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1. Abstract 

The use of profiles to determine disease states, apprehend criminals, identify successful candidates for school or 
work, etc. has been a staple in many clinical and applied fields (e.g. medicine, psychology, college admissions, 
human resources). Regardless of discipline, multiple measures are taken and the pattern of scores on these measures 
is compared to a prototypical pattern, where the prototypical pattern shows the pattern of scores indicative of a 
particular classification or diagnosis. While the measures provide quantitative data, the final decision is often based 
on expert opinion regarding the closeness of an individual’s pattern of scores to that of the prototypical pattern. 
Thus, the final decision is oftentimes as much art as objective. This paper provides a procedure to quantify the match 
of score information for an individual with a prototypical pattern. In addition to matching a predetermined optimal 
pattern, we provide a two-step approach that first allows for identification of the optimal pattern, specified as a 
vector of contrast coefficients, and then provides quantification of the match to this optimal pattern. The procedure 
need not supplant clinical judgment, but can be used as one of the elements that enter into a clinician’s decision. 

2. Introduction 

There has been much activity since the 1950’s to quantify score profiles (Meehl, 1950, Cronbach and Gleser 1953). 
Most of the earlier methods yield profiles that need not have criterion-related validity. Indeed, cluster analysis, 
modal profile analysis, and profile analysis via multidimensional scaling rely solely on the subtest variables within 
each profile, and no external criterion is used to identify the core profile types. Thus, one cannot be sure the 
resulting profiles have criterion validity. Davison and Davenport (2002) suggest a procedure that quantifies the 
relationship of individual profiles to an external criterion. It makes use of Cronbach and Gleser’s (1953) 
decomposition of a set of scores into three components: elevation, scatter, and shape. Specifically, an index that 
combines scatter and shape allows for a profile match statistic that quantifies a subject’s score profile match to an 
empirical and/or theoretical prototypical profile, and this leads to an estimate of the criterion variance accounted for 
by the optimal pattern, or more precisely the variance accounted for by the match statistic. This match statistic will 
be demonstrated for mathematics course taking patterns. 

3. Development of the Procedure 

To fully motivate this discussion we start with the development of the procedure. Note that one can begin at step 11 
(below) if the prototypical pattern is already specified; in that case one need only provide a match statistic to that 
existing pattern. Steps 1 – 10 justify our approach to identify an optimally predictive pattern and then show how we 
can quantify a match to that pattern. Specifically, we will show how the original regression equation can be parsed 
into Level and Pattern components based on a least squares fit to the criterion. The resulting pattern is optimal via 
that least squares fit. Once the optimal pattern is defined we then provide a statistic that will quantify each observed 
profile’s match to that pattern and the amount of criterion variance accounted for by the match statistic. 
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3.1 Definition 

For clarity, we begin with a definition of a profile pattern. An individual profile pattern is the arrangement of scores 
in a respondent’s vector of scores. Figure 1 shows six such profiles on a set of three personality predictor variables. 
Level of a profile refers to the height of that person’s scores described by the mean of the scores in the profile: 

. Here, the pattern can be described by a vector of three contrast coefficients (one for each variable), 
)} which represent the deviation of each score from the level . In Figure 1, the contrast coefficients 

describing each profile are shown below the profile. Each pair of profiles with the same visual shape has the same 
pattern vector of contrast coefficients. Two profiles are said to be mirror images if the contrast coefficients are of the 
same magnitude but opposite in sign. In Figure 1, the linearly increasing profiles on the left with pattern vectors (-
10, 0, 10) are mirror images of the linearly decreasing profiles on the right with pattern vectors (10, 0, -10). If the 
three people in the upper portion of Figure 1 (with higher Level scores) have higher scores on some external 
criterion variable than do the three people in the lower portion, then we would say that individual differences in 
profile level are associated with variation in the criterion variable. On the other hand, if the two people in the middle 
of Figure 1 with the inverted V-shaped profiles have higher criterion scores than the other four, we would say that 
individual differences in profile patterns are associated with variation in the criterion variable. In addition to the 
profiles demonstrated, one can have individuals with fairly flat profiles, indicating very little scatter in their scores. 

