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Abstract: Every month, the Bureau of Labor Statistics publishes estimates of employment from the Current 
Employment Statistics survey at the state and national total levels, as well as at various detailed levels by industry 
and geography. For smaller domains, where the direct sample-based estimates are not reliable, estimates are 
produced using models. We adopt a Bayesian approach and consider the area level Fay-Herriot model along with 
several alternatives that: (i) co-model the variances of the direct estimators instead of adhering to the traditional 
assumption of the “fixed and known” variances; (ii) accounts for possible deviations from the normality assumption 
of the random effects by assuming a mixture of the normal distributions. Models are compared based on the direct 
estimates and variances from the Current Employment Statistics survey, as well as using a simulation study. We 
further propose a model-based method of screening that could become a useful tool for analyst’s review of the 
estimates before they are released for publication.  

Key Words: Bayesian Hierarchical Modeling, Dirichlet process, Fay-Herriot, Variational Bayes, Stan 

1. Introduction 

Large government surveys, such as the Current Employment Statistics survey considered in this paper, are designed 
to produce high quality sample-based estimates for a number of state and national industrial levels. More detailed 
geographical and industrial domains often contain a small number of sample units (e.g., business establishments).  
Direct sample-based estimates at these detailed levels are not reliable, and models are used to improve the quality of 
the estimates. One of the most popular models is the classical Fay-Herriot model by (Fay and Herriot 1979). The 
Fay-Herriot (FH) model yields an estimator that can be conveniently presented in the form of a weighted average of 
the direct sample-based estimator and a so-called “synthetic” component. Both the synthetic component and the 
mixture weights depend on specific distributional assumptions. Direct sample-based estimates are used as the data 
input in the FH modeling. In the classical FH model, variances of the direct sample estimates are assumed to be 
fixed and known. In reality, these variances are not known and some estimated variances are plugged in as if they 
were true variances; for example, direct sample based estimates of variances could be used for this purpose. 
However, such sample-based estimates of variances contain noise; and so, the usual practice, is to smooth the noise 
by using model-based estimates of variances extracted from a generalized variance function (GVF). Such GVF-
based variances are implemented in a separate model from that for the direct point estimates.  

Maiti et al. (2014) showed that co-modeling of direct point estimates and their variances in the same model may 
improve estimates of both quantities as it would exploit the relationship between the point estimates and their 
variances. Maiti et al. (2014) proposed a solution within the frequentist paradigm, and Sugasawa et al. (2017) 
considered a Bayesian approach. In this paper, we extend Sugasawa et al. (2017) to include nonparametric 
probabilistic clustering and apply it to estimates from the Current Employment Statistics (CES) survey.  Our 
clustering formulation relaxes the assumption of normality of the random effects in the models for both the direct 
point estimates and the variances as a means of addressing deviations in employment from linearity assumption 
among industry domains. Employment may grow or decrease faster in some groups of domains included in the 
model. This phenomena may be described by imposing the mixture of normal distributions assumption on the 
random effects.  
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The models considered may still fail to describe true population target in domains having large deviations from the 
model linearity assumption. We adapt a posterior predictive checking approach to uncover domains that are not well 
described by a model. We identify such domains using a Bayesian multiple hypotheses testing approach. Each 
domain’s probability of not being generated by the target model is considered in conjunction with the overall false 
discovery rate (FDR) (Benjamini and Hochberg 1995), to identify a relatively small number of “suspected” domains 
whose estimates are posited as not having been generated by our joint model. The list of these domains may be sent 
to analysts for review. Analysts may conclude that the deviation is due to a few outlying units used in deriving the 
domain level estimates; otherwise, analysts may decide that a particular domain’s deviation from the linear model 
expresses real economic movement. The approach provides a potentially useful tool for analysts if applied for 
screening the estimates before publication. 

We compare the performances of alternative models using the CES data; we also study the model behavior for 
several scenarios using Monte Carlo simulations. Our simulation results confirm that co-modeling of the direct point 
estimates and their variances leads to improved estimates. In addition, the model estimates of variances for the direct 
estimator can be considered as a useful by-product of the modeling efforts. 

We adopt the hierarchical Bayesian paradigm for development of the models. The code is implemented in the Stan 
modeling language (Gelman et al. 2015) using a Variational Bayes algorithm (Kucukelbir et al. 2017) implemented 
in RStan V2.15.1 package, which is the R interface for the Stan modeling language (Gelman et al. 2015, Stan 
Development Team 2017), to implement our models.   

The paper is organized as follows. In Section 2 we provide brief introduction of estimation procedures and the form 
of the sample-based estimator used in CES. The models considered in this paper are stated in Section 3. In Section 4, 
we discuss the results of application of the models to the real CES data and to the synthetic data generated by adding 
noise to the true historical series. In Section 5, we conduct a robustness study of our candidate model formulations to 
assess their performances under deviations from linearity.  Section 6 introduces additional uses for our models with 
large-sized domains where modeling is not traditionally performed because the direct estimates are published; in 
particular, we introduce a model-based screening procedure to identify a set of domains whose direct sample-based 
estimates are not adequately described by the model.  We also assess whether raw variances may be replaced with 
modeled estimates to provide improved measures of uncertainty, even for larger-sized domains.  We conclude with a 
summary discussion in Section 7. 

2. CES Data Construction 

Estimates of employment from the CES survey are published every month for various industries (defined by the 
North American Industry Classification System (NAICS)) at the national level, as well as for State and Metropolitan 
Statistical Area levels.  

The focus of this paper is construction of an area-level model for CES domains defined by intersections of industry 
and geography.  (In our application discussed in Section 4, our geographic resolution is the State level). Since the 
direct survey estimates are used as input data in the proposed area-level models, we start by briefly describing 
relevant details pertaining to construction of the CES estimator.  

For a given month, ,t  the target of the CES estimation is the change in employment from the previous to current 

month. Consider a set of (geography-by-industry) domains, 1,...,i N= . The population ratio, ,i tR , is the target 
employment change, defined as 
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where ,i tY  is the employment level in domain i  at month .t  



The estimated relative change in employment level ,
ˆ

i tR  can be described as an adjusted sample based estimator of 
the relative change  
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where jty  is the employment of business j   at time t , jw  is the sampling weight of unit j , and ( )i
ts  is a set of 

units sampled in domain i  that provide non-zero employment inputs in both previous and current months as a 
“matched” set of respondents. The presence of matched sets of sampled units is typically high from one month to 

another but there are also unmatched units; thus, there is an adjustment to ,î tr , yielding estimator ,
ˆ

i tR  of ,i tR . The 
adjustment is described in some detail, for example, in Gershunskaya and Savitsky (2017) and is omitted here for 

brevity. In what follows, we assume ,
ˆ

i tR  to be an unbiased estimator of target, ,i tR . 

