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Abstract: The U.S. Census Bureau is expanding the use of formal privacy to improve disclosure avoidance methods 
and to enable quantification of privacy loss. This paper discusses the particular challenges of applying formally 
private algorithms to the American Community Survey (ACS), including the data’s high dimensionality coupled 
with sample size limitations and the use of complex survey weights. We describe research on model-based 
approaches to creating synthetic data for the ACS, focusing on health insurance. 

Formal Privacy 

For several decades, the Census Bureau and other data providers have used disclosure avoidance methods to protect 
the data provided by individual respondents. Such methods are necessary because merely removing direct 
identifiers—what would traditionally be considered personally identifiable information—is insufficient to prevent 
the identity or attributes of a respondent from being inferred, either with certainty or with a high degree of 
confidence. The methods used have varied by data product, but the main traditional method for household records in 
the American Community Survey (ACS) has been data swapping, wherein pairs of records that are identical with 
respect to certain variables have their geographic identifiers switched (Lauger et al., 2014). Additional methods have 
included adding noise to ages and rounding and topcoding certain variables in the public use data. The Census 
Bureau does not release all of the details or code for the current disclosure procedures, so information such as the 
proportion of households swapped or the criteria for swapping are unknown to the public and impossible for 
researchers to account for accurately in analyses. 

The Census Bureau has sometimes checked the effectiveness of its disclosure avoidance methods in reidentification 
studies, in which the agency attempts to match records in one of its data products with datasets available externally. 
However, such an approach only tests vulnerability to attacks using the particular external dataset studied. A 
reidentification study can demonstrate a risk but can never demonstrate the absence of one, as an intruder with more 
outside knowledge or better methodology could still pose a risk. Recent advances in computing power, algorithmic 
efficiency and the amount of publicly or commercially available data have made the effectiveness of traditional 
disclosure avoidance methods less clear, and a dataset released today may also be vulnerable to attacks that become 
possible in the future. 

1 This report is released to inform interested parties of research and to encourage discussion. The views expressed 
are those of the authors and not necessarily those of the U.S. Census Bureau. 
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To counter these new threats, the Census Bureau and other data providers have been moving toward a class of 
methods known as formal privacy, of which the most well-known type is differential privacy. Every data release 
results in a loss of some privacy, if only in a probabilistic sense by allowing the data user to make slightly more 
accurate inferences about people, households or businesses (Dwork and Naor, 2010). A formally private approach 
quantifies the amount of privacy loss in any release and requires that the total privacy loss from a data release not 
exceed a certain budget. This type of method protects against a worst case with respect to what information a data 
user has external to the agency-provided data. A larger privacy budget may allow the data provider to release a 
greater quantity or quality of data but also creates more privacy loss. Furthermore, unlike traditional disclosure 
avoidance methods, formally private methods must work even if the entire methodology is publicly known, 
including parameters. Ideally, the code would even be posted publicly, as long as the seeds for random number 
generators were not revealed. This limitation prevents the user from undoing the disclosure avoidance in any one 
instance but allows a complete picture of how the data were protected in a probabilistic sense.  

The effect of the privacy budget may be visualized using an analogue to a Receiver Operating Characteristic (ROC) 
curve, of which an illustrative example is shown in Figure 1. The x-axis shows the allowed privacy loss and the y-
axis shows the quality of the data. As the privacy loss increases, the required data perturbation decreases and the 
data quality increases. The curve quantifies the tradeoff in setting the privacy budget, but the choice of where to 
locate on the curve is a policy decision, which can be informed but not decided by statistical methods. 

 

 

Figure 1. Receiver Operating Characteristic curve 
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The most common formally private methods—most famously the Laplace mechanism (Dwork and Roth, 2014)—
work well on counts and certain some summary statistics, but they do not work as well on the microdata sets that 
have been among the most popular products from the ACS. One approach is to consider a microdata set as a large 
multidimensional frequency table or histogram, add noise to the table counts, and then create a microdata set from 
the noisy counts. Almost the entire privacy budget could be spent on creating the noisy counts, and then all products 
derived from the microdata would inherit the formal privacy guarantee from the microdata without any further loss 
of privacy. 

