
Optimal Sample Size Allocation to Mixed Modes: A Case Study 
Using the Residential Energy Consumption Survey 
 

 

 

 

 

 

Peter Frechtel and Phillip S. Kott 

RTI International (a registered trademark and a trade name of Research Triangle Institute), 
Research Triangle Park, NC, USA 

Proceedings of the 2018 Federal Committee on Statistical Methodology (FCSM) Research Conference  

Introduction 

In the current era of declining response rates, reduced federal budgets, and societal changes occurring in short time 
frames, many US government agencies are seeking new ways to collect and analyze data, without a severe impact 
on data quality. Many of these new methods are cheaper, faster, or both. For example, some of the newer methods 
involve the merging of traditionally-collected survey data with administrative data, data from internet panels, or 
social media posts. 

This paper discusses a method that reduces the costs of administering a survey without a severe impact on data 
quality. The method uses double sampling and regression estimation. It is designed for surveys where some 
variables are expensive to collect while other variables that are closely related to the expensive variables are less 
expensive to collect.  
 

 
The method consists of the following steps: 

1) Allocate some of the sample to the expensive mode (e.g., face-to-face interview) and some of the sample to 
the inexpensive mode (e.g., mail, phone, or web). 

2) Collect the data (all variables with the expensive mode; only the inexpensive variables with the inexpensive 
mode). 

3) Fit a model with the expensive variable(s) as the dependent variable and the inexpensive variable(s) as the 
independent variables. 

4) Construct estimators for the expensive variables using the actual responses for the expensive mode and the 
model-predicted responses for the inexpensive mode. 

 

 

 

If the expensive variables can be estimated with precision using the inexpensive variables as covariates, then the 
estimates related to the expensive variables will be made more precise by using the inexpensive variables, when 
compared to the precision obtained by direct estimates that use only the expensive sample. 

This scenario, where some variables are expensive to collect and some are not, occurs frequently. Examples include: 

• In the National Health and Nutrition Examination Survey (NHANES), respondents are asked demographic, 
socioeconomic, dietary, and health-related questions in a face-to-face interview. Some respondents also 
undergo physical examinations where medical, dental, and physiological measurements are taken, and 
laboratory tests are administered. The variables collected in the interview can be viewed as the inexpensive 
variables, and the variables collected in the physical examinations can be viewed as the expensive 
variables. 

• In the National Survey on Drug Use and Health (NSDUH), as in NHANES, respondents are asked 
numerous questions, including many on drug use and health, in a face-to-face interview. From 2008-2012, 
a subsample of adult respondents were asked more detailed questions related to mental health disorders, 
where the interviewers were trained clinicians. The study based on the subsample was called the Mental 
Health Surveillance Study (MHSS). The MHSS variables can treated as the expensive ones and the 
variables from the main interview can be treated as the inexpensive ones. 



• In the Residential Energy Consumption Survey (RECS), respondents are asked about the energy 
characteristics of their place of residence. Before 2015, all interviews were conducted face-to-face, and 
trained interviewers measured the square footage of the residence by following a set of strict and detailed 
guidelines. However, in 2015, 57% of the unit respondents answered a questionnaire by web or mail and 
were not asked to measure the square footage of their residence. The variables other than measured square 
footage are the inexpensive variables, and the measured square footage is the expensive variable. 

 

 

 

 

 

 

The primary question addressed in this paper is this: given a fixed budget, what is the optimal sample allocation 
between the inexpensive mode and the expensive mode? It stands to reason that if the expensive variables can be 
modeled well using the inexpensive variables, and the expensive mode is much more expensive than the inexpensive 
mode, then the optimal allocation would involve a few expensive-mode surveys and many inexpensive-mode 
surveys. Conversely, a poor model and modes that have similar costs would call for most, if not all, of the surveys to 
be administered using the expensive mode. 