Every year, the estimation cycle starts at month 0 from a known employment level ,0iY  and after twelve months the 

CES estimated employment level ,12îY  is compared to the census data, maintained by BLS’ Quarterly Census of 
Employment and Wages (QCEW) program. The QCEW data become available with a lag of about 6 to 9 months, 
while the CES estimates provide timely snapshot of the economy on a monthly basis. Once a year, the CES 
estimated levels are revised to reflect newly available QCEW levels (in a procedure commonly known as the annual 
revision), and a new cycle of estimation starts with the new true census level as the new month 0. Employment 
seasonal patterns in the QCEW are affected by the quarterly submission of administrative data provided by units 
(business establishments).  CES estimates are unaffected by this quarterly seasonal influence due to a monthly 
submission cycle.  So we may not compare monthly QCEW and CES estimates. Nevertheless, the annual levels 
from QCEW are considered a “gold standard” and the quality of the CES employment estimates of levels are judged 
based on the size of the annual revision that benchmark to the QCEW. 

To summarize, monthly ratios ,
ˆ

i tR , along with their respective sampling variances ,i tv , constitute the domain-level 
data supplied for the modeling. In order to compare estimates with the QCEW gold standard, we produce estimated 
employment level after 12 months of estimation as  
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where ,0iY  is a known “benchmark” employment level at month 0, available from QCEW. We compute the 

analogous levels using model fitted ratios ,i tR  and use them to compare the models. 

Figure 1 presents a plot of the estimation cycle.  It shows monthly estimated levels for one of the CES domains. The 
lines on the plot correspond to alternative (model-based) estimates considered in the paper. The black line with solid 
circles is the target QCEW line. The goal is to be closer to the QCEW line at the 12th month of the cycle. Direct 
sample-based estimates in small domains may be appreciably volatile. Model-based estimates usually present 
various degree of smoothness compared to the direct estimates, as exemplified in Figure 1. 



The domain-level auxiliary information used in the models is the employment ratio, obtained as a forecast from the 

historical QCEW series. For this paper, we used five-year averages of historic QCEW ratios ( )
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as auxiliary information for the point estimate part of the models.  

It is possible to extend the cross-sectional models by including multiple months and thus using both cross-sectional 
and time information (Gershunskaya and Savitsky 2017.)  However, in this paper, we concentrate on the one-month-
at-a-time estimation of monthly ratios, which historically express little month-over-month correlation after 
transformation to ratios. 

3. Description of the models 

3.1 Models for point estimates with known variances 

We start with the classical Fay-Herriot (FH) model (Fay and Herriot 1979.) Let iy  be a survey estimate of target 

parameter iθ  for domain .i  For each domain, 1,...,i N= , assume  

( )| ~ ,
ind

i i i iy N vθ θ ,         (4) 

( )2 2| , , ~ ,
ind

T
i u i uNβ x βθ µ τ µ τ+ .        (5) 

Sample estimated iy ’s are assumed to be normally distributed and unbiased for target parameter iθ , with variances 

iv  that are treated as known (equation (4)).  Equation (5) links true signal iθ  to a vector of covariates ix via the 

linear regression by assuming the normally distributed deviation of the true signal from “synthetic” part T
ix βµ +  

(to facilitate the ensuing description, we explicitly write the intercept term µ .)  

The normality assumption used in  (5)  may not be realistic. For example, if a single or a handful of domains deviate 
significantly from T

ix β , this assumption of the Fay-Herriot model would result in the under-shrinkage of the bulk of 
the observations.  

We introduce a new model, referred to as CFH, by relaxing the normality assumption in (5).  We replace the normal 
distribution with a finite mixture normal distributions. Specifically, we assume the existence of K  latent clusters 
having cluster specific intercepts kµ , for 1,..., ,k K= and common variance 2 :uτ  

( )2 2
1

| , , , ~ ,
iid K T

i u k k i uk
Nπ μ β x βθ τ π µ τ

=
+∑       (6) 

The FH and CFH models are summarized in Table 1 (formulated for a single covariate ix , for simplicity.)  The 

CFH model is designed to allow for deviations from linearity assumption T
ix βµ +  for some subsets of domains.  

The form for the Dirichlet prior, with hyperparameters set to ,Kα  induces a Dirichlet process (DP) mixture 
formulation in the limit of the maximum number of allowable mixture components, K  (see Neal 2000). The larger 



is ,α   the more of the K  possible mixture components (also referred to as clusters) will have 0,kπ ≠  so a further 
gamma prior is imposed to allow the data to learn the number of mixture components. 

Table 1. FH and CFH models 
FH CFH 
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( )| ~ ,...,Dir K Kα α απ

( )1| ~ 0,Nβ ββ λ λ− ( )1| ~ 0,Nβ ββ λ λ−

( )1| ~ 0,Nµ µµ λ λ− ( )1| ~ 0,
iid

k Nµ µµ λ λ−

( )2 , , ~ 1,1u Gβ µτ λ λ− ( )2, , , ~ 1,1u Gβ µα τ λ λ−

As noted, sampling variances iv  in models FH and CFH of Table 1 are considered fixed and known. In practice, 
estimates of true variances are used. In our survey application and in the simulation study, we consider two 
possibilities for the treatment of iv  in models FH and CFH: 1) using direct sample based estimates of true variances 
(FH-BRR and CFH-BRR), which treats the variances as fixed and known and 2) using a smoothed estimator of 
variances. For these models (referred to as FH-V and CFH-V), the estimation of the variances are performed, 
separately, in a first step and then used as plug-in estimators for iv in estimations of FH and CFH. The first step of 
the variance estimation is based on the same set of covariates as used in the models described below. Note that this 
approach ignores any uncertainty in the estimation of the variances, and so, is not a fully Bayesian approach (though 
we estimate the variance portion of FH-V and CFH-V under a Bayesian construction). 

3.2 Co-modeling of sampling variances and point estimates (FHS) 

Rather than fixing the variances at the estimated value, iv , we view direct sample-based estimates of variances as 

data and model them together with the vector of point estimates iy in a fully Bayesian model specification.   

Table 2 contains a summary of the three models that co-model point estimates and estimates of their variances. 

The first model (referred to as FHS) is slight modification of a model considered by Sugasawa et al. (2017). Assume 
the following model holds for pair of direct survey estimates ( ),i iy v  for each domain i : 
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Table 2. FHS, CFHS, and CFHSc models: joint modeling point estimates and estimates of their variances 
FHS CFHS CFHSc 
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Lines (7)-(8) are the usual FH assumptions on the point estimates iy  and lines (9)-(10) describe the variance 

model, where  parameter 2
iσ  is  the true sampling variance;  iz is a vector of covariates for the variance model for 

area i ; , ,a b γ  are the model parameters. Note that in equation (9), estimated variances depend on the sample size 

in ,where for a set of domains with unequal number of respondents, we use standardized response size,  

{ }( ) ( ) [ ]* min 1 max min 0,1 .i i i i ii ii
n n n n n= − − − ∈  Our assumption is slightly different from  Maiti et al. 

(2014) and Sugasawa et al. (2017) as we allow additional (unknown) parameter, a , to regulate the scale and shape 
of the distribution. In our application, we found that for moderate sample sizes, using sample size alone would result 
in predicted variances that are similar to direct estimates of variances.   