Figure 1. Predictor Variable Profiles of Six Respondents 

3.2 Proof 

1) General Regression Equation: 

2) Prediction Equation: 
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3) (Reformulation for K predictors) 

4) (Add / subtract constants) 

5) 

Note that 
interest. This 

(Combining terms) 

provides the pattern of the optimal beta weights to the predictors given the criterion of 
pattern is optimal by least squares in predicting high values of the criterion. 

6) ] Expanding (a+b)(c+d) 

7) Distribute summation sign Σ(A + B + C) = ΣA + ΣB + ΣC 

8) Resolve deviation scores 

9) (Adding a constant K times) 

The original regression equation can be stated as a function of an implicit intercept, b0, plus two new entities. Thus, 
the information in K predictors can be reduced to two. Moreover, these two new predictors have inherent meaning. 
The first is the numerator of a covariance between the predictors and the optimal regression weights. Hence, it 
measures the relationship between one’s pattern of predictors versus that of the optimal beta weights - a match 
statistic. This match statistic can also be obtained from a prototypical profile obtained from some other process (e.g. 
expert judgment). The second entity in the re-expressed regression equation is a function of the mean of the 
predictors (elevation / level). Given the initial regression to obtain optimal regression weights relative to the 
criterion of interest allows our pattern (match statistic) to have criterion validity. 

10) Since multiplying by a constant will affect only the regression weights, we can have a new regression equation 
that is equivalent to the first as: 

11) Q.E.D 

We now have a measure of Level plus an intra-observation covariance (match statistic) to the optimal pattern of the 
predictors as suggested by their beta weights. Here pattern is a combination of both shape and scatter. 

4. Example 

The example we use to illustrate potential uses of this technique explores the question of what is more important; the 
number of mathematics courses taken or the pattern of courses taken? Much of the previous literature confirms what 
we see in Table 1, that it is the types of math courses taken that matter. Table 1 gives data from the 2007 Digest of 
Education Statistics (Snyder, Dillow, and Hoffman, 2008) that shows cumulative math course-taking by ethnicity for 
high school graduates from 1982 to 2005. One can see a rise in courses taken over the years. In fact, the correlation 
between units taken and year is 0.979, indicating a consistent rise in courses taken over time. The course taking 
differences shown in Table 1, however, do not mirror typical performance differences we see. For instance, the 
White/Black difference in Carnegie units are small ranging from 0.13 favoring Whites (1994) to a 0.07 difference 
favoring Blacks (1990). The mean difference is less than 0.02 favoring Whites. Moreover, for three of the seven 
time points Black students actually took more courses (1990, 1998, and 2005). Given that this is not consistent with 
achievement differences that we see, we suspect that number of math courses may not be the metric we want to 
measure quality of mathematics course taking. While most of the previous literature agrees with this assertion, 
previous studies that claim to explore course taking patterns often fall short, settling for number of courses, number 
of advanced courses, highest course, etc. Given our technique we can truly discuss patterns of course taking. 
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Table 1: Average Carnegie Units Earned in Mathematics 

Year 1982 1987 1990 1994 1998 2000 2005 

Am Indian 2.35 2.98 3.04 3.11 3.10 3.29 3.53 
Asian 3.15 3.71 3.52 3.66 3.62 3.96 3.90 
Black 2.61 2.99 3.20 3.23 3.42 3.54 3.71 
Hispanic 2.33 2.81 3.13 3.28 3.28 3.42 3.49 
White 2.68 3.01 3.13 3.36 3.40 3.56 3.69 

Total 2.63 3.01 3.15 3.33 3.40 3.56 3.67 

From Snyder, T. D., Dillow, S. A. & Hoffman, C. M. (2008). Digest of Education Statistics, 2007 (NCES 2008-
022). National Center for Education Statistics, Institute of Education Sciences, U. S. Department of Education. 
Washington, DC (Table 140). Retrieved from:  Table 140 
http://nces.ed.gov/programs/digest/d07/tables/dt07_140.asp. 

For our example we use data from the National Educational Longitudinal Study of 1988 (Curtin, Ingels, Wu, and 
Heuer, 2002). Eighth-graders in 1988 were followed longitudinally. The study uses data from the base year (1988) 
when the students were at the beginning of their high school career and second follow-up (1992) when the students 
were high school seniors. In addition to providing a wealth of demographic information over a period of time for a 
base sample of 25,000 students in 1988, the NELS survey also gathered test data. Students were tested in four 
learning areas (reading, mathematics, science, and social studies) at three time points 1988, 1990, and 1992. The 
data also has high school transcript information for most of the students. The sample for the current study includes 
students for whom there were at least one transcript entry per year for four grades (9 - 12) and who also had valid 
math achievement data for both 1988 and 1992. Using these restrictions, the resulting sample size was 10,250. 

