Yesc 

a GMM estimator type used for frst stage parameters. “Two step” uses optimal weighting matrix in second step. 
b Constraints: εvt > 1.01, ωs ≥ 0, ζvt ≤ 1.99, βC < 1, βE ≤ 0, khv < αv .s s 
c The constraint khv < αv was not imposed in estimation, but was satisfed in 99.64% of observations. 

Table 1 summarizes the parameter estimates from the estimator described in Eq. 19 implemented for each sector, 
as well as the IV estimation of Eq. 21. Following HM, I only estimate the model for sectors with at least 30 varieties, 
leaving 113 product groups in Homescan.25 In all cases, the estimated σs (the substitution elasticity parameters) tend 
to be signifcantly larger than those reported by HM, with medians ranging from 11.73 to 16.43, compared to HM’s 
median of 4.93.26 As shown in column 3, using optimal GMM increases the reported quantiles of the estimated σs 

somewhat compared to one step GMM, with a median of 16.43, as compared to 13.79 for the one step estimator 
(column 2). 27 Imposing constraints in estimation lowers the distribution of σs estimates slightly, with a median of 
12.25 when only the βj are constrained and 11.73 with the full complement of constraints. Across all replicatons, the s 
distributions of marginal cost elasticities, ωs, have signifcantly lower medians than HM, ranging from 0.17 to 0.22, 
compared to HM’s 0.44. The distributions of ωs also have a much lower 90th percentile in the HS replications. 

24The 95% confdence intervals for columns 2 through 5 are based on heteroskedasticity-robust standard errors of White (1980). 
25Similar to HM, I started the stage one numerical optimization from eight points, and of those that converged, I picked the one with the lowest 

value of the objective function. 
26Earlier results from this replication showed even higher σs estimates due to a data coding error. 
27Feenstra (1994) originally proposed using optimal GMM, which in this case means the second step weights are the inverses of squared residuals, 

which are found using initial estimates. 
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The parameters βC and βE are particularly interesting because they govern within-sector non-homotheticity in s s 
HM’s model. Like HM, I fnd nonzero estimates of βj and βE , which is evidence against standard CES preferences. s s 
The signs and magnitudes of the estimates, however, seem to depend on the constraints imposed. In the unconstrained 
cases (columns 2 and 3), I fnd the βj tend to be positive, statistically signifcant, and higher than HM’s results. For s 
instance, the median unconstrained βC estimate is 0.63, versus 0.33 in HM. The median unconstrained βE estimate is s s 
similar at 0.66, but this is in stark contrast to HM’s estimated quantiles, which are negative and very close to zero. I 
come closer to replicating HM’s estimates when I impose the constraints that βC < 1 and βE ≤ 0 (column 4). Now s s 
the median βC is 0.58, closer to HM, but only slightly lower than when unconstrained. The constraint on βE appearss s 
to bind, as now all of my estimates are either negative or zero at Stata’s level of precision. Imposing the rest of HM’s 
constraints (column 5), lowers the median βC to 0.45 and compresses the 10th and 90th percentiles to 0.38 and 0.46, s 
respectively. 

As HM fnd, the second stage estimates of σ suggest that assuming Cobb-Douglas form at the upper tier of utility 
(σ = 1) is inappropriate. The replicated IV point estimates are all statistically signifcantly greater than one, ranging 
from 2.59 to 4.93 depending on the particulars of the stage one estimates. This interval includes HM’s IV estimate of 
σ of 2.78, which is reassuring, though the estimates that use constrained Stage One estimates are a bit higher. This 
may also be due to scope differences in data. 

Table 2: Summaries of other estimated quantities 

HM Replications with Homescan 
(1) (2) (3) (4) (5) 

P.E.D. (εvt)d 

10% Unrep. 5.95 7.06 5.94 5.72 
Median Unrep. 9.78 11.48 9.49 9.41 
90% Unrep. 13.25 16.86 13.06 14.32 
Markups ( εvt )d 