Model CFHS, in the second column of Table 2, is the analogue of the clustering model CFH. It is described by 
replacing (8) of the FHS model with the finite mixture (that contracts on a DP mixture), as in (6) .  

Table 3. Summary of models FH, CFH, FHS, CFHS, CFHSc 



 Level FH CFH FHS CFHS CFHSc 

Point 
Estimate 

Sampling 
model normal normal normal normal normal 

Linking 
model normal normal 

mixture normal normal 
mixture 

normal 
mixture 

Sampling 
Variance 

Sampling 
model   gamma gamma gamma 

Linking 
model   inverse 

gamma 
inverse 
gamma 

inverse 
gamma 
mixture 

Finally, the inverse gamma assumption in (10) is relaxed in the CFHSc construction by specifying a mixture of the 
inverse gamma distributions with the cluster-specific shape parameter :kb  
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It is reasonable to suppose that point estimates and estimates of their variances are related, and we parameterize this 
assumption by assuming a common cluster structure for pairs, ( ),k kbµ . That is, each mixture / cluster component 

in the joint distribution for (𝜃𝜃𝑖𝑖, 𝜎𝜎𝑖𝑖2) share the same 𝜋𝜋𝑘𝑘. 

Table 3 provides a brief summary for the models introduced in this section for quick comparison and reference. 

4. Model fit comparison  

We next compare the model performances based on the CES data. The first part of this analysis is based on the 
actual historical data. We subsequently generate a synthetic dataset by adding noise to the census data, which allows 
us to compare additional properties of the models relevant to the specifics of CES. 

4.1 Analysis based on the real CES data 

The CES data used in this paper are defined for a set of 2233N =  sub-industry-by-State domains; the data series 
are based on September 2008 as the starting point. We chose this particular year estimation cycle because of the 
non-trivial employment pattern that occurred during the period of the “great recession”, which induced a marked 
shift in employment trends from previous years.  

We fit separate models for sets of domains belonging to17 major industries. Each set consists of different number of 
domains defined by subindustries and States. 

The sample-based estimates of variances ,î tV  of the point estimator ,
ˆ

i tR  are computed using the balanced repeated 
replication (BRR) methodology. 

Before fitting the models, we standardized the input values as follows: ( ), ,
ˆ ,i t i ty R R V= −

( ), ,
H H

i t i tx R R V= − , and , ,
ˆ

i t i tv V V= , where  R , HR , and V  are the average values of respective original 

data ,
ˆ ,i tR , ,H

i tR  and ,î tV . To obtain the model estimator, ,i tR , we perform a back transformation.  



For the variance part of the model, the vector of covariates ,i tz  contains the following three components:  the 

number of sample respondents  , ,i tn  the domain employment level ,0iY  at month 0, and the estimated domain-

specific fraction of employment not covered by the responding sample, ,i tf .  Each covariate was log transformed 

and standardized before fitting the model, i.e., ( ), , ,p p p p
i t i t t tz l l s= − where ,

p
i tl  is the log transformed component 

1,2,3p = ; p
tl  is the average and p

ts  is the standard error of ,
p

i tl  computed over domains. 

We obtain model estimates ,i tR  for relative monthly changes for each month over the 12-month estimation period. 

The estimates of employment levels at month t  are obtained from the set of ,iR τ
 ,  1,..., ,tτ =  as  

, ,0 ,
1

.
t

i t i iY Y R τ
τ =

= ∏           (12) 

Figure 1: Domain #60 in Health Care and Social Assistance industry  
(average number of responding units in the domain is 16.6) 

 
Due to different seasonality patterns between the employment series derived from the administrative QCEW data 
and CES, the most meaningful comparison of the two series is after 12 months of estimation. Results for each major 
industry and overall, presented in Table 4, are based on the mean absolute deviation (MAD): 

1
,12 ,121

N
i ii

MAD N Y Y−
=

= −∑  ,        (13) 

where ,12iY  comes from the (QCEW) census data and is used as “the gold standard” for the estimates. 



The real data results (Table 4) show that the co-modeling of point estimates and variances leads to the 
estimates with smaller MAD than the estimates based on a variance that is plugged in the model as fixed and 
known parameter. This is true for the case of raw sample-based variances (FH-BRR and CFH-BRR) as well 
as for a smoothed version derived from a separate model for variances (FH-V and CFH-V). 

Table 4. Real data results 
Ind N Direct FH-BRR CFH-BRR FH-V CFH-V FHS CFHS CFHSc 

1000 50 792 774 757 789 784 840 777 817 
2000 141 2152 1782 1783 1801 1825 1770 1760 1779 
3100 234 1112 1072 1058 968 970 1075 1053 1081 
3200 140 955 918 894 862 844 949 898 960 
4100 124 1485 1234 1230 1215 1212 1201 1164 1179 
4200 286 1439 1364 1365 1366 1340 1321 1305 1311 
4300 194 1310 1023 1022 1044 1045 903 928 929 
5000 83 1204 768 781 718 750 728 711 736 
5500 149 1473 1031 1041 1047 1072 1051 1042 1060 
6054 150 1450 1185 1193 1152 1177 1160 1145 1165 
6055 45 1066 992 1005 917 950 892 975 937 
6056 115 2344 1862 1876 2001 2040 2034 1853 1955 
6561 59 1901 1779 1768 1538 1581 1537 1614 1593 
6562 214 1551 1226 1244 1242 1247 1178 1225 1192 
7071 59 2047 1431 1421 1208 1352 1136 1243 257 
7072 80 1912 1819 1708 1641 1665 1736 1689 1733 
8000 110 1773 1211 1250 1175 1219 1097 1186 1128 

Overall 2233 1502 1252 1250 1224 1236 1215 1207 1221 

4.2 Analysis based on synthetic data 

In order to more fully compare model performances than is possible on the CES data, we created synthetic 
data by adding noise to the QCEW series, thus preserving the existing structure of the target. Our synthetic 
response expresses the same seasonality as the QCEW series, facilitating comparison and, unlike for the real 
data where the QCEW will contain some unknown measurement error (which we ignore), we know that the 
QCEW are the true values for these synthetically generated data. We added Student’s t distributed noise to 
QCEW-based ratios ,i tR . To specify true variances, we fitted the real data using the CFHS model and obtained the 
fitted variances for each month of the 2008 benchmark year. We used these fitted variances in generating of the 
noise, as described below.  

We summarize our synthetic data generating process with the following steps:   

1) For each domain 1,...,i N= , generate multivariate normal vector ( ),1 ,12,..., ,i iε ε  using fitted variances 

from CFHS as true 2 2
,1 ,2,...,i iσ σ  sampling variances; 

2) To obtain the Student’s t distribution with 6 degrees of freedom, generate parameter ,i tδ , independently 

for each domain i  and month ,t   

 ( ), ~ 3,3 .
iid

i t IGδ

3) Let , , ,
ˆ

i t i t i tR R e= + , where , , ,i t i t i te ε δ= . 



On the simulated data (see Table 5), we see the pattern that is similar to what we observed in the real data: the co-
modeling versions work better than where the point estimates only are modeled or where smoothed variances are 
used to fit the model. 

