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We Want

1 Detect and locate errors (even if they don’t result in the
violation of a consistency rule.)

2 Impute consistent values, respecting the distribution the
data, and reflecting the uncertainty associated with the
procedure.

The problem 

Inconsistent Datasets  

Many individual level multivariate datasets, e.g. surveys, 
have consistency requirements specifying combinations of 
responses that are not allowed. 
In real-life, however, datasets often include errors. 

When the errors end up in a violation of a consistency rule, 
we can detect the error. 
When the error doesn’t result in a consistency rule 
violation, the error is not detectable. 
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Conceptualizing the Problem 

Data consists of vectors Yi = (Yi1, ..., YiJ ) , i = 1, ..., n (e.g. 
recorded responses to J survey questions) 
Each of the J components take values from a finite set 
Yij ∈ {1, 2, ..., Lj } . 
Entries in Yi might be inconsistent. Then 
Yi ∈ C =

 J 
=1{1, ..., Lj }.j

Consistency rules are a collection of S s C that specify 
which values of Yi shouldn’t be present in the dataset. 
Connections to structural zeros in contingency tables. 
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Our objective is to estimate F .

A Generative Perspective 

The observed response Yi is a contaminated version of a
 
“true” underlying response, Xi .
 
Yi is observed. Xi is unobserved.
 
Pr(Yi ∈ S) > 0. Pr(Xi ∈ S) = 0.
 
We assume a generation process for Xi  

iidXi ∼ F , 

which doesn’t allow for inconsistent values. Xi ∈ C \ S. 
Yi s come from an “error process” 

Yi |Xi ∼ E(Xi ). 

which allows for inconsistent values. Yi ∈ C. 

4 / 16 



A Generative Perspective 

The observed response Yi is a contaminated version of a
 
“true” underlying response, Xi .
 
Yi is observed. Xi is unobserved.
 
Pr(Yi ∈ S) > 0. Pr(Xi ∈ S) = 0.
 
We assume a generation process for Xi  

iidXi ∼ F , 

which doesn’t allow for inconsistent values. Xi ∈ C \ S. 
Yi s come from an “error process” 

Yi |Xi ∼ E(Xi ). 

which allows for inconsistent values. Yi ∈ C. 

Our objective is to estimate F .
 

4 / 16 



Let Eij = 1 if there’s an error at the (i , j) location, and 0
otherwise. We define the error mask
Ei = (Ei1, ...,EiJ) ∈ {0,1}J .
The location model is the distribution of Ei .
The substitution model is the conditional distribution of Yi
given Ei and Xi

(This separation allows to specify a priori which values we
know are correct or incorrect.)

Error models 

Given true data, the error process determines what we
 
observe.
 
We differentiate two components:
 

1 
2 

Location model: Which items are in error? 
Substitution model: Given that there’s an error at the (i , j) 
location, how does Yij is generated from Xij ? 
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Substitution: Uniform Substitution Model

Yij |Xij ,Eij ∼
�

δXij if Eij = 0
Uniform

�
{1, ...,Lj} \ {Xij}

�
if Eij = 1

Specifying the Error Model 

Location: Independent Errors Model 

indep
Eij |Ej ∼ Bernoulli(Ej ) 

iid
Ej ∼ Beta(aE, bE) 

Error locations are independent. 
Each item has its own error rate, Ej . 
Other specifications possible. 
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Data Generation Models 

“True Responses” Distribution 

Xi ∼ F 

In principle it can be any distribution over C \ S. 
In practice we need a flexible enough specification, able to 
capture the nuances of the multivariate structure. 
Challenges: 

Sparsity (very high-dimensional tables with many
 
zero-counts).
 
Model selection. We want high prediction power.
 
Handling of structural zeros!
 

We use the Nonparametric Truncated Latent Class Model from 
Manrique-Vallier and Reiter, 2013 (JCGS, to appear) 
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Non Parametric Truncated Latent Class Models 

Truncated mixtures of discrete distributions: 

∞ J0 J 
xi |λ, π ∼ 1{xi ∈/ S} πk λjk(xij ) 

k=1 j=1 

iidwith π = (π1, π2, ...) ∼ DP(α), λjk ∼ Dirichlet(1K ), and 
α ∼ Gamma(aα, bα). 