The Census Bureau plans to use a formally private method to protect the 2020 Census of Housing and Population 
using a variation of the histogram method described above. This broad approach involves a number of additional 
complexities, which we do not describe here. The histogram for the census has a large number of cells—
approximately 438,000 for the 2010 census, although this number has increased for the 2020 census. The problem of 
generating a formally private table for the census with sufficient data quality and adequate privacy is considered 
manageable for some census files (Leclerc et al., 2017). 

The ACS introduces a number of additional challenges that are not present in the decennial census. The number of 
cells in the histogram of all variables in the ACS is extremely high—many orders of magnitude larger than the 
corresponding census histogram—making the creation of the histogram using the census approach possibly 
computationally unfeasible, even with substantial parallelization. While the ACS has an unusually large sample for a 
demographic survey, it is still much smaller than the census, so there are fewer records on which to base the noisy 
counts. With a very sparse table, the noise easily could be larger than the counts for many cells, making the data 
quality dubious. The effect of differentially private noise on the quality of small area estimates is unclear, but it is 
likely to be quite large. In addition, the vast majority of the cells of the underlying histogram are zero, and if we 
require all counts in the formally private data to be nonnegative integers, we will likely create bias toward creating 
“rare” cases out of zeros much more often than creating zeros out of rare cases. Furthermore, the ACS uses a 
complex sample weighting approach, and the formal privacy literature has not addressed how to incorporate survey 
weights while maintaining accuracy. 

The census and the ACS share some other challenges: 

• Geographic level. Data for the census are released down to the level of individual blocks. If blocks are 
considered a variable in the histogram, then the number of cells increases by several orders of magnitude. 
Tabular data for the ACS are released in five-year aggregates at the level of individual block groups 
(defined areas that usually contain 600 to 3,000 people). For individual years, data for the ACS are released 
for geographic regions of at least 65,000 people, with limited exceptions for somewhat smaller regions. 
Hence the geographic dimensionality problem occurs in the ACS as well. 

• Household structure. Both the census and the ACS release data for individuals, families, households and 
the interplay among these groups. A protected dataset should preserve within-household relationships and 
structure.  

Model-based synthetic data 

Since a formally private method seems impractical for now, current research focuses on synthetic data created from 
a model, as in Raghunathan et al (2003) and Drechsler (2011). Synthetic data generally falls into two categories: 

• Partially synthetic data: We remove some records and/or some variables from the original data and impute 
the now-missing data. See Reiter (2003) for more information on this approach. 

• Fully synthetic data: We train a model on the original data, then use the model to generate entirely new data 
sharing many of the properties of the original data. 

In this research, we plan to create fully synthetic data for individuals in the ACS, based on original data from a 
single state. In this stage of the research, we focus on variables that can be treated as categorical, although we will 
also include continuous variables such as wages as the research progresses. Although the Census Bureau assigns 
weights to the records in the dataset, we do not consider weights for now. 
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The 2010 census collected five person-level variables: relationship to householder, sex, age, Hispanic origin and 
race. In this paper, we do not synthesize these first five variables. We currently are investigating ways to do so based 
on the models of Hu et al. (2018). We skip the model-based synthesis of the first five variables, using their original 
values instead of synthetic ones, since we hope to use methods not yet developed for synthesizing these variables. 
We generate the subsequent variables in sequence, with each variable being modeled on the previously generated 
variables. Thus we are creating a partially synthetic dataset in this paper, but the final product of the research will be 
a fully synthetic dataset. 

For now, we synthesize the other variables from those with the largest universe to those with smaller universes. This 
approach minimizes situations where the available predictor variables for the variable being synthesized differ 
across records. Among variables with the same universe, we generally follow the order the questions are asked in 
the ACS, which minimizes complications from skip patterns in the survey. Most universes are subsets of the 
population based on age, although a few are based on other variables. 