With the simulated data, we can also look at the monthly results. In Table 6, we present MAD averaged over 
domains and months, as follows: 

121 1
, ,1 1

12 ,N
i t i ti t

MAD N Y Y− −
= =

= ∆ − ∆∑ ∑   where , , , 1i t i t i tY Y Y −∆ = −    and , , , 1i t i t i tY Y Y −∆ = − . 

Table 5. Simulated data results 
Ind N Direct FH-BRR CFH-BRR FH-V CFH-V FHS CFHS CFHSc 

1000 50 796 801 789 873 848 811 777 772 
2000 141 2128 1477 1468 1584 1609 1484 1473 1448 
3100 234 816 684 662 753 754 715 678 687 
3200 140 683 541 550 609 600 600 568 566 
4100 124 1073 757 750 812 823 760 715 720 
4200 286 1798 1002 995 919 920 858 849 872 
4300 194 1192 846 853 903 891 773 778 762 
5000 83 995 662 670 674 637 552 514 551 
5500 149 952 679 690 708 703 639 664 662 
6054 150 1241 783 794 936 954 804 825 806 
6055 45 521 532 524 512 502 537 525 533 
6056 115 2283 1691 1665 1893 1897 1812 1715 1814 
6561 59 2666 2079 2081 1987 2094 1771 1907 1710 
6562 214 1213 853 866 864 891 786 805 798 
7071 59 2126 1281 1305 1393 1485 1278 1241 1223 
7072 80 2338 1722 1745 1713 1780 1565 1668 1563 
8000 110 1628 1087 1094 998 1058 936 1025 968 

Overall 2233 1393 967 967 1004 1017 923 921 915 
 
Table 6. Simulated data, over-the-months results 

Ind N Direct FH-
BRR 

CFH-
BRR FH-V CFH-V FHS CFHS CFHSc 

1000 600 285 220 226 205 213 188 202 204 
2000 1692 795 503 519 507 535 444 480 448 
3100 2808 328 275 274 279 280 273 281 277 
3200 1680 275 213 216 185 191 187 193 192 
4100 1488 396 252 262 234 247 213 234 221 
4200 3432 613 350 351 315 324 278 289 276 
4300 2328 456 292 297 300 307 265 279 266 
5000 996 282 206 211 187 189 188 188 194 
5500 1788 391 267 272 232 246 221 230 216 
6054 1800 481 314 323 314 327 290 304 292 
6055 540 213 176 181 162 170 158 169 167 
6056 1380 923 689 687 642 661 601 643 616 
6561 708 751 564 578 528 557 512 543 519 
6562 2568 444 297 306 289 301 250 271 251 
7071 708 771 470 500 480 516 435 480 459 
7072 960 770 578 593 551 581 506 557 510 
8000 1320 639 377 395 355 383 331 370 340 

Overall 26796 511 344 351 328 342 302 321 306 

We conclude that joint point estimates and variance models FHS and CFHSc perform better, based on the monthly 
results as well. 



Figure 2. Estimated vs true variances of the direct estimator 
(Health Care and Social Assistance industry, month #1) 

 

Sampling variances fitted using different models can be compared to the true variances used to generate the 
synthetic data. Figure 2 presents an example of a scatter plot, for all domains in one month in Health Care and Social 
Assistance industry. Dots correspond to domains and show estimated variances versus true variances; black dots 
represent the direct estimates of variances;  green, blue, and red colors show estimated variances from, respectively, 
models FHS, CFHS, and CFHSc. The closer the dots to the 45-degree line, the more accurate (less biased) are the 
estimates of the variances. We observe that for the bulk of domains the CFHSc model variance estimates lie along 
the 45-degree line.  

The sizes of the dots are proportional to standardized distances between the direct point estimates and respective true 

values, i i i id y vθ= − . We can see a couple of larger blue and red dots on the upper edge of the plot. The dots 
correspond to different estimators for the same domain. The size of the dots suggests that the domain has an outlying 
value of the direct point estimate. The location of the dots indicate that the variance is overestimated by all three 
models for this outlying domain (the variance estimates from the FHS and CFHS models are very close and thus 
they came out on the plot as a single blue dot.) This would have the effect of  over-shrinkage of the estimated value 
to the mean (the “synthetic part”) of the model. 

While we might accept over-shrinkage of an outlier, in practice we do not observe the true value.  This same over-
shrinkage phenomenon would be also expected to occur in the case where the true (but unobserved) generating value 
for a domain deviates from the assumption of linearity.  The three joint models provide various degrees of 
smoothing based on the input data. Whenever the joint models encounter large residuals, i.e., deviations of the 
observed input data from the linearity assumptions stipulated by formula (8), they may enlarge the estimated 
variance, particularly for models that impose a single component normal distribution as the prior for random effects. 
Therefore, it is important to study robustness of the models to deviations to the linearity assumption. We approach 
this in the next section by introducing a Monte Carlo simulation study where the true domain values are generated 
such that the global linearity assumption does not hold for some of the domains.   

5. Model robustness study 

The purpose of the simulation exercise described in this section is to study how each of the proposed joint models 
behaves in the case when there are domains with large deviations from the model’s linearity assumption. To this 
end, we generate data using several scenarios, as described below.   



For a set of 1,...,100i =  domains, we generate estimation targets iθ  as  

i i ix uθ µ β= + + ,          (14) 

where auxiliary data ~ (5,10),ix U  1β =  and random effects are ( )~ 0,1iu N . 

We set 0µ =  for the first 95  domains and 3µ =  for the last 5 domains. Thus, the last 5 domains induce a 
deviation from the (overall) linearity assumption of the models. 

The “observed point estimates” are 

i i iy eθ= + ,          (15) 

where  ( )~ 0,i ie N v  and “true” variances are  

( )2 ~ 1,i g gIG bσ λ λ+ .         (16) 

Variances 2
iσ are not observed directly. Instead, their estimates are available to a modeler. We simulate these 

“observed estimates of variances” as 

2
1~ 3,3 .i

i

v G
σ

 
 
 

         (17) 

We consider several scenarios by varying the values of parameters , gb λ   , thus reflecting various schemes for the 

noise in the data:  

1) Low average variance 0.5b = ; 
2) Medium average variance 1b = ; 
3) High average variance 1.5b = . 

For each level of b , consider three levels of variability of the true variance. The value of 1gλ =  induces the 

highest degree variability (of the variances, 𝜎𝜎𝑖𝑖2 ),while 4gλ =  and 8gλ =  induce gradually lower variability in 

the generated variances. The higher variability scenarios (inversely proportional to gλ ) are expected to generate a 

heavier tailed distribution for 2
iσ  that will induce outlying values of iy  for some domains.    

After 100S =  simulations, we compute MSE for each of the above scenario , gb λ   for domain i   as 

( ) ( )2

1

1ˆ ˆ
S

i i i
s

MSE
S

θ θ θ
=

= −∑ . 



Average MSE over all 100 domains is ( ) ( )
100
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= ∑ . We also compute average MSE 
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In Table 7, we present MSE for models each of the models and scenarios , gb λ   , separately for the 95 domains 

that were generated with 0µ =  and for the 5 domains with 3µ = .  