All analyses employed the transcript weight, a weight designed to make the weighted sample of students for whom 
transcripts were collected representative of the national population of high school seniors in 1992. Since the data 
were collected from students sampled within schools violating the assumption of independence, regular standard 
errors are inappropriate (Kish, 1965). Thus, all standard errors for statistical tests were computed assuming half as 
many subjects (design effect of 2). Standard practice suggests using hierarchical linear modeling (Raudenbush & 
Bryk, 2002) or re-sampling techniques such as “jack-knifing” to produce appropriate standard errors for such cluster 
samples. A discussion of “Design Effects and Approximate Standard Errors” can be found in NCES’s user’s manual 
(Curtin, et. al., 2002). As one samples more subjects from the same cluster, the design effect increases. The use of a 
design effect has precedence as seen in Hoffer (1997). His work in the area of student achievement likewise 
assumed a design effect of two (see notes to his Table 1). 

The course content variable adopted here has advantages over previous approaches. First, it constitutes a description 
of the students’ course content in terms of a continuous variable that accounts for all of the coursework, not just the 
highest level of coursework. Second, the content variable is suitable for analysis as a continuous variable in readily 
available software. Third, and most importantly, our course content variable, coupled with an amount of coursework 
variable, will fully capture the complete relationship between available coursework information and achievement 
and account for all variation in achievement. By using the amount and content variables described below, one does 
not risk mis-specifying the variables in a way that leads to underestimation of the variation in achievement that can 
be accounted for by the coursework information. We explicitly quantify course-taking as our match statistic. This is 
justifiable since it quantifies the match between courses taken and math achievement as measured by the tests. 

The procedure begins by describing a taxonomy of math courses that fully captures the pattern of courses taken by 
individual students. Davenport, Davison, Kuang, Ding, Kim, and Kwak (1998) used multidimensional scaling to 
develop a reasonably concise, but comprehensive taxonomy for math courses. This taxonomy consists of several 
prototypical course sequences. A prototypical course sequence is an empirically derived set of courses that are taken 
by a significant subset of students. If students who take course “A” are more likely to take courses “B” and “D” as 
well, then courses “A”, “B”, and “D” will define a prototypical course sequence since a significant number of 
students take each of these three courses. Any other sets of courses with elevated probabilities of being taken by a 
substantial number of students will also emerge as a prototypical course sequence. The final taxonomy places 56 

http://nces.ed.gov/programs/digest/d07/tables/dt07_140.asp
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math courses in the Classification for Secondary School Courses (CSSC) into seven identifiable course sequences 
plus an “Other” category. The CSSC course titles used by many national surveys and assessments are described in 
Legum, Caldwell, Goksel, Haynes, Hynson, Rust, & Blecher (1993). 

The course categories that emerged are as follows. Functional courses, at the lowest end of math literacy, represent 
survival skills in math. Basic courses are the minimal courses required for general math literacy. Preformal courses 
are terminal courses for some students, but provide background for other students who take more advanced courses. 
An Algebra sequence is composed of an Algebra 1 course given in two parts over two years. The Standard sequence 
consists of Algebra 1, Algebra 2, and Geometry and is the minimal set of math courses for a student on an academic 
track. Unified courses represent a different packaging of algebra and geometry concepts where topics are presented 
in an integrated manner. Courses in the Advanced sequence are usually taken by students preparing for college. 
Finally, the Other category contains courses not easily interpretable as part of any common high school course 
grouping or special offerings (oftentimes unique to a small number of schools and not taken frequently by students). 

High school transcript data were used to obtain course information for each student. First we computed the number 
of Carnegie units earned for all math courses together as well as the number of Carnegie units earned in each of the 
eight course categories. The dependent variable, math achievement, was measured at base-year (1988 when the 
students were in 8th grade) as prior achievement and at the second follow-up (1992 when the students were in 12th 
grade). Use of prior achievement as a covariate is intended to statistically control for all other potential prior 
differences in the students; whether these differences are demographic, academic, etc. prior to high school. 

