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Introduction 

▪ For cost reasons, some studies use a combination of probability and non-
probability samples 

▪

▪

Cost associated  with obtaining a larger  probability sample and/or 

Cost associated  with obtaining  sufficient sample size for low incidence target  populations 

▪ Given the unknown biases associated with a non-probability sample, what 
method(s) are best for combining a probability sample with a non-probability 
sample 

▪

▪

We want more  reliable estimates (hence we  use the non-probability  sample) 

But we don’t want to introduce “too much”  bias 
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   Combining Probability and Non-Probability Samples 

▪ Different methods to combining 

▪

▪

▪

Propensity based pseudo weighting methods  (Elliott) 

Model-based methods (Elliott & Valliant, Wang et. al.) 

Raking / calibration approaches (Fahimi et. al., DiSogra  et. al.) 

▪ We investigated approaches that use small  area models (Elliott  & Haviland) 
▪

▪

▪

Assume that the probability sample generates  unbiased estimates 

Assume that the non-probability sample estimates are  biased 

Considered two small area models 

1. Model probability  sample estimates with non-probability  sample estimates as 
covariates 

2. Bivariate model for probability and non-probability  sample estimates 
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   Model 1: Fay-Herriot Model (probability survey data) 

▪ Domains are constructed using race, age, education, gender 

▪ Direct estimates 𝑃 𝑦𝑑 from probability sample for  domain d are unbiased 
𝑃   ′    𝑃 𝑦𝑑 = 𝛼𝑑 + 𝑥𝑑𝛾 + 𝑣𝑑 + 𝑒𝑑 

▪

▪

▪

▪

Fixed effect  𝛼𝑑 is parametrized by main effects for race, age, gender, education 

𝑥𝑑 is a vector of domain-level covariates which  includes  the non-probability  sample estimate 

𝑣𝑑 is a domain-level random effect 
 𝑒𝑃𝑑 are the sampling errors 

▪ Model-based estimates for domains are derived using a standard prediction 
approach 

▪ National-level estimates are obtained by aggregating (by population size) the 
model-based domain-level  estimates 
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 Non-probability sample for domain 

▪

▪

▪

▪

Possible bias in  non probability survey estimates. 
Extend Fay-Herriot model for non probability survey data. 
We propose additive bias term for each domain. 
Variance  estimation using non  probability survey data (assuming known 
domain level variances) 

6 



  

 

  

Model 2: Bi-Variate Fay-Herriot Model 

▪

▪

Direct estimates 𝑦𝑑𝑃 from probability sample for domain d are unbiased 
𝑃 𝑃 𝑦𝑑 = 𝛼𝑑 + 𝑥𝑑

′ 𝛾 + 𝑣𝑑 + 𝑒𝑑 

Direct estimates 𝑦𝑑𝑁𝑃 from non-probability sample for domain d are biased 
𝑁𝑃 𝑁𝑃 𝑦𝑑 𝑑 𝑑 𝑑 𝑑 𝑑 

▪

▪

▪

▪

▪

Fixed effect 𝛼𝑑 is parametrized by main effects for race, age, gender, education 

Bias term 𝜷𝒅 is parametrized by main effects for race, age, gender, education 

𝑥𝑑 is a vector of domain-level covariates 

𝑣𝑑 is a domain-level random effect 

𝑒𝑃 
𝑑 and 𝑒𝑁𝑃 

𝑑 are sampling/non-sampling errors 

▪ National-level estimates are obtained  by aggregating (by population size) the 
model-based domain-level estimates 

= 𝛼 + 𝛽 + 𝑥′ 𝛾 + 𝑣 + 𝑒
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Data Application: Food Allergy Study of 18+ Adults 

▪

▪

▪

~7,200 probability sample completes 
▪

▪

▪

Probability sample selected 

~33,300 non-probability  sample completes 

Non-probability  sample obtained from other sample vendors 

Analyzed 5 measures: 
▪

▪

▪

▪

▪

Ever had a food allergy 

Peanut allergy 

Milk allergy 

Either biological parent has a food allergy 

Either  biological parent has  an environmental allergy 

Constructed 48 domains: Race by Age by Education by Gender 
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    Model 1: Residual Plots (when modeling “Ever had a Food Allergy”) 

9 



  

 

Model 1: Ratio of Standard Errors 

• 

• 

Ratio of standard errors for direct and model estimates for “ever had a food allergy” 

Domains  are ordered based on domain sample size 
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• Median ratio of standard error across all domains is 2.1 

• For 34 domains, the ratio of standard error was > 1.5 



  

  

Model 1: Difference between Direct & Model Estimates 

• 

• 

Difference in direct and model estimates for “ever had a food allergy” 

Domains  are ordered based on domain sample size 
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• Mean and median difference across all domains was approximately 0 



  

 

 

Bayesian approach for model 2 

Using probability and non-probability survey data 

▪ Easy to compute measure of variability of the estimates (posterior standard 
deviations). 

▪

▪

Direct estimates 𝑦𝑃 
𝑑 from probability sample for domain d are unbiased 

𝑃  𝑦 𝑃 
𝑑 = 𝛼𝑑 + 𝑥′𝑑𝛾 + 𝑣𝑑 + 𝑒𝑑 

Direct estimates 𝑦𝑑𝑁𝑃 from non-probability sample for domain d are biased 

𝑁𝑃 𝑁𝑃 𝑦𝑑 = 𝛼𝑑 + 𝛽𝑑 + 𝑥𝑑
′ 𝛾 + 𝑣𝑑 + 𝑒𝑑 

▪

▪

▪

Bias term 𝜷𝒅 group-level effects for race, age, gender, education, 

𝑣𝑑 ‘is a domain-level random  effect 

We assume normal prior (mean=0, variance=106) prior for group-level effects for race, 
age, gender, education 𝛼𝑑. 

12 



Bayesian approach 

Prior distributions 

▪ Bias term 𝜷𝒅 group-level effects for race, age, gender, education, 

𝜷𝒅 ~ N(μβ, σ2
β), setting μβ=0  or  alternatively  μβ ~ N(0,106) 

▪ 𝑣 ~ 2
𝒅 N(0, σ𝑣) for  all 48 domains. 

▪ Diffuse inverse-gamma priors  are used for σ2 2 
β and σ𝑣. 

▪ Diffuse multivariate normal prior  for 𝛾. 
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    Estimates (left panel), difference between model and survey estimates 
(right panel) 
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Variability of the estimates (ratio of posterior sd and survey 
standard error) sorted based on sample size (probability survey) 

Variability of the estimates 
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Bias  terms 

95% credible intervals 
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Summary and Future research 

▪ Small area estimation models were used to combine probability and non-
probability samples 

▪ Models indicated reasonable reduction in standard error, especially for 
domains with smaller sample sizes 

Future research and potential developments 

▪ Auxiliary data from other sources 
▪ Measurement error models. 
▪ Unit-level models. 
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