Let us first discuss results for the 0µ = case, presented in the upper half of the table. We observe that all the 
models perform better than the direct estimator. In most of the scenarios considered, the joint models have lower 
MSE than the FH-based models. The exceptions are scenarios 0.5, gb λ =  , where the generating variance is 

small, such that treating it as fixed induces little distortion in the resulting model-based point estimates. In these 
scenarios, the co-clustering model CFHSc outperforms the other models.  When the variances are relatively high, the 
FHS model outperforms all other models, including the clustering models CFHS and CFHSc. 

Table 7:  MSE, separately for domains with 0µ = and 3µ =  

 

 

 

, gb λ   Y FH CFH FH-V CFH-V FHS CFHS CFHSc 

over 95 domains with 0µ =
[0.5, 8] 0.508 0.358 0.359 0.342 0.358 0.374 0.362 0.352 
[0.5, 4] 0.513 0.351 0.353 0.348 0.362 0.373 0.363 0.347 
[0.5, 1] 0.482 0.291 0.290 0.333 0.340 0.341 0.329 0.286 
[1, 8] 1.016 0.568 0.574 0.526 0.560 0.515 0.519 0.559 
[1, 4] 1.025 0.556 0.564 0.533 0.571 0.513 0.512 0.549 
[1, 1] 0.963 0.456 0.459 0.509 0.533 0.441 0.439 0.443 

[1.5, 8] 1.524 0.736 0.752 0.669 0.710 0.642 0.659 0.714 
[1.5, 4] 1.538 0.717 0.733 0.672 0.720 0.633 0.644 0.694 
[1.5, 1] 1.445 0.585 0.591 0.637 0.674 0.531 0.540 0.556 

over 5 domains with 3µ =
[0.5, 8] 0.511 1.209 1.122 1.269 0.858 3.719 3.317 1.331 
[0.5, 4] 0.556 1.204 1.140 1.311 0.889 3.851 3.534 1.419 
[0.5, 1] 0.361 0.943 0.898 1.386 0.890 3.892 3.511 1.589 
[1, 8] 1.023 1.955 1.815 2.089 1.652 3.350 2.948 1.952 
[1, 4] 1.112 1.946 1.823 2.168 1.707 3.469 3.124 2.032 
[1, 1] 0.721 1.540 1.453 2.235 1.758 3.375 3.010 1.901 

[1.5, 8] 1.534 2.423 2.268 2.554 2.242 3.392 3.016 2.478 
[1.5, 4] 1.668 2.392 2.250 2.629 2.287 3.484 3.121 2.538 
[1.5, 1] 1.082 1.951 1.840 2.672 2.344 3.316 2.933 2.303 

We next turn to the lower part of Table 7 that presents results for the 5 domains with 3µ = , i.e. the cases where the 
true domain target values deviate from the models’ linearity assumption. As expected, all the models perform worse 



than the direct estimator for these domains. The joint models (FHS, CFHS, CFHSc) tend to inflate the estimated 
variances for those domains deviating from linearity such that the resulting model-based point estimate are overly 
shrunk.  Interestingly, the FH and CFHSc results are best among the models, although for different reasons.  The FH 
is more likely to return the data value when the data value deviates from the normality assumption on the random 
effects. So the FH performs relatively well here because the data provides a better estimator than an overly 
smoothed model value that fails to capture the deviation from linearity.  The CFHSc possesses the flexibility to 
construct a separate cluster (or component normal distribution) for a domain whose point estimate deviates from 
linearity.  

Table 8: Properties of the credible intervals, over 95 domains with 0µ =  

 

 

, gb λ   FH CFH FH-V CFH-V FHS CFHS CFHSc 

Coverage (0.95 nominal) 
[0.5, 8] 0.914 0.916 0.957 0.959 0.933 0.943 0.933 
[0.5, 4] 0.915 0.915 0.952 0.955 0.934 0.943 0.935 
[0.5, 1] 0.921 0.923 0.957 0.958 0.943 0.951 0.951 
[1, 8] 0.922 0.924 0.963 0.964 0.951 0.958 0.938 
[1, 4] 0.923 0.924 0.960 0.961 0.951 0.956 0.942 
[1, 1] 0.927 0.930 0.963 0.965 0.957 0.966 0.952 

[1.5, 8] 0.928 0.931 0.971 0.969 0.960 0.964 0.944 
[1.5, 4] 0.930 0.929 0.968 0.966 0.959 0.963 0.946 
[1.5, 1] 0.933 0.933 0.970 0.967 0.965 0.970 0.956 

Length 
[0.5, 8] 2.259 2.281 2.392 2.492 2.259 2.322 2.293 
[0.5, 4] 2.208 2.230 2.384 2.489 2.234 2.288 2.244 
[0.5, 1] 2.004 2.019 2.371 2.488 2.186 2.255 2.069 
[1, 8] 2.933 2.985 3.102 3.226 2.881 2.983 2.966 
[1, 4] 2.869 2.917 3.080 3.222 2.846 2.940 2.897 
[1, 1] 2.599 2.633 3.060 3.200 2.725 2.834 2.642 

[1.5, 8] 3.445 3.523 3.659 3.741 3.366 3.504 3.435 
[1.5, 4] 3.364 3.434 3.625 3.738 3.316 3.439 3.353 
[1.5, 1] 3.027 3.082 3.595 3.701 3.135 3.271 3.036 

Coverage probabilities and interval lengths for 95% nominal credible intervals for the fitted values based on all the 
models are presented in Table 8 (for 0µ =  domains) and Table 9 (for 3µ =  domains.) Coverages are derived for 
each domain over 100 simulations. After that, the domain results are averaged over respective groups of domains:  
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For  0µ =  cases, coverages for all models, except the FH, are close to nominal. The FH coverage is somewhat 

low, especially for lower variances scenarios of 0.5, gb λ =   and 1, gb λ =  . The coverages for the FH-V and 

CFH-V models are slightly higher than the nominal; their average interval lengths are longer than in the other 
models. This result is consistent with the previously observed higher MSE results for these models.   



