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Abstract 
Statistical agencies are interested in publishing useful statistical data but doing so may lead to the disclosure of 
individuals' private data. This is a problem as it leads to a trade-off between the utility of the published data and the 
risk of disclosure of confidential data. Disclosure control can be seen as the use of methods to deal with this problem 
by assessing and controlling the risk of disclosing confidential data while also providing researchers with useful 
statistical data. 
 
In this paper a disclosure control model based largely on Bayesian decision theory is described as well as a method 
of disclosure control called Random Tabular Adjustment (RTA). This method controls the risk of disclosure by 
randomly adjusting the data and is intended to be an alternative to the common practice of suppressing cells at many 
statistical agencies. It fits naturally into the disclosure control model described. Comparisons with cell suppression 
and applications to real survey data are described. 

1 Introduction 
Statistical agencies usually collect the private data of individuals under the requirement that this data will not be 
disclosed while at the same time publishing as much statistically useful data as possible. When the published data 
can be used to disclose the private data of an individual, these goals come into conflict. To resolve this conflict 
the data must be altered in some manner before it is published so that the risk of disclosure is controlled. 
 
In this paper a model is proposed that attempts to formalize this situation. To model the effectiveness of the 
disclosure control, the users of the published data and their targets are considered. Some users are interested in 
inferring general features of the population but some users are interested in inferring confidential attributes of the 
individuals who provided the data. These users are called analysts and attackers respectively. For the statistical 
agency, the published data is useful, if analysts can make sufficiently good inferences about the population, and 
safe, if attackers cannot make good inferences about the providers of the data. To assess how useful and safe the 
published data is, models of the knowledge that the users have of their targets before and after publication and 
measures of the uncertainty that users have in making inferences are selected. This fits naturally into a Bayesian 
decision theoretic framework and this allows uncertainties and other quantities in the model to be expressed in terms 
of familiar statistical quantities such as expectations and variances. 
 
The proposed model for disclosure control and the associated disclosure control problem are described and then 
used to formulate and solve a simplified disclosure control problem. The general model and problem are 
introduced in two parts. The first part introduces a high level model, called the basic disclosure control model, 
that is sufficiently abstract that it describes most disclosure control models. The associated problem, called the 
basic disclosure control problem, is then described. The second part introduces a more detailed model, called the 
general disclosure control model, that fills in the details of the basic model using concepts from Bayesian 
decision theory. The associated problem, called the general disclosure control problem, is also described. A 
simplified disclosure control model, called the simple Random Tabular Adjustment (RTA) model, is then described 
and its associated problem solved. This problem is solved analytically and so the solution provides a simple 
function of the input parameters which can be evaluated without the use of any complex numerical algorithm. 
 
Many different models and methods of disclosure control have been proposed. A good overview is found in 
Willenborg and De Waal (2001). Bayesian decision theory has been used in disclosure control before. The 
disclosure control model presented here builds on similar approaches that can be found in Duncan and Lambert 
(1986) and Fienberg and Trottini (2002). The proposed model in this paper both simplifies and extends this 
previous work. 
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The RTA model was used to assess and control the risk of disclosure on data from Statistics Canada’s Monthly 
Retail-Trade Survey (MRTS). MRTS currently uses suppression as its method of disclosure control. Parameters 
were chosen for RTA which provide a similar level of protection to that of the current suppression methodology and 
a comparison of the results was made. 
 
2 Disclosure Control 
Disclosure control can be seen as the use of methods of assessing and controlling the risk of disclosing confidential 
data while also providing researchers with useful information when publishing data. To do this an appropriate 
model and an appropriate formulation of the problem are needed. 
 
2.1 Basic Disclosure Control Model 
The basic disclosure control model formalizes the above description of disclosure control. A disclosure control 
method is selected to change the original data into altered data. A measure of the usefulness of the altered data, 
called the utility, is selected and a measure of the risk of disclosure of the altered data, simply called the risk, is 
also selected. The disclosure control method depends on a disclosure control parameter and this parameter is 
chosen so that the method provides sufficient control of the risk of disclosure while maximizing the utility of the 
altered data that results from using the method. 
 
2.1.1 Disclosure Control Method 
 
2.1.1.1 Definition (Disclosure Control Method). A disclosure control method is a function that takes the original 
data and yields the altered data. The method depends on a disclosure control parameter φ. 
 