To synthesize a categorical variable, we build a classification tree, as in Reiter (2005), predicting the current 
variable from variables already synthesized (or, in this stage of the research, from the five unsynthesized variables). 
The tree is grown fairly deeply, with an extremely small minimum allowable node deviance of 10-9 times the root 
node deviance and a minimum leaf size of 5 records. To synthesize the value of a variable, we run the synthetic 
record down the tree, based on the already-synthesized variables, and choose a value at random from the leaf where 
the synthetic record lands, using a multinomial-Dirichlet draw. 

We grow the trees in the “tree” package in R, which has a maximum tree depth of 31. Sometimes the tree exceeds 
this limit, causing an error in the tree function. In such cases, we increase the minimum deviance, sometimes to as 
much as 10-4 times the deviance of the root node, enough to get the tree function to run. Even with this modification, 
the minimum deviance is smaller than R’s default, and our trees are fairly deep. 

Comparing synthetic data on health insurance based on two methods 

The ACS asks what types of health insurance each person has, from among seven types. A person may have none, 
one or more than one of these types: 

• Employer- or union-based insurance 
• Directly purchased insurance 
• Medicare 
• Medicaid or other government assistance for people with low incomes or a disability 
• TRICARE or other military care 
• Veterans Administration 
• Indian Health Service (IHS) 

Thus for each type, we have a binary variable indicating whether the person has that type of insurance. Employer-
based insurance, directly purchased insurance and TRICARE are considered private insurance, while Medicare, 
Medicaid and VA insurance are considered public. Most health insurance tables produced by the Census Bureau 
show how many people are insured, how many are publicly insured or how many are privately insured, with the 
more specific types of insurance being specified less frequently. In this paper, we focus primarily on private health 
insurance, and we do not include the IHS, as people whose only health insurance is through the IHS are not counted 
as insured in ACS data releases (U.S. Census Bureau, 2016). 

We focus on health insurance in this paper because it presents two challenges that will occur often in synthesizing 
the dataset and will give us an early opportunity to learn approaches for handling them. First, health insurance 
comprises a set of variables whose joint distribution is of significant interest, in many cases even more so than the 
univariate distributions of the underlying variables. Second, the way health insurance is structured in the US is 
expected to create substantial within-household correlations in insurance status. For example, an employer-based 
health plan will often cover several members of the employed person’s family.  
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Does the method capture household structure when householder data are used? 

We synthesize each of these types in sequence, using the 2010 census variables, citizenship (previously synthesized) 
and the types of health insurance earlier on the list. We use two different synthesis methods: 

• Method 1: People are synthesized individually. 
• Method 2: Householders (heads of household) are synthesized first. For non-householders, the value of an 

insurance variable for the householder is also included in the model predicting that variable for non-
householders. So, for example, the tree for the seventh variable in the sequence for a non-householder 
would use as predictors that person’s synthetic value of the first six variables and the householder’s 
synthetic value of the seventh variable.  

The total unweighted sample is approximately 59,000 people in households. 

In the tables that follow, asterisks indicate statistically significant differences (using α=.05) between the original and 
synthetic data. For binary outcomes, we tested significance with a binomial distribution based on the original data. 
For non-binary outcomes, we compared the synthetic data with 1,000 bootstrap samples from the original data. 

The synthesis does not significantly change the raw totals for number of people with private insurance, as shown in 
Table 1. 

Table 1: Distribution of private insurance using two synthesis methods. 

All records in households Proportion Private Insurance Proportion No Private Insurance 
Collected data 69.2% 30.8% 
Method 1 69.3% 30.7% 
Method 2 68.8% 31.2% 

N~59,000 

If we consider only householders, the numbers are again not significantly changed, as shown in Table 2. 

Table 2: Distribution of private insurance using two synthesis methods (householders only). 