Table 2 shows results of regressing senior math achievement onto the number of courses taken in the eight course 
categories. These categories accounted for 57.4% of the variation in senior math achievement. Raw regression 
weights are in column 2 followed by the modified standard errors of the regression coefficients assuming a design 
effect of 2 in column 3. The t values (based on these modified standard errors) follow in column 4. All t values are 
significant with the exception of Algebra. The Course Pattern Coefficients are the un-standardized regression 
coefficients expressed as a deviation about the mean of the regression coefficients for the eight course categories. 
This latter index follows from the definition of pattern as what remains after elevation is accounted for. These 
coefficients specify the Course Pattern as a set of within person contrast coefficients, and like contrast coefficients 
in ANOVA, the coefficients sum to zero yielding both positive and negative values. Hereafter, they are called the 
Advanced Pattern coefficients because more advanced course categories have the higher coefficients. These weights 
map well with our expectation that students taking higher level math courses are more apt to score higher on math 
tests. Figure 2 has a plot of the advance course pattern. This figure clearly shows that we now have a pattern of 
course-taking that relates to mathematics achievement; with more advanced courses having more positive weights. 

Table 2: Regression Coefficients for Predicting Senior Math Achievement from the Number of Carnegie Units in 
Eight Course Categories 

Regression Standard t-value Course Pattern 
Weight Error Coefficient 

Intercept 45.30 0.36 125.96 
Functional -3.59 0.69 -5.20 -4.27 
Basic -3.02 0.30 -10.09 -3.70 
Preformal -2.32 0.16 -14.50 -3.00 
Algebra 0.09 0.26 0.34 -0.59 
Standard 2.38 0.12 19.94 1.70 
Unified 2.67 0.19 13.91 2.00 
Advanced 6.28 0.14 45.65 5.60 
Other 2.94 0.22 13.56 2.26 

R2 = 57.4%.  Standard errors are modified based on a design effect of 2. 
All regression weights are significant at p < 0.01 with the exception of Algebra. 

For each student, Content is computed as the covariance of the number of CUs taken in each course category versus 
the regression weight for that category (quantification of course content). A student receives a high Content score if 



     
 

                
          

            
              

           
         
           

              
              
             

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

   

           
 

          
 

     
      

 
      

       
   

 
              
             

        
        

 
 

Quantification of Profiles 6 

their course taking reflected higher numbers of CUs for more advanced math courses and lower numbers of CUs for 
least advanced courses. Students with negative Content scores take most of their coursework in less advanced 
categories, ones with negative coefficients. Table 3 illustrates Amount and Content values for four students. Subjects 
1 and 2 differ on amount of coursework (3 versus 6). While they take courses from the same categories, Standard 
and Advanced, Subject 2 takes more of these classes. Thus, Subject 2’s Content score is higher, since (s)he had 
relatively higher CUs for the more advanced courses, matching the optimal course pattern slightly better. In contrast, 
Subject 3 took more low level courses and has a pattern that is a mirror image of the optimal and thus a negative 
Content score. Subject 4 had a flat pattern, taking one course each of the Basic, Standard, and Unified sequences 
(with no advanced course-work). Note, for all subjects the Math 12 score is in the same rank order as the Content 
score, again showing the consistency of our pattern statistic with the criterion. This is not true for Amount. 

Figure 2: Advanced Mathematics Pattern Coefficients 
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Functional Basic Preformal Algebra Standard Unified Advanced Other 

Table 3: Sample Results: Number of Carnegie Units in Each Category and Other Scores for Four Students 

Category Sub 1 Sub 2 Sub 3 Sub 4 

Functional 2.50 
Basic 1.50 1.00 
Algebra 
Standard 1.33 2.00 1.00 
Unified 1.00 
Advanced 1.67 4.00 

Amount 3.00 6.00 4.00 3.00 
Content 1.44 3.23 -2.30 0.00 
Math 8 71.62 69.04 38.38 41.99 
Math 12 66.31 67.58 35.13 45.44 
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Correlations among prior math achievement (8th grade math test), senior math achievement (our primary dependent 
variable), total number of Carnegie units earned in math (Course Amount), and Course Content are shown in Table 
4. Three findings from this analysis are useful in understanding later results. First, both prior achievement and 
senior achievement are correlated with coursework (Amount and Content), but senior achievement is more highly 
correlated with coursework than is prior achievement. Second, Content and Amount are correlated (r = .56). In 
general, students who took more courses show a pattern of more advanced courses. Third, Content was more highly 
correlated with both math tests than Amount. Finally, the single variable, Content (r = .76, r2 = 57%), accounted for 
as much variation in the 12th grade math test as did virtually all eight coursework variables (See the R2 at the bottom 
of Table 2. Thus, Level adds little to the predictability of math achievement above and beyond Pattern). 

