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Introduction: Fitting a Regression Model with Complex Survey Data  
The standard “design-based” framework for fitting a regression model to survey data was introduced by Fuller 
(1975) for linear regression and by Binder (1983) more generally. This framework treats the finite population as a 
realization of independent trials from a conceptual population. A maximum likelihood regression estimator could, in 
principle, be estimated from the finite-population values.  The goal in the Fuller/Binder framework is to estimate the 
conceptual maximum-likelihood estimator, or its limit as the population grows arbitrarily large, from survey data. 
Skinner (1989) refers to this as the “pseudo-maximum-likelihood” approach.  
 
Kott (2018) describes an alternative design-sensitive (robust model-based) approach to estimating regression models 
with complex survey data. Following Kott (2007), the standard model is defined in this approach in the following 
manner:  
                          
                                 yk = f(xk

Tβ) + εk,  where E(εk |xk) = 0.                                         (1) 
  
Although apparently very general, there is key restriction imposed by the standard model in equation (1): E(εk) = 0 
no matter the value of xk. This assumption can fail and the standard model not be appropriate in the population being 
analyzed.  For example, suppose yk = xk

2 in the population. The linear model yk = α + βxk + εk when fit to the 
population fails as a standard model because E(εk |xk) ≠ 0.         
 
In the extended model, E(εk |xk) = 0 in equation (1) is replaced by E(xkεk) = 0. Unlike the standard model, the more 
general extended model rarely fails. Indeed, in the above example,    β = Cov(xk

2, xk)/ Var(xk) and α = E(xk
2) − 

βE(xk) so long as xk the first three central moments of xk are finite.    
 
With an independent identically distributed (iid) population U of N elements, it is easy to see that 

                  { }1lim ( )T
k k kUp N y f−  − = ∑ x β x 0  

under the extended model.  Given a complex sample S with weights {wk}, each (nearly) equal to the inverse of the 
corresponding element’s selection probability,   

                                 { }1lim ( )T
k k k kSp N w y f−  − = ∑ x β x 0                                    (2) 

under mild conditions on the sampling design. The parenthetical “nearly” needs to be added when the weights 
include adjustments for unit nonresponse or coverage errors in the frame which the analysts assumes have been 
accounted for in an asymptotically unbiased manner. Calibration weight adjustments for statistical efficiency are 
another reason to add “nearly.”  
Whether the standard or extended model is assumed to hold in the population, solving for b in the weighted 
estimating equation (Godambe and Thompson 1974) 
 
                                          ∑S wk[yk − f(xk

Tb)]xk = 0                                           (3)   
 
provides a consistent estimator for β under mild conditions.  
 
 
 
 
 
 



 

The pseudo-maximum-likelihood estimating equation in Binder is 
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For logistic, Poisson, and ordinary least squares (OLS) linear regression, f '(xk

Tβ)/vk = 1. This equality may not hold 
for general least squares (GLS) linear regression, however even when the elements are uncorrelated.  It also need not 
hold for a cumulative logistic regression model. 
 
The cumulative logistic model is a multinomial logistic regression model for L categories with a natural ordering 
(e.g., always, frequently, sometimes, never). Being in the first category is assumed to fit a logistic model. Being in 
either the first or second category is assumed to fit a logistic model. Being in the first, second, or third category is 
assumed to fit a logistic model, and so forth. 
 
The general cumulative logistic model is (splitting out the intercept from the rest of the covariates) 
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where ylk  = 1 when k is in one of the first l categories, 0 otherwise. The parallel-lines assumption is that βl  = β for 
all values of l less than L with each such value having its own intercept (αl).  The cumulative logistic model under 
the parallel-lines assumption is often called a proportional-odds model. We will call it the “simple cumulative 
logistic model,” although it is more commonly referred to as the cumulative logistic model.   
 
Finding the and a b  that satisfy the estimating equation:  
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can be used for estimating the general cumulative logistic model. This is not the pseudo-maximum-likelihood 
estimating equation in the surveylogistic routine in SAS/STAT 14.1 (SAS Institute Inc. 2015; An (2002), p. 7 has 
the multivariate pseudo-maximum-likelihood estimating equation), the logistic routine in SUDAAN 11 (Research 
Triangle Institute 2012) or the gologit2 routine in STATA (Williams 2005) for the simple cumulative logistic model. 
Only the STATA routine allows the b to vary.    
 