We will use data from the 2005 RECS to investigate this topic. Part of the motivation for using RECS data is that the 
scenario mentioned above was encountered directly during the 2015 RECS. The original plan was to collect all the 
data face-to-face via a computer-assisted personal interview (CAPI), but when that turned out to be too difficult and 
too expensive, the face-to-face mode was abandoned, and data from respondents in the remaining sample were 
collected using web and mail (but without the questions about measured square footage). The issue of optimal 
allocation arose when we wondered what would have happened if this were planned. Would we have collected more 
data using web and mail, or less? 

Methods 

The RECS is administered by the Energy Information Administration (EIA). The estimation of mean measured 
square footage is not of primary interest to EIA; it is more interested in using the measured square footage values in 
models that estimate the amount of energy consumed by heating, cooling, various appliances, etc. Nevertheless, 
mean measured square footage is the focus of this study. The rationale is that the bias and variance of the mean 
measured square footage are associated with the bias and variance of the predicted values derived using that statistic. 

The method we used to find the optimal allocation employed four major steps, mentioned briefly here and covered 
in more detail immediately below: 

1) Assume a fixed budget for data collection. We set the budget at $200,000. 
2) Assume per-complete-case costs for both the inexpensive and expensive modes. We assumed that the 

inexpensive mode costs $25/case and the expensive mode costs $500/case. 
3) Use theory to plot the variance of the mean as a function of various values for the expensive sample size 

and the inexpensive sample size. 
4) Run a simulation study to confirm that empirical results match the theory. 

 

 

The first two steps were straightforward, although an interesting next step would be to run a sensitivity analysis: 
how much does the optimal allocation change if the relative costs change? 

The third step involves some derivations described in more detail in Appendix A. These derivations are based in part 
on an extension of Equation (20) in Legg & Fuller (2009). The basic steps are fairly straightforward, though: 
 

a. Using data from the expensive model, fit a regression model with the expensive variable as the dependent 
variable and a subset of the inexpensive variables as independent variables. Save the predicted value and 
the residual for each observation. 

b. Calculate the variances of both the predicted values and the residuals. The variance of the predicted values 
is 𝜎𝜎ℎ𝑎𝑎𝑎𝑎2  and the variance of the residuals is 𝜎𝜎𝜀𝜀2. 

c. Given the fixed budget and the complete-case costs from the first and second major steps, compile a list of 
possible values for the full (i.e., combined) sample and the subsample (collected using the expensive 
mode). Label the former 𝑛𝑛 and the latter 𝑚𝑚. Given our fixed budget and cost assumptions, we have the 
equation 500𝑚𝑚+ 25(𝑛𝑛 −𝑚𝑚) = 200,000. So we let 𝑚𝑚 vary from 100 to 400, and calculated the value for 
𝑛𝑛 as 8,000 − 19𝑚𝑚.  



d. Calculate the part of the variance that varies with 𝑚𝑚 and 𝑛𝑛, 𝜎𝜎ℎ𝑎𝑎𝑎𝑎
2

𝑛𝑛
+ 𝜎𝜎𝜀𝜀2

𝑚𝑚
, for each value of 𝑚𝑚 and 𝑛𝑛 from Step 

(c). 
e. Graph the variance as a function of the subsample size 𝑚𝑚 or the sample size 𝑛𝑛 (given the fixed cost, one 

can be derived from the other as shown above). According to Appendix A, the optimal sample size ratio 
should be 𝑚𝑚

𝑛𝑛
= 𝜎𝜎𝜀𝜀2 √500⁄

𝜎𝜎ℎ𝑎𝑎𝑎𝑎
2 √25⁄

. 

