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Climate and Agriculture 

Source: IPCC WG2 AR5 Ch7 



Defnitions 
Wikipedia defnes machine learning as 

“a feld of computer science that gives computers the ability 
to learn without being explicitly programmed” 

I Machine learning should also be considered a branch of statistics 
– focusing on prediction 

I Supervised machine learning is the branch of ML focused on 
predicting new outcomes, based on labeled input data 

I Deep neural networks are the present state-of-the-art in many 
supervised learning problems 

I Basic ideas date from the 1950s, but major advances in last 
decade 

I Software, hardware, algorithmic 

I Neural networks can be viewed as algorithms for identifying an 
optimal set of derived regressors from a set of input data 



Prediction and the bias-variance tradeo� 
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Representation Learning 
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Neural networks 
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V L = a L + Z�L 

I y – a (continuous) outcome 
I � – additive error 
I Z – data 
I V l – “nodes”: derived variables 
I a() – the “activation function”. Maps the real line to some subset 

of it. Modern nets use variants of the ReLU: a(x) = max(0, x) 
I Dimension of �1:L controls number of nodes per layer 



Training: backpropagation 
Typical loss function for continuous-variable prediction problems is 
the L2-penalized squared error loss: � � 

argmin (y − ŷ)2 + ��T � 
� 

where � � vec(�1 , �2 , ..., �L) and � is a tunable hyperparameter 
controlling model complexity 

No closed-form solution! Instead, training is done by 
backpropagation: 

I Backward pass: Compute gradient of loss function with respect 
to parameters 

I Update parameters based on gradient of loss function 
I Forward pass: Recompute hidden layers and value of loss function 
I Repeat to approximate convergence 
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Semiparametric and panel neural nets 

I The top layer of a neural net is an OLS regression in derived 
variables V 

y = + V � + � 

I It is simple to add linear terms to the model, where a 
linear-in-parameters relationship is known to be appropriate: 

y = + X + V � + � 

I Likewise, panel structure can be accounted-for by adding 
unit-specifc intercepts at the top level: 

yit = i + Xit + Vit� + �it 



Semiparametric and panel neural nets 
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Cross-validation, bagging, and cross-bagging 
I � controls the tradeo between a model that is too rigid and a 

model that is overft 
I Typically chosen by cross-validation 



Cross-validation, bagging, and cross-bagging 
Another technique for controlling the variance of an estimator is 
bootstrap aggregating, or bagging 



Cross-validation, bagging, and cross-bagging 

I This project combines cross-validation with bagging. 
I New term: “cross-bagging” 

I B bootstrap samples of unique years are taken 
I Panel neural nets are ft to each bootstrap sample; the test set 

are the years left out of the sample 
I Starting with a large �, � is estimated 
I Out-of-sample ft is assessed 
I � is halved, and � is updated 
I The model with the best out-of-sample ft is retained 

I Predictions are the average of each of the B model’s predictions 



Data 
I Maize yield data from Iowa and Illinois, from NASS, 1979 - 2016 
I Historical weather data from METDATA (Abatzoglou 2013) 

I Daily observations of min/max temperature, min/max relative 
humidity, precipitation, wind speed, insolation 

I 4km resolution 
I Aggregated to counties and weighted by agricultural area 

I Climate scenario data from Multivariate Adaptive Climate 
Analogs (MACA) dataset (Abatzoglou 2012) 

I Statistical downscaling of CMIP5 climate model runs, for RCP4.5 
and 8.5 

I So far, this project only analyzes one model (Hadley Centre, UK) 
I Same variables, resolution, processing 

I Other variables: soil, time, lat/lon, proportion irrigated 



Baseline parametric yield model 

� � �
X 

yit = i + GDDrit r + Xit + �it 
r 

I Pioneered by Schlenker & Roberts (2009) 

! small shifts in heat have severe impacts on yields 



Semiparametric Specifcation 
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X 
yit = i + GDDrit r + Xit + Vit� + �it �: 100 ×1 

r � 
V 1 = a 

� 2 + V 2�2 �2: 100 ×100 it it 
. . . � 

V 10 = a 
� 10 + Zit�10 �10: 1800 ×100 it 

I Identical to parametric model, with addition of 100-node neural 
network layer 

I 10 layers, 100 nodes each. 270042 parameters (!!!) 
Regularization will be extremely important. 

I Activation is the “leaky ReLU” a(x) = x if x > 0 else x/100 
I Two versions: parametric (linear) part of model penalized and 

unpenalized 



 I 
oob − MSEP NN Scheme 1: w = MSEP , if w < 0, w oob 0 

Results: Predictive Skill 
Model Bagged Ensemble Weights [MSEoob 

Parametric no N/A 386.7 
Panel neural net no N/A 385.4 

Parametric yes unweighted 336.3 
Panel neural net yes unweighted 293.4 
Parametric/ridge no N/A 416.2 

Parametric/LASSO no N/A 387.2 
Panel neural net yes scheme 1 277.1 
Panel neural net yes scheme 2 289.3 
Panel neural net yes scheme 3 293.0 
Panel neural net yes scheme 4 324.1 

I 
oob − MSEP N N Scheme 2: w = MSEF E 

oob 

I Scheme 3: w = ar�gmin (y − ̃yw)2 s.t. w � 0 
w 

I 
T (ỹ T ỹ)−1 
ỹ y Scheme 4: w = e 

� � 
� 



Predictive skill, spatial (in-sample) 
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Variable Importance 
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Permutation importance: computed by randomly permuting input 
variables, predicting, and comparing resultant MSE against baseline 



Projections 

Things to note: 
I All projections made assuming values of trends for year 2016 

I I.e.: We make no assumptions about the continuance of 
technological or other change 

I Projections only refect change in response to weather, assuming 
today’s technology and today’s response to weather 

I We don’t model adaptation or carbon fertilization 
I We only use one run of one GCM (for now) 

I The GCM that we use (HadGEM-CC) is fairly pessimistic, 
compared to others comprising the CMIP5 suite 



Projections 
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Projections 
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Projections 
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Projections 
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Conclusions 
I Panel neural nets perform well in modeling crop yields 

I Their skill depends critically on their ability to build on known 
parametric structure. 

I They basically model everything that is left unexplained by 
standard parametric approaches 

I Parametric models are important. They explain mechanisms. We 
show that they are also base upon which to build predictive 
models. 

I PNN predictions of climate change impacts on yield are severe 
I They are less severe than those projected by parametric models 
I Major di�erences: 

I Ability to model time-dependent interactions between multiple 
variables 

I Important mediating role for moisture: time-dependent e�ects of 
precipitation, relative humidity, and temperature 



Advert 
panelNNET R package: 

>library(devtools) 
>install_github("cranedroesch\panelNNET") 
>library(panelNNET) 
>?panelNNET 

Contributions welcome: 

https://github.com/cranedroesch/panelNNET 

Link to working paper: 

https://arxiv.org/abs/1702.06512 

Contact: 

andrew.crane-droesch@ers.usda.gov 

Thanks! 

mailto:andrew.crane-droesch@ers.usda.gov
https://arxiv.org/abs/1702.06512
https://github.com/cranedroesch/panelNNET
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