Given L nominal categories and complex survey data, SAS and SUDAAN can fit the general logistic regression,  
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with ylk  = 1 when k in l th category, 0 otherwise, but this is not the same thing as the general cumulative logistic 
model, which these programs cannot estimate with complex survey data.  
 
In what follows, we introduce a modest example of a simple cumulative logistic model.  Given complex survey data, 
we fit the model both with the pseudo-maximum-likelihood technique and with equation (4).  The latter in 
accomplished by repeating each observation L – 1 times with an iteration for each version of ylk except the last (all 
L−1 iterations are in the same probability sampling unit). We will call this fitting method the “design-sensitive” 
technique, even though, strictly speaking, the pseudo-maximum-likelihood approach is also design sensitive. We 
then go on to test the parallel-lines assumption and provide a discussion.   
 
 
 
 



 

 
A Simple Example 
The National Survey on Drug Use and Health (NSDUH) is an annual survey of the civilian, noninstitutionalized 
population aged 12 or older living in the United States. Using NSDUH data from 2006 to 2010, we focus on a 
survey question given to adolescents (12-17) who received depression treatment in the past year: 
 
During the past 12 months, how much has treatment or counseling helped you?  
 
The viable responses were: Not at all (l); A little (2); Some (3); A lot (4); or Extremely (5). 
 
We discarded missing and invalid responses both to this question and to the question of whether the respondent 
received depression treatment in the past year.  We will return to this practice in a later section.  
 
Using SAS, we estimated the following simple cumulative logistic model: 
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where meds = 1 when respondent k was taking medication for depression (0 otherwise), with both pseudo-
maximum-likelihood and the design-sensitive technique. For pseudo-maximum-likelihood estimation, we reversed 
the order of the responses with y1k = 1 when k responded that treatment (or counseling) helped extremely, y2k = 1 
when k responded that treatment helped extremely or a lot, y3k = 1 when k responded that treatment helped more than 
a little, and y4k = 1 when k responded that treatment helped at least a little. Finally, y5k = 1 when k responded that 
treatment did not help at all. In SAS, the meant dependent variable Y was set equal to 1 when treatment helped 
extremely, to 2 when treatment helped a lot, …, and to 5 when treatment didn’t help at all 
 
For the design-sensitive technique, we created four iterations of k in a new data set, In the ith iteration labeled C = i 
in SAS, a class (categorical) variable added to the model statement, we created a dependent variable (D) equal to yik 
in equation (5).  We needed to add EVENT = “1’ after D in the model statement because we were modeling when D 
= 1.   
 
SAS code for both estimation techniques are in the appendix. The NSDUH data set we used had 60 variance strata 
with two variance primary sampling units (PSUs) in each and analysis weights based on the probabilities of 
selection and unit response.   
 
The parameter estimates from our pseudo-maximum-likelihood and design-sensitive SAS runs are displayed in 
Tables 1 and 2, respectively. In Table 1, Intercept=i is the estimate of αik in equation (5). The sum of the Intercept 
C=i in Table 2 also estimates αik for i = 1,2, or 3, while α4k is estimated by the Intercept in Table 2 minus (C=1 + 
C=2 + C=3).  More obviously, meds in both tables estimates β.  
 
In all cases, estimates of the same parameter from the two tables are close. The percent increase in every level of 
satisfaction with treatment due to having taken drugs for depression (the estimate for β) is roughly 45% (in our 
discussion of the results of the logistic regressions, we treat differences of the log odds as equal to percent 
differences in the odds, even though this is only approximately true). That near equality suggests that the parallel-
lines assumption is not violated by our NSDUH data.  
 



 

Table 1.  Pseudo-Maximum-Likelihood Estimates for the Simple Cumulative 
Logistic Model 

Parameter  Estimate Standard 
Error 

t Value Pr > |t| 

Intercept 1 -2.2917 0.0913 -25.10 <.0001 
Intercept 2 -0.7617 0.0685 -11.11 <.0001 
Intercept 3 0.2511 0.0624 4.02 0.0002 
Intercept 4 1.3695 0.0739 18.53 <.0001 

meds  0.4516 0.0965 4.68 <.0001 
NOTE: The degrees of freedom for the t tests is 60. 