 

 

 

 

 

The fourth major step (i.e., the simulation study) was completed because the derivations in Appendix A assume that 
the model used in Step (a) is correct, and this may not be the case. So the goal was to ground-truth the results 
derived from theory in the third major step. To implement the simulation, for each combination of 𝑚𝑚 and 𝑛𝑛, we drew 
a full sample of size 𝑛𝑛 from the complete 2005 RECS data, and a subsample of size 𝑚𝑚, and repeated this 10,000 
times. For each iteration of the simulation, the point estimate of the mean was 

𝑦𝑦� = 1
𝑛𝑛
�∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝑀𝑀 +∑ 𝑦𝑦�𝑗𝑗�,𝑗𝑗∈(𝑁𝑁−𝑀𝑀)  

where n is the full sample size, M is the set of observations in the subsample, N is the set of observations in the full 
sample, and 𝑦𝑦�𝑗𝑗 is the model-predicted measured total square footage for sample unit j. 

We then calculated the mean squared error of the 10,000 point estimates and the bias of those point estimates. We 
expect the mean squared error to be lowest around the optimal sample size ratio based on theory, 𝑚𝑚

𝑛𝑛
= 𝜎𝜎𝜀𝜀2 √500⁄

𝜎𝜎ℎ𝑎𝑎𝑎𝑎
2 √25⁄

. 

For both the third and fourth major steps, a model had to be fit to estimate measured square footage as a function of 
the inexpensive variables. Before that, the 2005 RECS public-use dataset was downloaded and pre-processed using 
the following steps: 
 

• Download the data. The data are available, as of 1/16/2018, from the website 
https://www.eia.gov/consumption/residential/data/2005/index.php?view=microdata. The dataset contains 
4,382 observations. 

• Subset the data. Only the 2,044 cases meeting the following criteria were kept: 
o TYPEHUQ = 2 (single-family, detached housing units) 
o ZTOTSQFT = 0 and ZSQFTEST = 0 (neither measured square footage nor respondent-estimated 

square footage were imputed) 
o STORIES ≠ 50 (the STORIES variable was something other than "some other type") 

• Recode the dependent and independent variables for the model. The model used to predict measured square 
footage was very similar to the model used to impute square footage for the 2015 RECS (U.S. Energy 
Information Administration, 2017). The dependent variable was the square root of measured square 
footage: 𝑧𝑧 = �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The independent variables were: 

o The square root of respondent-estimated square footage, SQRT_SQFTEST. 
o A recoded version of STORIES, called STORIES_R: 

 1 = one story 
 2 = two stories 
 2.5 = split level 
 3 = three or four stories 

o TOTROOMS, the total number of rooms in the housing unit. 
o A recoded version of the attic variables (ATTIC, ATTCHEAT, ATTCCOOL, and ATTICFIN), 

called ATTICCOM: 
 0 = no attic 
 1 = attic, completely heated and/or cooled, and/or finished 
 2 = attic that is not finished or completely heated/cooled 

o CELLAR, whether or not the housing unit contained a basement. 
o A recoded version of the garage variables (GARGLOC, GARAGE1C, GARAGE2C, and 

GARAGE3C), called GARGCOM: 
 0 = no garage 

https://www.eia.gov/consumption/residential/data/2005/index.php?view=microdata


 1 = one-car garage 
 2 = two-car garage 
 3 = three-car garage 

o URBRUR, a self-reported urban/rural variable (1 = City, 2= Town, 3 = Suburbs, 4 = Rural). 
 

 

 

 

 

 

 

  

After the model was fit, we had to undo the square-root transformation to create predicted values and residuals. This 
was done as follows: 

1) Calculate the overall adjustment factor 𝑎𝑎 = ∑ 𝑦𝑦𝑖𝑖𝑖𝑖∈𝑀𝑀
∑ 𝑧̂𝑧𝑖𝑖

2
𝑖𝑖∈𝑀𝑀

. This is used to account for the fact that the expected 

value of the square of the model-predicted value is not equal to the square of the predicted value from the 
model. That is, 𝐸𝐸(𝑧𝑧2) ≠ �𝐸𝐸(𝑧𝑧)�

2
. 