Table 4: Correlations among Math Achievement and Courses Taken 

Math 8 Math 12 Level Content 

Math 8 1.00 
Math 12 0.82 1.00 
Level 0.36 0.47 1.00 
Content 0.66 0.76 0.56 1.00 

Amount accounted for 22% of the variation in senior math achievement. Content, by itself, accounted for 57%, more 
than twice as much as Amount. With respect to increments in R2 for predicting senior achievement, Amount added 
virtually nothing (0.4%) to the variance predicted from Content alone. In contrast, Content added an additional 35% 
to the percent of variance predicted from Amount alone. These results raise the possibility that Amount of 
coursework is associated with senior achievement largely because students taking more coursework often (but not 
always) progress to more advanced courses. As stated above, Amount and Content together account for the same 
variation in senior math achievement as do all eight math course category variables in Table 2. 

Above we show the importance of Content over Level for math course taking as it relates to math achievement. We 
can extend the usefulness of these statistics by exploring subgroup differences as it relates to Level or Patterns of 
course taking. Table 5 shows the effect size of math achievement using Whites as the referent group. It gives the 
distance in pooled standard deviation units between the mean of the group in question versus White students. Cohen 
(1988) gives guidance on interpreting effect size values. Values less than 0.2 are small, 0.5 represents a medium 
difference, and 0.8 a large difference. All of the Asian means exceeded those for Whites. For the other three ethnic 
groups the White means were larger. Note that all of the effects for Amount were small. The very small effect of 
0.02 for the difference between number of courses taken for Whites and Blacks matches results from a host of 
studies given above as exemplified by the results shown in Table 1. With the exception of Amount, all of the other 
effects for American Indians were large, meaning that there is a large discrepancy between their means and that for 
Whites on the other three variables. The moderate to large effects for Content for American Indians, Blacks, and 
Hispanics better mirrors the difference represented in the 8th and 12th grade test scores. Thus, it again appears that 
explaining performance differences can be more readily done with Content differences than differences of Amount. 

Moreover, we can extend this procedure to a moderated regression to ascertain whether amount and pattern have the 
same relationship to achievement for the different subgroups. While this remains a topic of discussion for another 
time, I can say that the relationship of Amount is similar for Whites and all of the other ethnic groups. The 
relationship of Content, however, is more complex. Both Blacks and Hispanics needed an additional Content 
variable as the effect of Content on achievement was different for them than for Whites. 

Table 5: Effect Size Differences Using Whites as the Reference Group 

Ethnic Math 8 Math 12 Amount Content 

Am. Indian -1.10 -1.17 -0.14 -0.93 
Asian 0.09 0.20 0.13 0.23 
Black -0.75 -0.81 -0.02 -0.47 
Hispanic -0.63 -0.57 -0.25 -0.41 
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5. Discussion 

This paper gives a two-step regression procedure that identifies an optimal pattern of scores as it relates to an 
external criterion and then provides quantification of a match for individual observations. As seen with the given 
example, this approach can be used to answer fundamental research questions; whether it is better to use amount or 
content of courses taken. Note that this approach can be used to parse Level and Pattern in a host of studies where 
one or the other is expected a priori to be more predictive. Note, too, that this approach can be used with a binary 
criterion. Culpepper (2009) generalized the analysis based on a multilevel, nonlinear model for dichotomous data. In 
application, the method has been used to study patterns in a wide variety of content areas including: high school 
coursework patterns as shown here, patterns of personality scores associated with vocational interests (Dilchert, 
2007), patterns of IQ scores that distinguish types of disability (Chan, 2006), informal role patterns associated with 
team effectiveness (Coughlin, 2010), and personality score patterns associated with work behavior (Shen, 2011). 
There are also current efforts to adapt this approach to moderated regression to ascertain if there are differential 
effects of Level and Pattern via different subgroups and/or interactions of other potential predictors. 
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