 
 
Table 2.  Design-Sensitive Estimates for the Simple Cumulative Logistic Model 

Parameter  Estimate Standard 
Error 

t Value Pr > |t| 

Intercept  -0.3591 0.0583 -6.16 <.0001 
C 1 -1.9329 0.0592 -32.63 <.0001 
C 2 -0.4039 0.0356 -11.33 <.0001 
C 3 0.6087 0.0392 15.52 <.0001 

meds  0.4498 0.0955 4.71 <.0001 
NOTE: The degrees of freedom for the t tests is 60. 

 
The parallel-lines assumption can be tested directly by adding a class variable M to the design-sensitive data set with 
M = 1 when C =1 and meds = 1,  
M = 2 when C =2 and meds = 1,  
M = 3 when C =3 and meds = 1, and  
M = 4 otherwise.  
 
When added to the model statement in SAS, the class variable M captures the differing impacts of taking medication 
for depression in the previous year had on the levels of satisfaction with treatment. For example, the estimated 
percent increase in the odds of being extremely pleased by treatment due to having taken drugs for depression 
during the year is, according to Table 3, .3816 (from meds) plus .717 (from M = 1) or 45.33%.  The other percent 
increases are lower, but none are significantly different from the others. We see that from the extremely low F value 
for M in Table 4. In addition, none of the t-values for an M is Table 3 is significant at even the .5 level.  
 
 
Table 3. Estimating the General Cumulative Logistic Model 
Parameter  Estimate Standard 

Error 
t Value Pr > |t| 

Intercept  -0.2919 0.1270 -2.30 0.0251 
C 1 -1.9636 0.0806 -24.37 <.0001 
C 2 -0.4104 0.0440 -9.33 <.0001 
C 3 0.6202 0.0490 12.66 <.0001 
Meds  0.3816 0.1452 2.63 0.0109 
M 1 0.0717 0.1273 0.56 0.5754 
M 2 0.0234 0.0652 0.36 0.7215 
M 3 -0.0236 0.0719 -0.33 0.7439 

NOTE: The degrees of freedom for the t tests is 60. 
 
 



 

Table 4. F tests for the General Cumulative Logistic 
Model 
Effect F Value Num DF Den DF Pr > F 
C 280.39 3 58 <.0001 
Meds 6.91 1 60 0.0109 
M 0.16 3 58 0.9239 
 
Discussion 
When there is more than one explanatory variable in the cumulative logistic model then each one needs to be tested 
like meds was in the previous section by adding an analogous class variable for each. A general F test can be used 
for testing whether every class variable is not significant (say at the .05 level).  A better approach with complex 
survey data may be to follow Korn and Graubard (1990) and use the simple Bonferroni-adjusted t-test. For 
significance at the .05 level, one would compute the t-values for every tested component of each added class 
variable (there are three such in Table 3), then compare the p-value of the smallest of these to .05/the number of 
components tested.     
 
An advantage of the design-sensitive approach to fitting a simple cumulative logistic model to the pseudo-
maximum-likelihood approach is not apparent with our NSDUH data.  When the parallel-lines assumption doesn’t 
hold and an extended model is being fit, satisfying the first “equation” in (4) assures us that  
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When xk  is produced from a single categorical variable, equation (6) assures that the weighted mean of ky for each 
x-category and cumulative level l equals its predicted value described by 
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which is a reasonable property.  Equation (4) is simply an extension of the property to more general xk. 
 
In our NSDUH example, although not generally, using the design sensitive approach was more efficient than using 
the PSEUDO-MAXIMUM-LIKELIHOOD approach. This can be seen by comparing the t-values of meds (the 
inverses of their respective estimated coefficients of variation) in Tables 1 and 2.  When we to ignore the analysis 
weights, the strata, and the clustering (by setting the weights and strata to 1, and treating each respondent as a 
primary sampling unit), this result reverses as expected. The point here is that pseudo-maximum likelihood with 
complex survey data is indeed “pseudo.” 
 