There is a large variety of disclosure control methods. Disclosure control methods may be deterministic or 
probabilistic and may involve restriction or perturbation of the data. Suppression is a common method for tabular 
magnitude data and rounding is common for frequency data. Suppression restricts while rounding perturbs the 
data. Both of these are deterministic. Data swapping and the addition of random noise are common probabilistic 
methods. 
 
The disclosure control parameter controls how the original data is altered and depends on the method used. For 
example if rounding is used, a rounding base needs to be selected, and so the disclosure control parameter is the 
rounding base in this case. If random noise is added, a distribution for the noise needs to be selected and so the 
disclosure control parameter is the distribution of the noise. 
 
2.1.2 Utility and Risk 
 
2.1.2.1 Definition (Utility and Risk). The utility U and risk R of the altered data are functions of the altered data 
and depend on the disclosure control parameter φ. These functions measure the usefulness and disclosure risk of the 
altered data respectively. 
 
As with disclosure control methods there is a large variety of utility and risk measures. If suppression is used as 
the method on tabular magnitude data, the value of the published cells in a table is often used as a measure of utility 
and risk is measured using the lengths of the feasible intervals of the suppressed cells. If rounding is used, the 
distance of the rounded table from the original is often used as a measure of utility and the rounding base may be 
used to measure the risk. 
 
2.2 Basic Disclosure Control Problem 
Statistical agencies typically want to find the method that maximizes utility while constraining risk to an 
acceptable level. Using the above concepts we can formulate the basic disclosure control problem as an 
optimization problem. 
 
2.2.0.2 Problem (Basic Disclosure Control). Find the disclosure control parameter φ that maximizes 𝑈𝑈(𝜑𝜑) under 
the constraint 𝑅𝑅(𝜑𝜑) ≤ 𝑟𝑟 where 𝑟𝑟 is the selected risk threshold. 
 
 



 

2.3 General Disclosure Control Model 
The utility and risk of the altered data in the basic disclosure control model need to be described in more detail 
before any practical use can be made of this model. To do this we need models of who is using the data, what 
they are estimating and how well they are estimating it. The general disclosure control model is introduced and this 
model includes the concepts of target and user, prior, posterior and base distribution, loss and uncertainty. These 
concepts are formalized using concepts from Bayesian decision theory. 
 
2.3.1 Targets and Users 
 
2.3.1.1 Definition (Target). A target is a function of the original data. Targets may be confidential or analytical. 
 
The values of analytical targets are to be made available and a publication that reveals these values contributes to 
utility. Conversely the values of confidential targets are to be made unavailable and a publication that reveals these 
values contributes to risk. A typical analytical target is a population parameter such as a mean or total and a typical 
confidential target is the contribution to the original data of a single individual. 
 
2.3.1.2 Definition (User). A user is an individual who estimates a target using the published data. A user who 
estimates an analytical target is an analyst. A user who estimates a confidential target is an attacker. 
 
Different users may know different things about their targets and the data. This may contribute to how well they 
can estimate their targets and so should be accounted for in the model. Users may even be data providers and so 
know their own contribution to the original data. 
 
2.3.2 Prior, Posterior and Base Distributions 
For each target and user we have a model representing the user’s knowledge of the target and the altered data. 
From this the user’s knowledge of the target after the data is published can be determined. The user’s knowledge of 
the target and altered data is represented by a probability distribution in this model. In addition for each target a 
probability distribution is selected to be used as a benchmark against which the user’s knowledge of the target is 
compared. 
 
2.3.2.1 Definition (Prior Distribution). The user’s knowledge of the target and the altered data before the altered 
data is published is represented by the user’s probability distribution of the target and the altered data. This 
distribution is the prior distribution. 
 
2.3.2.2 Definition (Posterior Distribution). The user’s knowledge of the target after the altered data is published is 
represented by the user’s probability distribution of the target given the altered data. This distribution is the 
posterior distribution. 
 
2.3.2.3 Definition (Base Distribution). The user’s knowledge of the target after the altered data is published is 
compared to a selected distribution. This distribution is the base distribution. 
 