Table 9: Properties of the credible intervals, over 5 domains with 3µ =  

 , gb λ   FH CFH FH-V CFH-V FHS CFHS CFHSc 

Coverage (0.95 nominal) 
[0.5, 8] 0.678 0.718 0.658 0.814 0.330 0.368 0.706 
[0.5, 4] 0.702 0.732 0.654 0.810 0.342 0.354 0.694 
[0.5, 1] 0.756 0.766 0.614 0.820 0.332 0.394 0.680 
[1, 8] 0.676 0.720 0.654 0.778 0.482 0.572 0.706 
[1, 4] 0.690 0.738 0.642 0.770 0.474 0.540 0.710 
[1, 1] 0.734 0.752 0.632 0.756 0.468 0.564 0.692 

[1.5, 8] 0.708 0.740 0.706 0.782 0.566 0.642 0.718 
[1.5, 4] 0.726 0.750 0.704 0.776 0.566 0.666 0.702 
[1.5, 1] 0.728 0.766 0.694 0.748 0.556 0.652 0.698 

Length 
[0.5, 8] 2.241 2.269 2.390 2.475 2.564 2.647 2.443 
[0.5, 4] 2.231 2.243 2.388 2.474 2.575 2.646 2.448 
[0.5, 1] 2.006 2.020 2.371 2.490 2.551 2.637 2.377 
[1, 8] 2.927 2.973 3.118 3.221 3.094 3.197 3.071 
[1, 4] 2.880 2.943 3.072 3.204 3.081 3.179 3.040 
[1, 1] 2.608 2.635 3.062 3.196 2.977 3.089 2.819 

[1.5, 8] 3.428 3.511 3.650 3.738 3.515 3.639 3.508 
[1.5, 4] 3.378 3.455 3.611 3.723 3.489 3.641 3.467 
[1.5, 1] 3.038 3.076 3.603 3.689 3.342 3.466 3.194 

The model coverages for 3µ =  domains are low under all of the models. Among the three joint models, the co-
clustering model CFHSc has the highest coverage (for even shorter, interval lengths), which is consistent with the 
previously noted result of the lower MSE for the co-clustering model. 

These results show that none of the models considered provide satisfactory estimates for the domains where there 
are significant deviations from the model linearity assumption. Therefore, it is important to develop a procedure that 
would identify domains that do not fit the model well. In the next Section, we propose such a procedure to create a 
list of ‘suspect” domains that are not well described by the model. 

6. Improved handling of non-modeled domains 

Although the CES survey uses models for a number of its small domains, the direct sample-based estimator is used 
for publication of moderately and larger sized domains. Before these estimates are published, they have to be 
reviewed. In this section, we propose a screening procedure that can be used to facilitate the analyst’s review of the 
direct estimates before they go to production.  

The proposed screening creates a list of domains that are not well described by the assumed model. For the larger, 
direct sample-based domains, analysts may find influential reports (that may need to be downweighted) or 
submission errors (that would be subsequently repaired) among establishments that would induce outliers in the 
sample estimates.  So, even though models would not be used to provide estimators for large-sized domains, they 
may be used to check for outliers in an efficient way. 

Our screening procedure would also be expected to flag deviations from linearity among all domains – including 
those which are modeled – for analyst checking.  To the extent that data submission errors and low quality data (due 



to small domain sizes) are ruled out, the nominated domain may be assumed to represent a deviation from linearity, 
in which case the direct estimator for that domain would replace the modeled estimate. 

6.1 Efficient identification of outliers and deviations from linearity 

We earlier showed that our models may poorly fit domains expressing deviations from the linearity assumption due 
to over-smoothing.  Ideally, we want to flag these domains as not generated from our model, in this case, and just 
use the direct estimator.   Similarly, our models may be useful to flag outliers with respect to the model due to 
unreliable estimators or establishment input errors.  We would like to flag and correct these points.  It is time 
prohibitive to have a survey analyst perform manual checking of all domains due to the tightly scheduled CES 
production environment.   In what follows, we formulate a hypothesis test from the posterior predictive distribution 
under the model to assess whether the direct estimator for each domain was generated from our chosen model.  We 
nominate a few domains out of many under this procedure that allows focused, efficient investigation by the survey 
analyst of whether any of the few identified domains are outliers.  If so and the survey analyst concludes that there 
are input errors, they will be corrected.  If not, the large difference between modeled estimators and the direct 
estimators for these domains are assumed to represent deviations from linearity.      

The usual strategy for introducing of a model in the CES production is to consider a set of candidate models 

1,..., WM M  and thoroughly test them on a number of historical series over several years. Suppose researchers are 

satisfied with the results of such a multi-year study, and one of the models, wM , is accepted for production. The 

question remains, what if the selected model wM  works well in general but fails for some domains in some 
months? 

As we earlier noted, the analysis may suggest that model-based estimates for some of these domains are unreliable 
in the case of deviations from linearity; in such a case, the direct sample estimates would be used for publication. 
Alternatively, the direct estimates may be considered not trustworthy (for example, due to small sample size or 
extreme sample reports).  In the latter case, model estimates could be used even though they are seemingly 
inconsistent with the data. 

We now proceed to describe the method of creating the list of suspect domains. The method is based on the 
Bayesian multiple hypotheses testing and posterior predictive checking.    

For a given model wM  over the space of candidate models indexed by 1,...,w W= , let , 1,...,l
iy l L=  be 

replicate data draws from posterior predictive distribution ( )| ,l
i i wp y y M  for domain i  (after marginalizing out 

the model parameters).  

For each domain i , consider hypothesis 0iH  that the domain response is generated from the model, which means 

that iy  follows ( )| ,l
i i wp y y M .   

Define { } { }( )min | , , | ,l l
i i i i w i i i wp P y y y P y y y= <= >=M M , where P denotes the probability of the 

event that iy  is generated from model wM .  In this sense, ip  denotes the probability of erroneously rejecting 

0iH  that domain i  is generated from the model.   

Let set D  be the set of “discoveries” (i.e., the domains that are deemed not generated from the model according to 
the definition of 0iH .) Then the expected number of “false discoveries” is [ ]| ,i wF E p i D= ∈ M  and the 
estimated F  is computed from the average, 
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D
F p

D
= ∑ .          (18) 

Next, we set threshold, q , a hyperparameter setting that denotes the maximum percent of allowable “falsely 
discovered domains” (Storey, 2003). The size of the list of “discoveries” will depend on q :  set D  will contain the 

maximum number of domains such that  F̂  does not exceed q . 

Figure 3: Cumulative mean, by domain for model FHS (industry 6561, month #3) 

 

 

The algorithm follows: 

1. Sort ip ’s in the ascending order,  ( ) ( )1 ... Np p≤ ≤ and compute the cumulative mean.  

2. An example of the plot of the cumulative mean is presented in Figure 3. We may review the plot to think of 
what the reasonable q -value could be. Or we may just set the q -value once in advance. 

3. Suppose we choose 0.05q = . Then D  will consist of the first d domains with smallest ip ’s: 

( ) ( )1 ... dp p≤ ≤ , such that 

( )
1

1 d

i
i

p q
d =

≤∑ . 