Finally, the data set we created dropped responding observations with missing values of the dependent and meds 
variables. When fitting the extended model, this is only valid (i.e., resulting estimates are asymptotically unbiased) 
when an in-scope respondent − an adolescent who had treatment for depression in the previous year − being dropped 
occurred completely at random.  When fitting the standard model, the probability of being dropped can be a 
function only of whether an in-scope adolescent has taken medication for depression in the previous year but 
nothing else. This suggests it may have been prudent to add variables to the model that are never missing even when 
they are not significant.  If we add class variables for age, sex, race/ethnicity, urbanicity, and family income (all of 
which have values imputed for them when missing in the NSDUH) to our simple cumulative logistic model, none 
are significant at the .05 level.  The major results do not change meaningfully (the estimate for β increases from 
roughly .45 to 50), although that the t-value for meds using the design-sensitive approach (bmeds = .4948; tmeds = 5.49) 
is slightly smaller than that from using the pseudo-maximum-likelihood approach (bmeds ≈.4987; tmeds = 5.52). 
 
More importantly, if the standard model for the simple cumulative logistic model,  
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is correct (and we have no reason to think otherwise), then dropping the observations as we did does not cause a bias 
when the probability of an in-scope adolescent being dropped from the analysis is a function of all the explanatory 



 

variables (the components of xk ) in the model including the non-significant ones but not the dependent variable 
( ky ). This is because the analysis weight for the data set after deletions, call it R, is wk /g(xk), where g(xk) is the 
probability that an in-scope sample respondent remained in the data set after the deletions. When the standard model 
holds, the analysis weight in the estimating equation: 
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can be multiplied by any function of xk, such as g(xk) (noting that [wk /g(xk)]g(xk) is wk), and the al and b that solves 
the revised estimating equation will remain a consistent estimator for αl and β. This is because E[g(xk)εk] = 0 and 
E[g(xk)εkxk] = 0 under the standard model.  
         
Appendix 
/* PML is a data set of adolescents NSDUH respondents in the 2006 to 2010 survey years who reported having 
treatment for depression and whether they had taken drugs for depression. Variables include:  
 
Y = 1 treatment was extremely helpful; Y = 2 treatment helped a lot; y = 3 some; Y = 4 a little; Y = 5 not at all  
meds = 1 had taken drugs for depression, 0 otherwise 
VESTR variance stratum 
VEPSU variance primary sampling unit 
IDNUM respondent identification number 
ANALWT the analysis weight  
 
This set is used for pseudo-maximum-likelihood estimation of the simple cumulative logistic model and to create the 
DS_SIMPLE data set, which is used for design-sensitive estimation of the simple cumulative logistic model and 
DS_GENERAL data set, which is used for design-sensitive estimation of the general cumulative logistic model. */ 
DATA DS_SIMPLE; SET PML; BY VESTR VEPSU IDNUM;   
D = 0; 
C = 1; IF Y < 2 THEN D = 1; OUTPUT;  
C = 2; IF Y < 3 THEN D = 1; OUTPUT;  
C = 3; IF Y < 4 THEN D = 1; OUTPUT;  
C = 4; IF Y < 5 THEN D = 1; OUTPUT;  
 
DATA DS_GENERAL; SET DS_SIMPLE;  
M = 4; 
IF C = 1 AND MEDS = 1 THEN M = 1;  
IF C = 2 AND MEDS = 1 THEN M = 2;   
IF C = 3 AND MEDS = 1 THEN M = 3; 
 
/*The PROC below is used to produce Table 1 */ 
PROC SURVEYLOGISTIC DATA = PML; CLUSTER VEPSU; 
MODEL Y = MEDS;                                                                                      STRATA VESTR; WEIGHT ANALWT; 
RUN;  
 
/*The PROC below is used to produce Table 2 */ 
PROC SURVEYLOGISTIC DATA = DS_SIMPLE; CLASS C;  
CLUSTER VEPSU;  
MODEL D(EVENT = '1') = C MEDS;                                                                        STRATA VESTR; WEIGHT 
ANALWT; RUN;                      
 
 
 
 



 

/*The PROC below is used to produce Tables 3 and 4*/ 
PROC SURVEYLOGISTIC DATA =DS_GENERAL; CLASS M C;  
CLUSTER VEPSU ;  
MODEL D(EVENT = '1') = C  MEDS  M ; 
STRATA VESTR; WEIGHT ANALWT; RUN;  
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