2.3.3 Loss and Uncertainty 
A measure of how well the users can estimate their targets is needed. This is formalized by describing the user’s 
estimation problem as a problem from decision theory. The concepts of loss and uncertainty provide a way to do 
this. Using the expected loss to measure uncertainty in estimation is done in other contexts (see DeGroot (1962)). 
The following descriptions make use of a target variable A, an observation variable B and a loss function f . The 
descriptions also make use of the estimator Θ and the uncertainty Ψ. Also note that in what follows E and V are 
the expectation and variance operators. 
 
2.3.3.1 Definition (Loss Function). The loss function f is the function that determines the measure of error or 
cost f (a, θ) of a user in using an estimate θ for a target value a. 
 
Before making an observation it is assumed that the user selects the estimator that minimizes the user’s prior 
expected loss. The user solves the following problem. 
 



 

2.3.3.2 Problem (User’s Prior Target Estimation). Find a value θ that minimizes E(f (A, θ)). A solution to this 
problem is the user’s prior estimator and is denoted by Θ(A). 
 
After making an observation it is assumed that the user selects the estimator which minimizes the user’s posterior 
expected loss given an observation. The user then solves the following problem. 
 
2.3.3.3 Problem (User’s Posterior Target Estimation). Find a value θ that minimizes E(f (A, θ)|B). A solution to 
this problem is the user’s posterior estimator and is denoted by Θ(A|B). 
 
A large value for the minimal expected loss indicates that the user’s estimate may be poor and so the user is 
uncertain about their knowledge of the target. Note that if the user selects a different estimator, then the user’s 
expected loss can only be larger. Assuming that the user selects the estimator that minimizes the expected loss is 
the same as assuming the best case from the user’s perspective. 
 
2.3.3.4 Definition (Prior Uncertainty). A user’s prior uncertainty in estimating a target is the user’s expected loss. 
The prior uncertainty Ψ(A) is given by Ψ(A) = E(f (A, Θ(A))). A user’s prior certainty is the reciprocal of the user’s 
uncertainty. 
 
2.3.3.5 Definition (Posterior Uncertainty). A user’s posterior uncertainty in estimating a target is the user’s 
posterior expected loss. The posterior uncertainty Ψ(A|B) is given by Ψ(A|B) = E(f (A, Θ(A|B))|B). A user’s 
posterior certainty is the reciprocal of the user’s uncertainty. 
 
A useful loss function in this context is the quadratic loss function. The quadratic loss function is a good choice 
for continuous data although others are possible. It leads to uncertainties that may be expressed in terms of 
familiar statistical quantities as the following lemma states. 

 
2.3.3.6 Definition (Quadratic Loss). The quadratic loss function is given by f (a, θ) = (a − θ)2. 
 
2.3.3.7 Lemma (Quadratic Loss). Given a quadratic loss function the prior estimator Θ(A) is given by Θ(A) = 
E(A) and the prior uncertainty Ψ(A) is given by Ψ(A) = V (A).  The posterior estimator Θ(A|B) is given by 
Θ(A|B) = E(A|B) and the posterior uncertainty is given by Ψ(A|B) = V (A|B). 
 
2.4 General Disclosure Control Problem 
The concept of uncertainty leads to natural definitions of risk and utility. To this end let τ be a confidential target, υ 
be an analytical target, α be an attacker and β be an analyst. Also let Xτα be a user target variable for target τ and 
user α, Yτ be a base target variable for target τ and Zα be a user observation variable for user α. Finally let z be 
an observed value. 
 
The distribution of the user target variable Xτα represents the knowledge of the user α of the target τ before 
publication and the distribution of the user observation variable Zα represents the knowledge of the user α of the 
altered data before publication. The joint distribution of the user target variable Xτα and the observation variable Zα 
is the prior distribution. The distribution of the base target variable Yτ is the base distribution and is used to make 
comparisons with uncertainties in risk and utility calculations. 
 
The utility and risk are defined in terms of uncertainties of the above variables. Using these definitions the basic 
disclosure control problem becomes the general disclosure control problem. 
 
2.4.0.8 Definition (Utility). The utility of the altered data is the smallest relative certainty of a user in estimating an 
analytical target. The utility U is a function of the disclosure control parameter φ given by  
 

 
 
The cost of the altered data is the reciprocal of the utility of the altered data. 
 



 

2.4.0.9 Definition (Risk). The risk of the altered data is the largest relative certainty of a user in estimating a 
confidential target. The risk R is a function of the disclosure control parameter φ given by 
 

 
 

The safety of the altered data is the reciprocal of the risk of the altered data. 
 