In other words, ( )dp is the p -value that guarantees that the false discovery rate does not exceed 0.05.q =



Figure 4: Sorted residuals for model FHS (industry 6561, month #3) 

 
In Figure 4, we show results of the screening procedure using one of the industries and months as an example. The 
design of Figure 4 is aimed to vizualize possible cases of “discoveries”. Since in our simulation study, we know the 
true value of the response for each domain, we can compute the residual of the direct estimate relative to the true 
value. We sort the residuals of the direct estimates on the plot in Figure 4: each black or red dot corresponds to a 
domain indexed residual value. The farther the dot is from the horizontal reference line, the farther from the truth is 
the direct point estimate. The blue squares correspond to residuals formed based on the model fitted values. Blue 
dotted lines show confidence interval for the fitted values. The segments connecting blue squares with the 
corresponding dots show the distance between the direct sample-based estimates and respective model-based 
estimates. Our screening procedure identified three domains (displayed as red dots) as not likely to have been 
generated from our model.  Our intent would be to forward these three domain values for further analyst review. The 
two red dots on the edges of the plot express large residual values and are likely to be regarded as having noisy 
direct estimates, such that we suspect these points as being outliers; notice that the respective fitted values are closer 
to the horizontal line, thus providing a better estimate than the direct estimate.  By contrast, the red dot closer to the 
center of the plot is also on the list for review, but in this case we suspect the direct estimates are better than the 
model based because the residual of the modeled point estimate is large.   This outcome is a case of a large deviation 
from linearity in the signal that is over-smoothed by the model.  It bears mention that these nominated points 
resulted from applying our screening procedure, which does not rely on knowledge of the true values.  This is 
important because the true values are not available to analysts and they will not see this plot, but they will have the 
small number of domains screened out by our procedure. To make their judgment, analysts may look for possible 
outliers at the unit (e.g., business establishment) level data that could have affected the direct estimates or by using 
subject matter knowledge outside the sample. 

We applied this test to the data from the simulation study considered in Section 5 and created a list of “discoveries” 
to be sent for the review by analysts. In our study, we set the threshold of 0.10q = . Since this review is not 
available in our simulations, we make a favorable assumption that analysts make right decisions of whether an 
estimate on the list is an outlier or a true phenomenon. Namely, assume that all “discoveries” from the set of the 95 
domains generated with 0µ = were attributed to “bad sample” and analysts’ decision was to use model estimates 
for these domains; all “discoveries” from the set of the 5 domains generated wth 3µ =  were attributed to failure of 



the model linearity assumption and the direct sample estimates were used for such domains, instead of the model 
estimates. The result of replacement is given in Table 10. 

Table 10:  MSE for domains with 3µ = , after “analysts review.” 

, gb λ    Y FH FHS CFHS CFHSc FHS* CFHS* CFHSc* 

[0.5, 8] 0.511 1.209 3.719 3.317 1.331 0.849 0.930 0.911 
[0.5, 4] 0.556 1.204 3.851 3.534 1.419 0.842 0.953 0.948 
[0.5, 1] 0.361 0.943 3.892 3.511 1.589 0.618 0.720 0.741 
[1, 8] 1.023 1.955 3.350 2.948 1.952 1.741 1.820 1.742 
[1, 4] 1.112 1.946 3.469 3.124 2.032 1.893 1.909 1.771 
[1, 1] 0.721 1.540 3.375 3.010 1.901 1.367 1.488 1.350 

[1.5, 8] 1.534 2.423 3.392 3.016 2.478 2.479 2.493 2.407 
[1.5, 4] 1.668 2.392 3.484 3.121 2.538 2.675 2.721 2.464 
[1.5, 1] 1.082 1.951 3.316 2.933 2.303 2.023 2.112 1.854 

The first columns of Table 10 are given for comparison: these are MSEs for the original estimates, previously 
reported in Table 7. The last three columns, labeled FHS*, CFHS*, CFHSc*, are MSE results after the replacement 
of domains in the list by the direct sample estimates. As we can see, this replacement lead to visible reduction in 
MSE; however, the results are still higher than the respective MSE’s for the estimates given in column labeled Y.  It 
is possible to increase the threshold q , which would increase the number of domains in the list for analysts. 
However, this would also increase the workload for analysts and may result in more domains to be mislabeled as 
“deviations from linearity assumptions”, while in fact their appearance on the list could be due to poor direct 
estimates. In practice, certain tuning will be required to set a threshold, taking in consideration the workload and 
timeline restrictions.    

6.2 Replacing Variances with Modeled Estimates 

A useful outcome of the joint models is the fitted values for variances of the direct sample estimators. As noted 
earlier, estimates for the medium-to-larger sized domains in the CES survey are published using the direct survey 
estimates. However, the corresponding variance estimates are not stable even for larger domains. The model-based 
estimates of variances potentially provide a more stable alternative. We next examine the coverage properties of the 
95% confidence intervals for the direct sample estimator, constructed under the assumption of normality of the 

direct estimates and using alternative estimates of variances of the direct estimates: 
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Coverage properties and lengths of the intervals are given in Table 11 (for the 0µ =  domains) and Table 12 (for 

3µ =  domains). The column titled “True” corresponds to intervals constructed using true variances 2
iσ  generated 

by (16). The column titled “direct” is based on the observed variance values iv  containing noise, as given by (17). 
The FHS, CFHS, and CFHSc columns are based on the respective model fitted variances.  



Table 11: Properties of the 95% confidence intervals 
for direct estimator based on alternative variance estimates, over 95 domains with 0µ =  

 

 

, gb λ   True “direct” FHS CFHS CFHSc 

Coverage (0.95 nominal) 
[0.5, 8] 0.946 0.897 0.973 0.974 0.934 
[0.5, 4] 0.944 0.896 0.973 0.974 0.937 
[0.5, 1] 0.949 0.907 0.984 0.983 0.957 
[1, 8] 0.946 0.897 0.966 0.964 0.932 
[1, 4] 0.944 0.896 0.966 0.964 0.935 
[1, 1] 0.949 0.907 0.977 0.976 0.954 

[1.5, 8] 0.946 0.897 0.962 0.960 0.932 
[1.5, 4] 0.944 0.896 0.962 0.961 0.935 
[1.5, 1] 0.949 0.907 0.975 0.973 0.953 

Length 
[0.5, 8] 2.724 2.612 3.131 3.126 2.772 
[0.5, 4] 2.682 2.569 3.116 3.115 2.738 
[0.5, 1] 2.449 2.355 3.122 3.134 2.600 
[1, 8] 3.853 3.695 4.182 4.182 3.889 
[1, 4] 3.793 3.633 4.150 4.159 3.837 
[1, 1] 3.464 3.330 4.042 4.061 3.591 

[1.5, 8] 4.719 4.525 5.039 5.037 4.752 
[1.5, 4] 4.646 4.449 4.987 4.999 4.686 
[1.5, 1] 4.242 4.079 4.795 4.809 4.367 

The interval lengths reported in Tables 11 and 12 are longer than the intervals in Tables 8 and 9, which is expected 
and consistent with the fact that model-based estimates are more efficient, overall.  

Note that confidence intervals based on the “direct” variance estimator result in significant undercoverage (in the 
range of 88-91% for 95% nominal). This is the result of the normality-based interval construction. Given (17), it is 
easy to see that correct intervals based on iv  should be constructed using quantiles 6,0.975t  of the Student’s t 

distribution with 6 degrees of freedom, rather than normal quantiles 0.975z . This construction can be easily corrected 
in this simulation to achieve the nominal level; however, in practice, such an adjustment to the degrees of freedom is 
not always considered or is easy to make. Thus, results in column “direct” demonstrate the effect of such a 
misspecification. 