Householder Proportion Private Insurance Proportion No Private 
Insurance 

Collected data 72.2% 27.8% 
Method 1 72.2% 27.8% 
Method 2 72.6% 27.4% 

N~25,000 

However, some other tallies are substantially changed when using these methods. If we only consider spouses of 
householders, as in Table 3, Method 1 increases the rate of private insurance, while Method 2 decreases the rate. 

Table 3: Distribution of private insurance using two synthesis methods (spouses of householders only). 

Spouse of householder Proportion Private Insurance Proportion No Private Insurance 
Collected data 79.8% 20.2% 
Method 1 80.6%* 19.4%* 
Method 2 74.6%* 25.4%* 

N~13,000 

Table 4 shows that for children of the householder, Method 1 gives approximately the same numbers as in the 
original data, while Method 2 increases the proportion with private insurance. 
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Table 4: Distribution of private insurance using two synthesis methods (children of householders only). 

Child of householder Proportion Private Insurance Proportion No Private Insurance 
Collected data 64.7% 35.3% 
Method 1 64.3% 35.7% 
Method 2 65.9%* 34.1%* 

N~15,000 

Since Method 2 is designed to preserve household structure, we also examine frequencies of health insurance related 
to family relationships. Table 5—which includes public as well as private insurance—shows a decrease in the 
proportion of people insured using either method, with Method 2 coming closer to the original number than Method 
1. 

Table 5: Proportion of households with all people insured using two synthesis methods. 

Households Proportion Of Households With All 
People Insured (Public and Private) 

Proportion Of Households With 
At Least One Person Uninsured 

Collected data 87.0% 13.0% 
Method 1 83.7%* 16.3%* 
Method 2 84.7%* 15.3%* 

N~25,000 

It seems intuitive a positive association exists between any member of a household being insured and any other 
member of the household being insured, since in a family household, one source of insurance may cover multiple 
members of the family. Method 1 treats the members of the household as independent; its only knowledge of 
household structure is the relationship of the person being synthesized to the householder, but it does not incorporate 
any information about the householder’s insurance status. Thus it is not surprising that Method 1 underestimates the 
proportion of households where everyone is insured. Method 2 treats all non-householders as independent, 
conditional on the householder’s insurance status, so it still misses some inter-household correlation among non-
householders (e.g., between two children of the householder). 

Table 6 shows whether a spouse has private insurance versus whether the householder has private insurance. Either 
method, but especially Method 1, increases the likelihood of two spouses having the same private insurance status 
and decreases the likelihood of exactly one spouse having private insurance. Both Method 1 and Method 2 decrease 
the probability of a householder with a spouse present having private health insurance, as compared to the original 
data. Since the synthesis of a householder’s health insurance does not include any considerations about other 
members of the household, it is understandable that these marginals more closely match the percentage of all people 
with private insurance (72.2% in the original dataset) than the percentage of householders with spouses present with 
private health insurance (80.7% in the original dataset). 

Table 6: Cross-tabulation of householder privately insured versus spouse privately insured using two 
synthesis methods. 

 Collected data 
Householder 

 Method 1 
Householder 

 Method 2 
Householder 

Yes No  Yes No  Yes No 
Spouse Yes 75.4% 4.4% Yes 59.4% 21.2% Yes 67.1% 7.5% 

No 5.3% 14.9% No 13.5% 5.9% No 6.3% 19.1% 
N~13,000 

Similarly, Table 7 shows the cross-tabulation of whether a householder has private insurance and whether the 
householder’s child has private insurance. 
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Table 7: Cross-tabulation of householder privately insured versus child privately insured using two synthesis 
methods. 

 Collected data 
Householder 

 Method 1 
Householder 

 Method 2 
Householder 

Yes No  Yes No  Yes No 
Spouse Yes 60.7% 3.9% Yes 48.9% 15.4% Yes 61.2% 4.7% 

No 10.9% 24.4% No 26.6% 9.1% No 14.0% 20.1% 
N~15,000 

As we would expect from the previous discussion, both methods decrease the frequency of the householder and 
child having the same private insurance status and increase the frequency of the householder and child having 
different private insurance statuses. In this case, Method 2 approximately preserves the proportion of children with 
private insurance, along with the conditional distribution of whether householders have insurance given that the 
child does. The failure to reproduce the inter-household correlation for Method 2 comes almost entirely from 
overestimating the likelihood that a householder has insurance given that the child does not. 