Here the convention that if the prior uncertainty of the base variable and the posterior uncertainty of the user 
variable are zero then the ratio is not considered when determining the infimum or supremum. 
 
3 Simple RTA 
In simple Random Tabular Adjustment (RTA) the use of the general disclosure control model is demonstrated using 
a simple situation. Here the original data consists of a set of individuals and their contributions to a single cell. The 
contributions are real-valued, unbounded and continuous data. The total of this cell is to be published. The 
contribution of each individual to the cell total is confidential. The users of the published data are individuals that 
may include the contributors. To control the risk of disclosure, a random value is added to the cell total. 
 
3.1 Simple RTA Model 
The parts of the general disclosure control model for simple RTA are specified and the resulting expressions are 
derived so that the simple RTA problem can be solved. 
 
3.1.1 Disclosure Control Method 
Disclosure is controlled by adding a random variable ∆ to the cell total where ∆ ∼ N (0, σ2). The parameter σ2 
controls the variance of the random variable added to the total and is the disclosure control parameter in this model. 
 
3.1.2 Targets and Users 
There is one analytical target, the cell total. The user target variable for the cell total is denoted by Xg∗ for user 
individual g. There are many confidential targets, namely each target individual’s contribution, and many users 
estimating these targets. The user target variable for the individual’s contribution is denoted by Xgh for user 
individual g and target individual h. 
 
3.1.3 Prior, Posterior and Base Distributions 
It is assumed that the users have some prior knowledge of each individual’s contribution to the cell and that the set 
of contributors to the cell is known. The distribution of the user data variable Dgi represents the knowledge of the 
user individual g of the contribution to the cell of the individual i. It is assumed that Dgi ∼ N (mgi, vgi

2) and that these 
variables are independent. A base data variable Ei for individual i is selected such that Ei ∼ N (ni, wi

2) and again it is 
assumed that these variables are independent. 
 
The target variables and observation variables can be expressed in terms of these data variables. The confidential 
user target variable for user individual g and target individual h is given by Xgh = Dgh, the analytical user target 
variable for user individual g is the unaltered cell total Xg∗ = ∑i Dgi and the observation variable for user individual g 
is the altered cell total Zg = ∑i Dgi + ∆. Similarly the confidential base target variable is given by Yh = Eh and the 
analytical base target variable Y∗ = ∑i Ei. 
 
The posterior distribution for the confidential target variables can be determined from the prior distributions then 
given by 

 
 
 
 
 
 



 

From this it follows that the posterior distribution is given by 
 

 
 

 
The posterior distribution for the analytical target variables can also be determined from the prior distributions. The 
joint distribution of Xg∗ and Zg is then given by 
 

 
 
From this it follows that the posterior distribution is given by 
 

 
 
The distributions of the base variables can also be determined. Let n∗ and w∗ be given by n∗ = ∑i ni and w2 =∑i wi

2 so 
that the distributions of the base variables are given by 
 

 
 
3.1.4 Loss and Uncertainty 
Recall that the uncertainty is the minimal expected loss associated with a user estimation problem and so measures 
how poor the user’s best estimate is in estimating the target. 

 
A natural choice of loss function in this context is the quadratic loss function. Under this loss function the uncertainties 
are easy to determine as they are the variances of the above distributions. The posterior uncertainties for the 
confidential user target variables are given by 
 

 
 
The posterior uncertainties of the analytical user target variables are given by 
 

 
 
For the base target variables the corresponding uncertainties are given by 
 

 
3.2 Simple RTA Problem 
Using the above expressions for the various uncertainties in the model we find simple expressions for the utility and 
risk functions given by 
 



 

 
 
3.2.0.1 Problem (Simple RTA). Find a disclosure control parameter σ2 that maximizes 
 

 
under the constraint 

 
 
This problem can be solved analytically. The objective function is a decreasing function of σ2 so if there is a 
solution, the value that maximizes the objective function is the smallest that satisfies the constraint. If vgh

2> wh
2 for 

all target individuals h and user individuals g, then the solution is given by 
 

 
provided the right hand side is non-negative and σ2 = 0 otherwise. If vgh

2≤ wh
2 for some target individual h and user 

individual g, then there is no solution. 
 
