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Definitions
Wikipedia defines machine learning as

“a field of computer science that gives computers the ability
to learn without being explicitly programmed”

» Machine learning should also be considered a branch of statistics
— focusing on prediction

» Supervised machine learning is the branch of ML focused on
predicting new outcomes, based on labeled input data

» Deep neural networks are the present state-of-the-art in many
supervised learning problems

» Basic ideas date from the 1950s, but major advances in last
decade

» Software, hardware, algorithmic

» Neural networks can be viewed as algorithms for identifying an
optimal set of derived regressors from a set of input data
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Prediction and the bias-variance tradeoff
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Neural networks
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Representation Learning
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Neural networks
y= '+ VIl +e
Vi=a( 2+ ViI?)
VZ=a( 3+ V33
VEi=qa( L+ZPL)

» y — a (continuous) outcome

» ¢ — additive error
» Z — data
» V! - “nodes”: derived variables

> a() — the “activation function”. Maps the real line to some subset
of it. Modern nets use variants of the ReLU: a(x) = max(0, x)

» Dimension of 'Y controls number of nodes per layer
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Training: backpropagation

Typical loss function for continuous-variable prediction problems is
the L2-penalized squared error loss:

argmin ((y —9)° + 2070
in )

where 6 =wec(I'!,T2,...,T'F) and ) is a tunable hyperparameter
controlling model complexity

No closed-form solution! Instead, training is done by
backpropagation:

» Backward pass: Compute gradient of loss function with respect
to parameters

» Update parameters based on gradient of loss function
» Forward pass: Recompute hidden layers and value of loss function

» Repeat to approximate convergence
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Semiparametric and panel neural nets

» The top layer of a neural net is an OLS regression in derived
variables V'
y= +VI+e

» It is simple to add linear terms to the model, where a
linear-in-parameters relationship is known to be appropriate:

y= +X +VI+e

» Likewise, panel structure can be accounted-for by adding
unit-specific intercepts at the top level:

Yie = ¢+ X + Vil + e
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Semiparametric and panel neural nets
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Cross-validation, bagging, and cross-bagging

» )\ controls the tradeo between a model that is too rigid and a
model that is overfit

» Typically chosen by cross-validation
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Cross-validation, bagging, and cross-bagging

Another technique for controlling the variance of an estimator is
bootstrap aggregating, or bagging
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Cross-validation, bagging, and cross-bagging

v

This project combines cross-validation with bagging.

> New term: “cross-bagging”

v

B bootstrap samples of unique years are taken

» Panel neural nets are fit to each bootstrap sample; the test set
are the years left out of the sample

> Starting with a large A, @ is estimated

> Out-of-sample fit is assessed

> )\ is halved, and 6 is updated

» The model with the best out-of-sample fit is retained

» Predictions are the average of each of the B model’s predictions
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Data

v

Maize yield data from Iowa and Illinois, from NASS, 1979 - 2016
Historical weather data from METDATA (Abatzoglou 2013)

v

> Daily observations of min/max temperature, min/max relative
humidity, precipitation, wind speed, insolation

» 4km resolution

> Aggregated to counties and weighted by agricultural area

v

Climate scenario data from Multivariate Adaptive Climate
Analogs (MACA) dataset (Abatzoglou 2012)

» Statistical downscaling of CMIP5 climate model runs, for RCP4.5
and 8.5

> So far, this project only analyzes one model (Hadley Centre, UK)

> Same variables, resolution, processing

v

Other variables: soil, time, lat/lon, proportion irrigated
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Baseline parametric yield model

yir= i+ GDDyiy »+ Xt +eur
T

» Pioneered by Schlenker & Roberts (2009)
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Semiparametric Specification

yir=i+) GDDpt »+ Xy +Vil'+e Tt 100 x1
Vi=al( 2+ ViI?) I'2: 100 x100

Vil =a( 104 Z,T) T'0: 1800 x100

» Identical to parametric model, with addition of 100-node neural
network layer

» 10 layers, 100 nodes each. 270042 parameters (!!!)
Regularization will be extremely important.

» Activation is the “leaky ReLU” a(z) = z if z > 0 else x/100

» Two versions: parametric (linear) part of model penalized and
unpenalized
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Results: Predictive Skill

Model Bagged Ensemble Weights MSE,p

Parametric no N/A 386.7
Panel neural net no N/A 385.4
Parametric yes unweighted 336.3
Panel neural net yes unweighted 293.4
Parametric/ridge no N/A 416.2
Parametric/LASSO no N/A 387.2
Panel neural net yes scheme 1 277.1
Panel neural net yes scheme 2 289.3
Panel neural net yes scheme 3 293.0
Panel neural net yes scheme 4 324.1

> Scheme 1: w = MSEfob —MSEfOJZN, ifw<0,w 0

> Scheme 2: w = MSE] )} —MSE] )"

» Scheme 3: w = argmin ((y —@fw)2> st w >@

» Scheme 4: w = e((ﬂT@)flﬂTy)
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Predictive skill, spatial (in-sample)

Average RMSE
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Variable Importance
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Projections

Things to note:
» All projections made assuming values of trends for year 2016

> L.e.: We make no assumptions about the continuance of
technological or other change

» Projections only reflect change in response to weather, assuming
today’s technology and today’s response to weather

» We don’t model adaptation or carbon fertilization
» We only use one run of one GCM (for now)

» The GCM that we use (HadGEM-CC) is fairly pessimistic,
compared to others comprising the CMIP5 suite
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Projections
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Projections
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Projections

o OLS bagging comparison
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Projections

8 PNN ensemble weighting comparison
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Conclusions
» Panel neural nets perform well in modeling crop yields

> Their skill depends critically on their ability to build on known
parametric structure.

» They basically model everything that is left unexplained by
standard parametric approaches

» Parametric models are important. They explain mechanisms. We
show that they are also base upon which to build predictive
models.

» PNN predictions of climate change impacts on yield are severe
> They are less severe than those projected by parametric models
» Major differences:

> Ability to model time-dependent interactions between multiple
variables

> Important mediating role for moisture: time-dependent effects of
precipitation, relative humidity, and temperature
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Advert

panelNNET R package:

>library(devtools)
>install_github("cranedroesch\panelNNET")
>library(panelNNET)

>?panelNNET

Contributions welcome:
https://github.com/cranedroesch/panelNNET
Link to working paper:
https://arxiv.org/abs/1702.06512

Contact:

andrew.crane-droesch@ers.usda.gov

Thanks!
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