2) The predicted measured square footage for observation 𝑖𝑖, 𝑦𝑦�𝑖𝑖, = 𝑎𝑎𝑧̂𝑧𝑖𝑖2. 
3) The residual for observation 𝑖𝑖 is 𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖. 

The variances of the predicted values (the  𝑦𝑦�𝑖𝑖) and residuals (the 𝑒𝑒𝑖𝑖) were used in the third major step to calculate 
𝜎𝜎ℎ𝑎𝑎𝑎𝑎2  and 𝜎𝜎𝜀𝜀2 respectively, and the predicted values were used in the fourth major step (i.e., the simulation) to 
calculate 𝑦𝑦�. 

Results 

Table 1 provides statistics associated with the model used to predict the "expensive" variable TOTSQFT as a 
function of the "inexpensive" variables. This model was fit using 2,044 cases as described in the previous section. 
The model produced values of 𝜎𝜎ℎ𝑎𝑎𝑎𝑎2  = 1.7 million, 𝜎𝜎𝜀𝜀2 = 1.2 million, and an optimal sample size ratio of 0.16. The 
optimal sample size ratio suggests that the ideal allocation would be approximately 𝑚𝑚 = 316 and 𝑛𝑛 = 2000. (In 
practice, the analyst will typically not have access to the full dataset in order to estimate 𝜎𝜎ℎ𝑎𝑎𝑎𝑎2  and 𝜎𝜎𝜀𝜀2.) 

Table 1. Covariate-level statistics for model where �𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 is regressed on "inexpensive" variables. 
Neither the weights nor the sample design variables were used. 𝑁𝑁 = 2,044, 𝑅𝑅2 = 0.62. The adjustment factor 𝑎𝑎 
used to correct the squared predicted values was 1.03. 

Independent Variable Coefficient Standard T-Test: 𝜷𝜷 = 𝟎𝟎 P-Value 
Estimate Error 

�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇 0.32 0.03 9.51 < 0.001 
# Stories (1, 2, 2.5 (Split-Level), 3 3.76 0.48 7.83 < 0.001 
or more) 
# Rooms 1.04 0.17 6.19 < 0.001 
No Attic -12.23 0.49 -24.82 < 0.001 
No basement -8.00 0.43 -18.44 < 0.001 
Size of garage (0 = no garage, 1 = 3.17 0.24 13.40 < 0.001 
1-car, 2 = 2-car, 3 = 3-car 
Urban/rural     

1 = city -3.70 0.52 -7.13 < 0.001 
2 = town -2.86 0.61 -4.71 < 0.001 
3 = suburbs -1.51 0.61 -2.48 0.013 
4 = rural reference cell 

Table 2 compares the theoretical variance of the estimated mean with the empirical variances from the simulation. 
The two track well, as shown in Figure 1. The two parallel each other, but do not overlap because the theoretical 
variance has no finite population correction adjustment, but the simulation had a very large sampling fraction which 
is reflected in the empirical variances. The biases resulting from the method are very small. 



 
 
Table 2. Theoretical variance vs. empirical variance for various subsample sizes.* 

   
Theoretical 
Variance () 

Simulation Results 

𝒎𝒎 𝒏𝒏 
Empirical 

MSE 
Empirical 

Bias 
Empirical 
Variance 

315 2,015 4,767.68 3,366.69 -0.89 3,365.90 
320 1,920 4,749.37 3,254.47 0.55 3,254.17 
325 1,825 4,737.39 3,274.20 0.32 3,274.10 
330 1,730 4,732.38 3,288.26 0.07 3,288.26 
335 1,635 4,735.16 3,220.07 -0.15 3,220.05 
340 1,540 4,746.78 3,259.18 -1.03 3,258.13 
345 1,445 4,768.60 3,267.33 -0.24 3,267.27 
350 1,350 4,802.36 3,219.34 0.05 3,219.34 
355 1,255 4,850.38 3,289.80 -0.25 3,289.74 
360 1,160 4,915.74 3,358.12 -0.31 3,358.03 
365 1,065 5,002.67 3,571.72 1.13 3,570.45 
370 970 5,117.06 3,560.20 0.28 3,560.12 
375 875 5,267.40 3,731.74 -0.68 3,731.28 
380 780 5,466.31 3,911.92 0.29 3,911.84 
385 685 5,733.49 4,128.89 -0.53 4,128.61 

*The mean measured square footage across all 2,044 observations, which was used to estimate the MSE and bias, 
was 3,051.88. 
 