Once the variance σ2 is determined, a realized value of ∆ is randomly selected and added to the total x to get z. The 
value z together with the variance σ2 are published. 
 
3.3 Simple RTA Parameters 
One way to interpret the prior and base distribution parameters in simple RTA is in terms of user knowledge and 
protection. The prior distribution parameters determine the most knowledgeable user protected against and the base 
distribution parameters determine the amount of protection given to the target. Smaller prior variances determine 
more knowledgeable users and larger base variances determine more protected targets. There are many ways to 
select these parameters but they all involve making assumptions about the knowledge of the users estimating the 
targets and how much protection a target requires. 
 
Here is one way to select the prior and base distribution parameters that leads to some simplifications under some 
reasonable assumptions. It is assumed that the contribution of each individual is a target and that each contributing 
individual is an attacker. Furthermore it is assumed that each individual knows their own contribution and that every 
other individual knows this contribution equally well. This situation corresponds to setting the prior variances using 

 
 
Note that the variance is zero when g = h indicating that there is no variability associated with an individual’s own 
contribution and when g ≠ h the variance depends only on the target individual h. 
 
Using the above solution to simple RTA, if rh

2 > wh
2 for all target individuals h then  

 



 

 
 

provided the right hand side is non-negative and σ2 = 0 otherwise. If rh
2 ≤ wh

2 for some target individual h, then there 
is no solution. Here r*

2 =∑i ri
2. Note that determining the supremum in this case does not require a search through all 

possible pairs of individuals g and h. Only the pairs where user individual g maximizes rg
2 or target individual h 

maximizes rh
4 /(rh

2 − wh
2 ) need to be considered. This reduces the amount of work needed to calculate the 

disclosure control parameter σ2. 
 
If a size measure si is available for each individual i, coefficients of variation can be selected for the prior and base 
variances. This provides a simple and understandable way of determining all the prior and base parameters. When a 
prior coefficient of variation ε and a base coefficient of variation η are selected, the prior and base variances are 
given by ri

2 = ε2si
2 and wi

2 = η2si
2. 

 
Using the above solution, if η < ε then 

 
provided the right hand side is non-negative and σ2 = 0 otherwise. If η ≥ ε then there is no solution. Here λ2 = ε4/(ε2-
η2) and s*

2 = ∑i si
2. Since λ > ε, this supremum is attained when the individual h has the largest size and the 

individual g has the second largest. It follows that 
 

 
 
where s(1) is the size of the largest individual and s(2) is the size of the second largest individual. This expression is 
similar to the expression used in traditional sensitivity rules such as the pq-rule. A discussion of sensitivity rules 
can be found in Willenborg and De Waal (2001). 
 
4 Application and Comparison 
RTA has been applied to data from the Canadian Monthly Retail-Trade Survey (MRTS) as a test of the 
methodology. In this section an overview of this survey is given as well as a description of the current disclosure 
control methodology. A description of the application of RTA to MRTS is then given and a comparison of the two 
disclosure control methodologies is made. 
 
4.1 A Brief Overview of MRTS 
MRTS is a survey of businesses that publishes the estimates of total retail sales by geography and industry each 
month. The geographic levels of publication consist of provincial and territorial levels and national level of Canada 
as well as some selected Census Metropolitan Area (CMA) levels. The industry levels consist of selected NAICS 
(North American Industry Classification System) levels from 441100 to 454110.  
 
MRTS is a sample survey with take-all, take-some, and take-none strata. There are many large businesses in the 
population. These are always sampled and so are included in the take-all part of the sample. The contributions of 
these businesses have the highest risk of disclosure as they tend to make up a large proportion of the estimates which 
they are a part of. Most estimates have contributions from businesses in the take-some part of the sample and so 
most estimates have sampling errors. Sampling variances are calculated for each estimate. 
 
In addition confidentiality waivers are collected from some businesses. When a business has given a confidentiality 
waiver, the business waives their right to the confidentiality protection provided by the Statistics Act. A 
confidentiality waiver allows us to discount the waived contribution when determining disclosure risk. Waivers 
should be taken into consideration in any disclosure control methodology for MRTS.  
 
