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INTRODUCTION 

 

 

We consider multivariate small area estimation under informative sampling and not missing at random 
(NMAR) nonresponse.  

We define a response model that accounts for the different patterns of the observed outcomes (which 
values are observed and which ones are missing), and estimate the response probabilities by 
application of the Missing Information Principle. By this principle, we first define the likelihood score 
equations as if the missing outcomes were actually observed, and then integrate out the unobserved 
outcomes from the score equations with respect to the distribution holding for the missing data. The 
latter distribution is obtained from the distribution fitted to the observed data.  
 

Finally, the integrated score equations are solved with respect to the unknown parameters underlying 
the response model. See Sverchkov (2008), Sverchkov and Pfeffermann (2018) and Riddles et al. 
(2016) for application of this approach in the univariate case.  

Once the response probabilities are estimated, we impute the missing outcomes and then apply the 
approach of Pfeffermann and Sverchkov (2007) to the complete data set (observed and imputed 
values), to obtain the small area predictors.   



 
 

1. Notation and Models 
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,1 ,( ,..., )ij ij ij Ky y y  - the value of  the vector of outcome values for unit j  in area i

,1 ,( ,..., )ij ij ij Lx x x  - a vector of corresponding L  covariates. We assume that the covariates are known 
for every unit in the population.  

The outcome values follow the generic two-level population model:  
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where  ,1 ,( ,..., )i i i Ku u u  is an unobserved random effect.  



 
 

The target is to estimate ( | , )ij ij if y x u  and ( )if u based on the observed data, as obtained under 
incomplete response.  

By incomplete response we mean that some or all of the outcomes ,ij ky  are unobserved for some of 
the sampled units.  

Once the two distributions are estimated, we estimate the expectations of target outcomes in the 
different areas and use them for predicting the area means, the common targets in small area 
estimation.  

Alternatively, one can use the estimated distributions for imputation of the missing data.  

 

 

 

 

Although we do not consider any selection from finite population in the present paper, all results can 
be generalized to the case where first a sample was selected from the finite population by some 
(informative) sampling scheme and then nonresponse occurs, see Pfeffermann and Sverchkov (2007) 
and Sverchkov and Pfeffermann (2018). 



 
 

Define the response indicator , 1(0)ij kR    if ,ij ky  is observed (unobserved),  

let ,1 ,( ,..., )ij ij ij KR R R ,  

r  be any K-dimension vector with 0, 1 components,  

and assume a parametric model for the response probabilities that depends on the outcome, the random 
effects and the covariates, indexed by the vector parameter  ; 

( , , ; ) Pr[ | , , ; ]ij ij i ij ij ij ip   r y x u R r y x u , with ( , , ; )ij ij ip r y x u  differentiable with respect to  .  

Assumption 1.  

(a) The response occurs independently between the units,  
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and (c) there is no area non-response. 

Note that under (1) and Assumption 1: 
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We assume a parametric form for the “completely observed” outcomes,  
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where we assume that both functions in (3) are differentiable with respect to the vector parameters 1  
and 2  respectively.  

 

 
 
 

 
 

We do not require that the subset  {( , ) : }iji j R 1  of the observed data is not empty. Even if it is, the 
model (3) is properly defined by (1) and Assumption 1.  
 

On the other hand (3) and assumption 1 define (1), therefore by estimating the parameters   and 

1 2( , )    one can estimate (1). 



 
 

2. Estimation of   and   
If the missing outcome values and random effects were actually observed,   could be estimated by 
solving the likelihood equations:  
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where the first summation is over all the K-dimension vectors with 0, 1 components.  

In practice, the missing data and the random effects are unobserved and hence the likelihood equations 
(4) are not operational. However, one may apply in this case the missing information principle: 
Missing Information Principle (Cepillini et al. 1955, Orchard and Woodbury, 1972):  

Denote the observed data by . ,{( : 1), , 1,..., ,  1,..., }ij k ij k ij iO y R i M j N   x .  

Since no observations are available for ,( , , ) : 0ij ki j k R  , solve instead the best predictor of (3) given 
the observed data,  
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