In light of these results, we will have to consider the importance of the inter-household relationships for this variable 
and whether refinements to the method can create data more similar to the original data. 

Generating multiple health insurance statuses simultaneously 

Since some tabulations of health insurance deviate substantially from the equivalent tabulation on the original data, 
an alternative approach is to generate multiple synthetic variables at once rather than generating the variables 
sequentially. In the method above, we generate employer health insurance (yes/no binary) based on previous 
variables; direct purchase health insurance (yes/no binary) based on employer insurance and previous variables; and 
TRICARE/military insurance (yes/no binary) based on the four previous types of insurance (employer-based, direct 
purchase, Medicare and Medicaid/government means-tested) and previous variables. 

Instead, we could create an eight-category variable considering all possible combinations of health insurance and 
use this to create cross-tabulations of any subset of the variables. These cross-tabulations can then be compared to 
the original data. As a measure of difference, we use half the L1 distance between the discrete distributions in the 
two tables—the amount of probability mass that has to be moved across categories to turn the synthetic table into the 
original table. The maximum possible value of this distance metric is 1, which would occur if every record in one 
cross-tabulation fell into a cell that had no records in the other cross-tabulation.  

Table 8: .5 times L1 distance between original data and synthetic data with respect to various marginal 
distributions, using sequential and simultaneous synthesis. 

Cross-tab .5 L1 distance – generated 
sequentially 

.5 L1 distance – generated 
simultaneously 

Employer .82%* .85%%* 
Direct purchase .08% .12% 
TRICARE .03% .06% 
Employer by direct purchase .82%* .85%* 
Employer by TRICARE .82%* .87%* 
Direct purchase by TRICARE .10% .12% 
3-way cross .85%* .87%* 

 

The marginals for direct purchase and TRICARE—including the two-way marginal—deviate from the original table 
by no more than what would be expected given the bootstrap bounds. Any tabulation that includes employer-based 
health insurance deviates by more than the bootstrap bounds allow. The L1 error is similar for all cross-tabulations 
regardless of whether we simulate sequentially or simultaneously. However, we found different outcomes when we 
tried different combinations of three variables, such as employer, direct purchase and Medicare. So we cannot yet 
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draw a conclusion about whether simultaneous generation improves data quality as compared to sequential 
generation. 

Conclusion 

Our investigations focused on variables for different types of health insurance and aggregations created from those 
variables. 

We found that our methods of synthesizing each type of insurance separately created synthetic data for which the 
overall proportion of people who were privately covered was similar to the distribution in the original data. 
However, our methods usually did not preserve the proportions of people with private coverage who had particular 
relationships to the householder. Furthermore, our methods tended to weaken correlations among the household 
members regarding insurance coverage, especially when we did not consider the insurance status of the householder 
as a predictor for the insurance status of other household members. 

In examining the relationships regarding whether a given individual had different types of insurance, we did not 
draw any broad conclusions about whether multivariate relationships among different types of insurance are better 
preserved if three types of insurance are synthesized in one combined variable, rather than if the three types of 
insurance were synthesized sequentially. This exploration warrants further research on whether and when 
simultaneous generation might be helpful. 

This research indicates that the synthesis methods we are currently using do not preserve (or approximately 
preserve) all of the multivariate relationships that we might like to see preserved, in particular relationships between 
insurance status and relationship to householder or between different types of insurance status. The tree method is 
designed to capture the most important relationships among variables, including relationships that do not follow a 
parametric form and relationships among more than two variables. This research may indicate a necessity for also 
considering whether there are certain combinations of variables whose relationships are particularly important from 
a policy or programmatic perspective and whether there are ways to ensure that these relationships are preserved, 
even if they are not the strongest relationships in the data. 
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