4.2 Current Disclosure Control Methodology for MRTS 
Currently MRTS uses suppression as its method of disclosure control. This involves conducting a risk assessment 
using a cell sensitivity measure and then finding a suppression pattern by solving a linear programming problem 
using Statistics Canada’s G-Confid system. Similar approaches are discussed in Willenborg and De Waal (2001). In 



 

the suppression pattern the sensitive estimates along with other estimates (secondary suppressions) are suppressed in 
order to prevent the recalculation of the sensitive estimates using the other published estimates. The confidentiality 
waivers are taken into account when determining the sensitivities of the estimates. Sampling variances and weights 
are not taken into account in the current MRTS disclosure control methodology. Cell sensitivities are calculated as if 
the sample were a census. This is a conservative assumption. 
 
Around 20% to 25% of the estimates in the publication table are suppressed each month although the total dollar 
value of the suppressed estimates is very small (about 2%). However for some provinces and industries the total 
dollar value of the suppressed estimates is large, particularly in small provinces and territories, whose estimates are 
often selected for secondary suppression. 
 
4.3 Application of RTA to MRTS 
The RTA methodology was applied to MRTS. This was done by selecting a set of low level estimates, selecting 
appropriate parameters, solving the RTA problem for each estimate, randomly altering the estimates, and 
aggregating to the higher level estimates. 
 
A set of low level estimates was selected that could have its estimates randomly adjusted independently and could 
determine values for all the other estimates by aggregation. The set selected included the estimates of the internal 
cells of the table and some additional estimates to accommodate the CMA level cells. This was done in order to 
preserve the additive relations among the estimates, reduce disclosure risk and make the implementation easier. 
Independent random adjustments provide some protection to individuals who contribute to multiple estimates. 
Correlated random adjustments are possible but make the risk assessment difficult. Correlations may allow an 
attacker to use one part of the table to make inferences about other parts and this complication is not accounted for 
in the simple RTA model. Allowing for correlations in the RTA model is a topic for future work. 
 
The parameters for RTA were selected in a way that provides a similar level of protection to that of the current 
suppression methodology. This involved selecting values for ε and η (as in section 3.3) so that the values for σ2 are 
comparable to that of the cell sensitivity rule used in the current suppression methodology. In particular it is 
desirable to have parameter values that produce a positive value for σ2 whenever the cell sensitivity is positive and 
conversely. While this is desirable, it is not possible to have complete agreement on this as the RTA methodology is 
based on variance calculations and cell sensitivity calculations are not. 
 
The simple RTA problem is solved (as in section 3.3) for each estimate using the selected parameters and the 
business’ sales value itself as the size. Adjustments were made to the formulas in section 3.3 to account for survey 
weights and confidentiality waivers. Weights are interpreted as a count of the number of businesses in the 
population that the sampled business is representing and the formula adjusted accordingly. Waivers are accounted 
for by changing how the worst case attacker/target pair is found. For example if the largest contributor has a waiver 
but the second largest does not, then the worst case occurs when the second largest contributor is the target and the 
largest is the attacker. Sampling variance is also accounted for by subtracting the sampling variance from the 
variance of the random adjustment required by RTA since sampling variability may be considered as part of the 
disclosure control method in the RTA methodology. 
 
4.4 Comparison of Methodologies 
Comparing the RTA and the suppression methodology is difficult as they are described using different sorts of 
concepts. In RTA the concepts are probabilistic and in suppression the concepts are geometric. It is desirable to 
compare the two methodologies using similar levels of risk and similar measures of utility.  
 
As mentioned above, in order to make the disclosure risks comparable, the RTA parameters were selected so that the 
level of protection against disclosure under RTA should be roughly equivalent to the level under the current 
suppression methodology.  
 
Utility in the two methodologies is measured differently. To compare the two, it was decided to simply describe the 
differences instead of trying to find a common utility measure. The tables that follow illustrate and summarize these 
differences. 
 



 

Table 1 shows the results of the current methodology next to the results of the RTA methodology. It shows the 
results for one month for one province at the lowest published industry levels using simulated MRTS data. Here the 
sensitive cells are highlighted.  
 