 

 
 
 

Figure 1. Theoretical variance vs. empirical variance for various subsample sizes. 
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The method appears to have worked well. Both the theoretical variance and the empirical variance are minimized at 
around m = 335, which suggests that if precise estimation of the mean total square footage is the primary goal of the 
survey, and if a CAPI case really is about 20 times as expensive as a web/mail case, then about 20% of the cases 
should be CAPI and the other 80% should be web/mail. In general, the sample allocation is dependent on both the 
ability of the model to precisely estimate total measured square footage and the cost of the expensive mode relative 
to the inexpensive mode. 
 
Although the results in this paper apply to the Residential Energy Consumption Survey, the method used to find the 
optimal sample allocation is not too complex and can be done for any survey with some expensive variables and 
some inexpensive variables, as long as earlier data and per-case cost estimates are available. The hope is that the 
method allows survey practitioners to precisely estimate the means of outcome variables at a fraction of the cost of 
collecting all data using the "expensive" mode. 
 
The most obvious topic for further research is to incorporate the weights and sample design (weights are in the 
appendix). Not only were the weights and sample design not used for any of the calculations in this paper, but the 
sample design will often be different for the expensive and inexpensive modes. If the expensive mode is a face-to-
face interview, for example, then geographic clustering will likely be necessary to control data collection costs; and 
the same may not be true for the inexpensive mode. This suggests that the true optimal allocation for RECS might be 
even fewer than 20% CAPI cases: a single CAPI case subject to clustering would be worth even less relative to a 
single web/mail case that is not subject to clustering. 
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Appendix A 
Derivation of Variance Estimator and Optimal Allocation Formula 

 
Let S = S1 be the first-phase sample 
S2 be the second-phase sample 
dk be the first-phase weight of an element k selected for the first-phase sample 
wk be the (combined) weight of an element k selected for the second-phase sample, 0 otherwise 
xk be a vector of variables collected for elements in the first-phase sample (and unity; mathematically, there is a 
vector g such that gTxk = 1 for all k),  
yk be a the survey variables collected only for elements in the second-phase sample, and 
U be the population of size N.  
 

 

 

 

The traditional regression estimator (for a population y-total: Ty = ∑U yk) is  
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The error in the estimator under the model is  
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If the first-phase sample in the text is a simple random sample (srs) of size n and the second phase an srs of size m, 
then the model variance of the estimator ignoring finite population correction is N2 times the sum of the variance of 

T
kx β , call it σhat

2, divided by n and the variance of kε , call it σε2, divided by m. 

 

 

 

 

If c1 is the unit cost for the first-phase sample and c2 the unit cost for the second-phase sample, then minimizing the 
variance for a constant cost C is equivalent to minimizing the Lagrangian:  

2 2 2
1 2/ / ( ).hatL N n m c n c m Cε = σ + σ + λ + − 

Consequently, the optimal sample-size ratio would be 
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A Prediction Estimator (like the one used in the text):  
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(Remember that wk = 0 for k not in S2.) 
Note that if both phases are srs (as in the text), then b* = b.  
 
When xk is a scalar xk (such as when it is a predicted value) and there is no intercept 
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Note that when the xk are themselves determined through a model fitting (i.e., each is a predicted value like the 𝑧̂𝑧𝑖𝑖2 in 
the text), the relevant model for determining σhat

2 and σε2 is the simple through-the-origin linear model relating yk to 
xk, not the model used in creating the xk.  
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