εvt−1 
10% 1.13 1.10 1.08 1.10 1.08 
Median 1.25 1.14 1.12 1.13 1.12 
90% 1.48 1.22 1.19 1.22 1.22 
Pr(εvt < 1) 
10% 0.00 0.00 0.00 0.00 0.00 
Median 0.00 0.00 0.00 0.00 0.00 
90% 0.00 0.00 0.00 0.00 0.00 
Pr(ζvt > 2) 
10% 0.00 0.06 0.08 0.00 0.00 
Median 0.00 0.18 0.17 0.07 0.00 
90% 0.00 0.22 0.22 0.12 0.00 
# sectors 980 113 113 113 113 
Stage 1 GMMa One step One step Two step One step One step 
Constraintsb Yes No No βj onlys Yesc 

a GMM estimator type used for frst stage parameters. “Two step” uses optimal weighting matrix in 
second step. 
b Constraints: εvt > 1.01, ωs ≥ 0, ζvt ≤ 1.99, βC < 1, βE ≤ 0, khv < αv .s s 
c The constraint khv < αv was not imposed in estimation, but was satisfed in 99.64% of observa-

tions. 
d Underlying estimates are sales-weighted averages for each sector. 

Table 2 reports on other relevant quantities implied by the HM model and parameter estimates. Two related 
measures are the price elasticity of demand perceived by the frm (PED), εvt (see Eq. 11), and the proft maximizing 
markup εvt . For each sector, I take the sales-weighted averages across all varieties and time periods, then report the εvt−1 
percentiles listed. I also calculated the proportion of observations in each sector where the estimated PED εvt was less 
than one, and the estimated convexity of demand ζvt was greater than two, each of which is a violation of conditions 
for proft maximization. 

HM do not report estimates of εvt, likely because their low αv estimates imply that the average εvt is distributed 
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very similarly to the σs estimates. In part because I fnd higher βC and βE , the implied average price elasticities are s s 
all lower than their corresponding σs, with medians ranging from 9.4 to 11.5 depending on the specifcation. Even 
in the closest case, the estimates are still fairly large compared to HM’s σs estimates. However, the price elasticities 
are more comparable to Broda and Weinstein (2010) who use UPC level Homescan data from 1994 and 1999-2003. 
They fnd a median elasticity of substitution of 11.5 between UPCs within the same brand module (closely related 
goods from the same frm).28 A priori, we would expect the elasticities in HM’s model to be slightly lower than those 
from Broda and Weinstein (2010) because substitutions are also being measured between varieties in different brand 
modules within the same product group. Not surprisingly given the high estimates of εvt, the average markups are 
also lower than those reported by HM, with the estimated median ranging from 1.12 to 1.14. These results are closer 
to the median markup of 1.16 estimated by Hottman, Redding, and Weinstein (2016) using elasticities of substitution 
between UPCs produced by the same frm. 

Finally, Table 2 evaluates how well the perceived price elasticities of demand (εvt) and convexities of demand (ζvt) 
satisfy conditions implied by proft maximization. The constraints and penalty functions are successful in ensuring 
that these conditions hold (column 5). Without any constraints, I fnd only a handful of cases in which ε is less 
than one. The restriction on the perceived convexity of demand (ζvt < 2) appears slightly more substantive. When 
left unrestricted, the restriction fails in the median product group 17% or 18% of the time when the estimates are 
unrestricted. Restricting just the βj reduces the failure rate by a little more than half. Finally, I did not fnd a case s 
where either σs was less than one or ωs was less than zero. 

4.2 Discussion 

In this subsection, I comment on this replication’s fndings on homotheticity. I also speculate on some issues that may 
relate to the differences between these results and HM’s. 

4.2.1 The role of constraints 

Using their estimates of βC and βE , HM argue that CES “is not a good way of summarizing” the behavior of continu-s s 
ing varieties, but that CES is a “reasonable assumption” for noncontinuers. While the Homescan replication supports 
their conclusion as it relates to the continuers, the unconstrained results for βE suggest that CES may not ft the s 
noncontinuers either. The similarity of the unrestricted βC and βE estimates could also refect diffculty in sorting s s 
varieties into sets of continuers and noncontinuers, as discussed in Section 3. At face value, the unrestricted, positive 
estimates of βE imply violations of the condition for utility maximization (αv ≤ 0 for noncontinuing varieties) and s 
the condition for exact linear aggregation (αv = 0 for noncontinuing varieties). As a result, it would not make sense 
to use parameter estimates from columns 2 and 3 to calculate price indexes using Eq. 8. The unrestricted estimates 
of ζvt also suggest off-equilibrium frm behavior in a small number of cases. Use of the estimates from column 5 is 
debatable. On the one hand, the conditions implied by aggregation and partial equilibrium are satisfed through the use 
of constraints. On the other, the Homescan data are clearly fghting the model with respect to βE , which may suggest s 
exact linear aggregation is inappropriate. Therefore, it is not clear from this data that a subsequent estimate of 8 is to 
be strictly preferred to a formula that implicitly assumes homotheticity. 