Very flexible models.
 
Method by Manrique-Vallier and Reiter (2013) to obtain
 
posterior parameter samples subject to truncated (to C \ S)
 
data support.
 
Several advantages: Automatic overfitting control.
 
Computationally tractable. High tolerance to sparsity.
 
Capacity to handle large collections of structural zeros.
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Test Application - Data Based Simulation 

J = 10 variables from 5% public use microdata from 2000 U.S.
 
census (NY) 

Variable Levels (Lj ) Variable Levels (Lj ) 
Ownership of dwelling 3 Mortgage status 4 
Age 9 Sex 2 
Marital status 6 Race 5 
Education 11 Employment 4 
Work disability 3 Veteran Status 3 

Take N = 953, 076 as a population. Compute statistics. 
Sub-sample n = 1, 000, introduce errors, fix them, and try 
to estimate population quantities back. 

Notes: 
Resulting contingency table has 2, 566, 080 cells. 
|S| = 2, 317, 030 possible inconsistent responses. 
Originally specified as 60 pair-wise rules (e.g. veteran 
toddlers). 
Original data without inconsistencies. 
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� 

Test Application - Introducing Errors 

Contaminate the data using independent errors and uniform 
substitution, 

if Eij = 0
Yij |Xij , Eij ∼ δXij � � 

Uniform {1, ..., Lj } \ {Xij } if Eij = 1 
iidEij ∼ Bernoulli(ε) 

Try with different error rates ε = 0.1, 0.3, 0.5.
 
Pretend that we only observe Y.
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Prior Specification for Error Model 

We use the independent errors / uniform substitution
 
model.
 
Need to specify prior distribution for item error rates:
 

Ej ∼ Beta(aE, bE) 

The method will always detect and correct detectable 
errors. 
The prior specification determines how much we trust what 
we observe: 

af/bf = Prior expected rate of error. 
Large af + bf (relative to sample size) puts more weight on 
our beliefs than on the data. 
Small af + bf puts more weight on data. 

For variables that we don’t want to ever alter, we set 
Eij = 0 a priori. This forces Yij = Xij . (can have unintended 
consequences, though) 
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=Results (1)- Two-Way margins (ε 0.1) 

Two-way Margin Proportions 
(Estimated vs. Population Values) 
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Simulation Parameters: 
ε = 0.1, n = 1, 000 
Rows with errors = 626. Detectable errors = 306 
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=Results (2)- Two-Way margins (ε 0.3) 
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(Estimated vs. Population Values) 
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Simulation Parameters: 
ε = 0.3, n = 1, 000 
Rows with errors = 980. Detectable errors = 685 
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=Results (3)- Two-Way margins (ε 0.5) 

Two-way Margin Proportions 
(Estimated vs. Population Values) 
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Simulation Parameters: 
ε = 0.5, n = 1, 000 
Rows with errors = 999. Detectable errors = 833 
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Concluding Remarks 

Full Bayesian model-based approach to edit-imputation.
 
Integrates data generation with measurement error.
 
Automatic over-fitting protection.
 
Edit and imputation based on joint distribution. Respects
 
data distribution.
 
Does not require full analysis of consistency rules.
 
Guaranteed to generate consistent imputations.
 
Computationally feasible, but can be demanding in tough
 
problems. (runtime example = 1.6 min) 
Prior specification matters: 

Strong prior w/low error rate. 
Weak prior. 

Open issue: Which values do we really want to change? 
(prior for Ej and which Eij set to 0 a priori) 
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The End 
(Thanks!) 

For details about truncated latent structure models: 
http://mypage.iu.edu/˜dmanriqu/papers/lcm_zeros.pdf 
For multiple imputation see: 
http://mypage.iu.edu/˜dmanriqu/papers/LCM_Zeros_ 
Imputation.pdf 

http://mypage.iu.edu/~dmanriqu/papers/lcm_zeros.pdf
http://mypage.iu.edu/~dmanriqu/papers/LCM_Zeros_Imputation.pdf
http://mypage.iu.edu/~dmanriqu/papers/LCM_Zeros_Imputation.pdf
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