This table is a good illustration of the differences between the RTA methodology and the current suppression 
methodology. Note that there are a number of estimates that are suppressed under the current methodology but are 
published with no adjustment (CV 0%) under the RTA methodology (like NAICS 44111). These are estimates that 
are secondary suppressions and used in the current suppression methodology to protect the sensitive estimates. This 
protection is not needed in RTA and so all the secondary suppressions may be published. Under the RTA 
methodology some sensitive cells are substantially adjusted (like NAICS 4521 with CVs about 10%) while some 
need only a small adjustment (like NAICS 44511with CV about 3%). Note that regardless of how sensitive an 
estimate is, it is suppressed under the current methodology while under the RTA methodology an estimate that has a 
high sensitivity has a random adjustment with a large CV and an estimate that has a low sensitivity has a random 
adjustment with a small CV. There is also an estimate (NAICS 44112) that was suppressed under the suppression 
methodology that is published unadjusted under the RTA methodology. This is because the sampling variance is 
larger than the variance required by RTA. 

 
 

Table 1 
 
Tables 2 and 3 show the difference in quality for published and suppressed estimates under the different 
methodologies. The quality grades represent standard CV ranges and the values in the tables indicate the number of 
estimates. Here the grades are as follows: A (0% to 5%) B (5% to 10%) C (10% to 16.5%) D (16.5% to 25%) E 
(25% to 33%) F (over 33%). 
 
Table 2 shows the change in quality among the published estimates. It can be seen that almost all the estimates have 
their original quality grade after any adjustment using the RTA methodology. There are 85 published estimates 
whose quality grade move from A to B out of 9869 estimates whose original quality grade is A. These estimates are 
usually marginal totals that are published under the suppression methodology but are required to absorb the random 
adjustment made to some internal cells under the RTA methodology. 
 
Table 3 shows the change in quality among the suppressed estimates. The estimates included in this table are all 
suppressed under the current methodology but are published under the RTA methodology. Note that there are 803 
suppressed estimates with original quality grade A that have grade A after the application of RTA. These estimates 
are mostly estimates that are chosen as secondary suppressions under the current methodology. There are also 110 
suppressed estimates with original quality grade A that have grade C after the application of RTA. These estimates 
are mostly estimates that were originally sensitive under the current methodology and so require a random 
adjustment with a large CV. 
 



 

 
 Quality of Published Estimates After Application of RTA 
Original Quality A B C D E F Total 
A 9784 85 0 0 0 0 9869 
B 0 4975 0 0 0 0 4975 
C 0 0 1996 0 0 0 1996 
D 0 0 0 708 0 0 708 
E 0 0 0 0 42 0 42 
F 0 0 0 0 0 12 12 
Total 9784 5060 1996 708 42 12 17602 

 
Table 2  

 
 Quality of Suppressed Estimates After Application of RTA 
Original Quality A B C D E F Total 
A 803 643 110 0 0 0 1556 
B 0 146 0 0 0 0 146 
C 0 0 108 0 0 0 108 
D 0 0 0 35 0 0 35 
E 0 0 0 0 27 0 42 
F 0 0 0 0 0 14 14 
Total 803 789 218 35 27 14 1886 

 
Table 3 

 
In summary it is seen that, for comparable levels of disclosure risk, using the RTA methodology, many more 
estimates are published at the cost of some loss in precision. In particular a large number of non-sensitive low-level 
estimates that were suppressed to protect sensitive estimates are published with no change in precision under RTA. 
In addition under RTA some estimates that are sensitive require only a random adjustment with a small CV, and so 
may be published with a small loss in quality. Some estimates may even have a large enough sampling variance to 
control the risk of disclosure without any further random adjustment and so may be published as is. 
 
5 Conclusion 
A general disclosure control model has been proposed and used to solve the simple RTA problem. This model uses 
concepts from Bayesian decision theory to formulate disclosure control problems. It does this by defining the utility 
and risk of the published data in terms of users who make inferences about targets using the published data. Solving 
the general disclosure control problem involves finding the value of the disclosure control parameter that maximizes 
the utility while constraining the risk. The simple RTA problem is formulated and solved analytically. This problem 
involves a single cell total that is to be published while protecting the contributions of the individuals who 
contributed to the cell. When the prior and base parameters are selected in certain ways, the disclosure control 
parameter that solves the problem is simple to calculate and is similar to traditional sensitivity rules used in the 
disclosure control of tabular magnitude data. 
 
The RTA disclosure control methodology was applied to the monthly retail trade survey (MRTS) and the results 
compared to the current suppression methodology used by MRTS. For comparable levels of protection against 
disclosure, many suppressed estimates are published at the cost of some loss in quality. 
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