For the model-fitted variances, note the over-coverage for intervals based on the FHS and CFHS variances, which is 
more pronounced for the 3µ =  cases. The average interval length is also larger for FHS and CFHS, compared to 
the interval length based on the true variance, as well as to the other models. This result is consistent with the 
previously noted tendency of the FHS and CFHS models to overestimate variances of direct estimates and with a 
higher degree of overestimation for the 3µ =  domains. The latter is the result of the fact that FHS and CFHS tend 
to “confuse” the 3µ =  domains with outliers.  

The coverage of the CFHSc-based intervals is close to nominal. Their average length is somewhat larger than the 
true intervals’ length, yet it is substantially smaller than for the FHS and CFHS cases. This observation suggests that 
the CFHSc-fitted variances are less biased than the estimates based on FHS or CFHS. Thus, even though the model 
failed to provide satisfactory point estimates for the 3µ =  domains, the estimated variance provides nominal 



confidence intervals for the direct sample estimates. This is an encouraging outcome suggesting that the CFHSc-
based variance estimates can be used with the publication of the direct sample-based estimates for those domains 
that are not model based. 

Table 12: Properties of the 95% confidence intervals 
for direct estimator based on alternative variance estimates, over 5 domains with 3µ =  

 

 

  

, gb λ   True “direct” FHS CFHS CFHSc 

Coverage (0.95 nominal) 
[0.5, 8] 0.930 0.886 0.978 0.980 0.950 
[0.5, 4] 0.926 0.878 0.980 0.982 0.952 
[0.5, 1] 0.966 0.908 0.996 0.996 0.980 
[1, 8] 0.930 0.886 0.968 0.970 0.948 
[1, 4] 0.926 0.878 0.974 0.974 0.950 
[1, 1] 0.966 0.908 0.990 0.986 0.970 

[1.5, 8] 0.930 0.886 0.964 0.968 0.944 
[1.5, 4] 0.926 0.878 0.972 0.974 0.946 
[1.5, 1] 0.966 0.908 0.984 0.982 0.966 

Length 
[0.5, 8] 2.685 2.592 4.116 4.053 3.017 
[0.5, 4] 2.658 2.593 4.220 4.174 3.077 
[0.5, 1] 2.452 2.387 4.389 4.315 3.132 
[1, 8] 3.797 3.666 4.807 4.767 4.086 
[1, 4] 3.759 3.667 4.891 4.864 4.137 
[1, 1] 3.468 3.376 4.906 4.851 3.994 

[1.5, 8] 4.650 4.490 5.530 5.491 4.941 
[1.5, 4] 4.604 4.491 5.596 5.572 4.987 
[1.5, 1] 4.247 4.135 5.483 5.435 4.752 

Although the simulation study of Section 5 was constructed by choosing the parameters of the gamma distribution in 
formula (17) that immitate a “poor quality” sample, there is indication that similar results for variance estimates also 
hold for “larger” samples. We completed a similar simulation study by choosing the shape and scale parameters of 
the gamma distribution equal to 10, thus simulating the situation for larger samples. In Table 13, we present the 
coverage properties for all domains for the case of “larger sample”, corresponding to 20 degrees of freedom in 
generating variances .iv

Raw sampling variances in Table 13 provide about 93% coverage, which is only slightly below the nominal. 
Correspondingly, the average interval length is slightly lower than the length based on the true variances. The MSE 
of the interval length, however, is larger than the MSE of the CFHSc model fitted variances. The exception are 
scenarios with 1gλ = , that correspond to cases of frequent outliers in the estimates. The latter, however, is not 
expected to happen in the larger domains that are slated for the sample based estimation. 



Table 13: Properties of the 95% confidence intervals  
for direct estimator based on alternative variance estimates 

, gb λ    True “direct” FHS CFHS CFHSc 

Coverage 
[0.5, 8] 0.946 0.933 0.972 0.972 0.947 
[0.5, 4] 0.944 0.930 0.973 0.973 0.950 
[0.5, 1] 0.950 0.939 0.986 0.985 0.962 
[1, 8] 0.946 0.933 0.966 0.966 0.947 
[1, 4] 0.944 0.930 0.968 0.967 0.949 
[1, 1] 0.950 0.939 0.980 0.978 0.960 

[1.5, 8] 0.946 0.933 0.963 0.964 0.947 
[1.5, 4] 0.944 0.930 0.966 0.965 0.949 
[1.5, 1] 0.950 0.939 0.977 0.976 0.960 

Average of CI lengths 
[0.5, 8] 2.722 2.689 3.059 3.053 2.802 
[0.5, 4] 2.681 2.646 3.059 3.061 2.769 
[0.5, 1] 2.449 2.427 3.123 3.099 2.604 
[1, 8] 3.850 3.803 4.152 4.154 3.944 
[1, 4] 3.792 3.742 4.122 4.127 3.892 
[1, 1] 3.464 3.433 4.000 4.001 3.619 

[1.5, 8] 4.715 4.658 5.027 5.033 4.823 
[1.5, 4] 4.644 4.583 4.977 4.986 4.757 
[1.5, 1] 4.242 4.204 4.763 4.765 4.414 

MSE of CI lengths 
[0.5, 8] 0 0.188 0.314 0.302 0.155 
[0.5, 4] 0 0.189 0.382 0.381 0.161 
[0.5, 1] 0 0.189 1.031 0.971 0.233 
[1, 8] 0 0.376 0.371 0.366 0.307 
[1, 4] 0 0.379 0.426 0.428 0.314 
[1, 1] 0 0.379 0.950 0.946 0.389 

[1.5, 8] 0 0.564 0.494 0.491 0.457 
[1.5, 4] 0 0.568 0.550 0.554 0.467 
[1.5, 1] 0 0.568 1.113 1.119 0.562 

7. Summary 

In this paper, we applied joint modeling of the point estimates and their variances to CES data and obtained more 
efficient results than in the case of the plugged in “fixed and known” variances. We extended the models of Maiti et 
al. (2014) and Sugasawa et al. (2017) by allowing the data to estimate a clustering structure on random effects and 
variances to account for deviations from linearity and outlyingness. For the bulk of domains, the co-clustering model 
provides better estimates of direct survey variances. Our simulations show that co-clustering model is more robust to 
deviations from linearity assumptions in terms of coverage.  In the presence of large deviations from linearity, we 
observed that although the resulting estimates from the co-clustering model are better than with the alternatives, they 
are still not “good enough”: in the presence of large deviations from the linearity assumption, model-based estimates 
may be worse than direct survey estimates.  



It is a good practice to perform careful model checks before choosing a model. However, thorough model evaluation 
can be an unrealistic task in a tightly scheduled production environment. The checking task is so important, 
however, that estimates are thoroughly tested based on a number of historical series before a model is accepted for 
implementation in production. Therefore, we devised an automated, fast computing testing procedure based on the 
Bayesian FDR to nominate a small subset of domains for analysts review on a timely basis.  Our procedure 
evaluates the probability that the direct estimate for a domain was generated from our candidate model.  This 
procedure could become a useful tool for analysts to mark unusual estimates before they are published. 

Lastly, there is indication that model fitted variances for direct survey estimates provide a more stable alternative to 
the raw sample-based estimates of variances. This is a potentially useful by-product from the joint modeling of 
direct estimates of point estimates and variances.  
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