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Introduction

* Non-response: threat against quality of survey data

* Non-response bias = response rate x differences
between respondents and non-respondents

* Declining response rates in surveys

 In the absence of other guidance — Response rates
as indicator of the risk of non-response bias

» Poor indicator of non-response bias (Groves and
Peytcheva, 2008)

* Response rate as a tool for monitoring data
collection or post-survey adjustments: inefficient,
biasing or both




Introduction (cont.)

 Alternative indicators proposed in the survey
literature to evaluate the risk of non-response bias
(e.g., Schouten et al., 2009; Wagner, 2010)

* Limited research regarding
— The utility of these alternative measures
— The conditions/missing mechanisms under which these
indicators may prove to be helpful or misleading
« (Goal: to assess the ability of various measures to
indicate the risk of non-response bias in a variety of
missing mechanisms

— What are the properties of these indicators under different
survey conditions?

— Can a single or a set of these measures reliably indicate
whether there is or not a risk of non-response bias?



Indicators for non-response bias

 Response rate

* Fraction of Missing Information (FMI)

» Correlation between non-response weights and
survey variable



Methods: overview

« Two simulation studies using each k= 1,000 SRS’s
of size n = 1,000 to estimate the population mean of
a survey variable Y with two explanatory variables
(observed X and unobserved Z) varying:
— Missing mechanism
— Response rates
— Correlation between explanatory and survey variables
— Correlation between response propensities and

explanatory variables

« Simulation and analysis performedinR 2.13.2 (R
Core Team, 2013) with survey (Lumley, 2004, 2012) and
mice (van Buuren & Groothuis-Oudshoorn, 2011)
and rms (Harell, 2014) packages



Methods: simulation studies

* Simulation study I:
— k =1,083 simulations
— 3 missing mechanisms: MCAR, MAR, MNAR (Z only)
— 19 response rates varying from 5% to 95% (increments by
5%)
— 19 correlations between auxiliary variable (X or Z) and

(s)uorv?y variable varying from 0.05 to 0.95 (increments by
.05

« Simulation study II:
— k = 243 simulations
— Missing mechanism: MNAR (Z and X)
— 3 response rates: 20%, 40% and 70%
— 3 correlations (X,Y): low, medium and high (0.05, 0.2, 0.7)
— 3 correlations (Z,Y): low, medium and high
— 3 correlations (X, p): low, medium and high
— 3 correlations (Z, p): low, medium and high



Methods: data generation
« Variables (Y, X, Z) generated independently by
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* Missing mechanism using response probabilities
given by

logit (pi) =B, + fx; + ﬁzzi

* Imputation model: Y~ X
« Multivariate Imputation by Chained Equation (M = 10)



Results: Study |, Non-response bias by RR
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Results: Study |, Non-response bias by CV(RR,)
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Results: Study I, Non-response bias by R-Indicator
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Results: Study |, Non-response bias by AUC
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Results: Study |, Non-response bias by FMI
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Results: Study |, Non-response bias by Corr(W_,Y)
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Results: Study |, Maximal absolute bias

Minimize the “maximal absolute bias”
(Schouten, et al., 2009; Buellens and Loosveldt, 2012):
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Results: Study Il, Bias of the FMI under MNAR

Corr(Y,X)
Low Medium High
Corr(Y,2)
Corr(R,X) | Corr(R,Z) Low : Medium : High Low : Medium : High Low : Medium : High
Low -0.99% : 0.24% : 35.79% 0.55% : 1.16% : 38.06% | -0.10% : 6.33% : 1250.96%
low | Medium | -3.74% | -2.51% | 29.58% | -3.08% | -0.69% | 34.36% | 6.78% | -104% ! 1111.53%
High -29.20% i -29.41% | -18.83% | -30.42% i -30.04% , -20.13% | -40.53% i- -40.64% :r 200.48%
Low .| 057% | 140% 1 3265% | 084% | -0.13% i 4057% | -0.36% | 509% | 120811%
Medium | Medium | -4.22% | 2.34% | 27.13% | -3.40% | -156% | 3243% | 5.11% | 118% | 110540%
High -27.63% i -27.96% | -19 54% | -29.26% i -27.81% -17 23% | -39.46% i- -37.86% ? 212.31%
Low -29.20% | -29.41% | -18.83% | -30.42% | -30.04% | -20.13% | -40.53% | -40.64% | 200.48%
High | Medium | -190% | -1.84% 1021%| -1.53% | -0.83% | 1177% | -2.55% | 245% | 522.15%
High 15.34% | -15.08% IR -14.94% | -14.78% RIS -2153% | 20.47% | 353.43%




Conclusions

* Most of the indicators, as expected, are survey
variable/statistic-independent

* FMI and corr(W\g, Y) are the only indicators that
are sensitive to corr(Y, X)

* In general, we observe that none of the
iIndicators or a set of them can clearly pick up
situations where there is a risk of non-response
bias either because:

— There is no association with the indicators and the
non-response bias or

— We cannot distinguish the missing mechanisms
(especially between MCAR and MNAR)



Conclusions

* |ndicators such as the maximum bias are
sensitive to model assumptions and should
be used with care

» Other indicators, such as the FMI, might be
biased, but somehow useful to detect the
possibility of non-response bias

* The general pattern of the indicators don't
change whether it is about the non-response
bias in the respondent unweighted mean or
the non-response weighted mean
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