4.2.2 Potential sources of bias 

While the differences between this replication’s parameter estimates and HM’s may plausibly be attributed to data 
differences, it is worth highlighting a few theoretical and practical challenges. To begin with, the consistency argument 
from Feenstra (1994) is based on the number of time periods growing to infnity while the number of varieties is 
held fxed.29 This may be less appropriate for scanner data, where the number of varieties is typically orders of 
magnitude larger than the number of time periods. While there is no concrete rule for how many time periods are 
necessary for the asymptotic approximation to be reasonable, Soderbery (2010, 2015) fnds that the Feenstra method 
may be signifcantly biased when the number of time periods is relatively small.30 Moreover, GMM with many or 

28In the standard CES case with monopolistic competition, εvt reduces to σs, which is both the elasticity of substitution and the price elasticity 
of demand. 

29See also Feenstra (1991). 
30What “relatively small” means depends on what one is willing to assume about the underlying data; in some simulations, Soderbery fnds that 

T = 50 is still insuffcient for the bias to be relatively small. 
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weak moment conditions can be severely biased and asymptotically non-normal (Stock, Wright, and Yogo, 2002). 
Soderbery (2015) suggests limited information maximum likelihood (LIML) has better fnite sample properties for 
estimating the simpler CES model using the Feenstra method, but solutions are less common for nonlinear GMM. 
Moreover, one may be concerned that the double-differenced supply and demand shocks—which correspond to shifts 
in the intercepts of the supply and demand curves—are correlated. This would invalidate the moment conditions in 
Eq. 18. I calculated Hansen’s J Statistic following estimation with optimal GMM (column 3), and found the null 
hypothesis of valid overidentifying restrictions was rejected in 103 out of 113 product groups. This suggests failure 
of Eq. 18 for at least some varieties in each product group, which could be due to simultaneity.31 Use of instrumental 
variables is another possible identifcation strategy that could overcome the simultaneity problem, though this is not 
without controversy either.32 

A related concern is potential functional form misspecifcation. For example, a CES-type aggregator that nests 
items according to their characteristics assumes constant substitution parameters for different varieties within the same 
grouping. This is a convenient stylization that makes estimation of the demand system tractable, but misses potential 
heterogeneity. Before any price index formula like Eq. 8 could be considered by the BLS for use in offcial statistics, 
it would be prudent to explore the consequences of assuming this particular functional form. Finally, there is also a 
practical challenge to using the Feenstra method because it relies on observing a long, varied, time series, yet typical 
datasets tend to cover relatively short time spans due to defnitional or classifcation differences in the case of trade 
data (Soderbery, 2015), or UPC churn in the case of scanner data (Melser and Syed, 2016). This is potentially a thorny 
issue when implementing the HM model in longer, highly disaggregated datasets, where we need to classify varieties 
as “continuers” and “non-continuers”, but might expect the proportion of “continuers” to fall (perhaps to zero) as the 
number of time periods grows very large. 

5 Conclusion and next steps 

This paper investigates HM’s extension to the Feenstra method for estimating consumer demand using heteroskedas-
ticity across product varieties, which is used to estimate the parameters of a preference structure that allows for non-
homotheticity. While HM use supplier trade data, I replicate their method using consumer scanner data. While my 
numerical results are somewhat different than what HM fnd, this is to be expected due to differences in the data and 
time periods studied. The immediate next step for this paper is to calculate HM’s proposed cost of living formula using 
the parameter estimates that conform to theory. Comparing unrestricted and restricted estimates, however, implies that 
the underlying data may not ft the model well, as binding constraints are required to achieve estimates that can be 
used in aggregate price indexes, so HM’s proposed price index should be treated with caution when estimated with the 
Homescan data. Note that the βC

s and βE
s govern just one source of nonhomotheticity. Cross-sector nonhomotheticity 

arises in the model even if all of the subsistence quantities are found to be zero. In fact, HM fnd this drives the 
majority of their cross-income differences in import price infation. This suggests relaxing homotheticity through the 
use of group-specifc sectoral expenditure shares in price indexes. This is an area of active research at BLS. 
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