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Abstract 
 
In this paper, we explore automatic adjustments of degrees of freedom that can be made with inference for small 
domain parameters to obtain confidence intervals with coverage probabilities closer to the nominal values. A paired 
jackknife replication variance estimator is evaluated for the inference of domain parameters under a multistage 
complex sampling design. The degrees of freedom are adjusted according to the membership of sampling units. The 
proposed method is compared with traditional approaches for approximating degrees of freedom for jackknife 
replication variance estimators that do not take the distribution of the domain across the primary sampling units into 
consideration. The proposed method can be effectively applied to online analytic systems (OAS) that produce results 
in real-time. A limited simulation study based on 2011 National Health Interview Survey (NHIS) public use data is 
presented in the paper, which evaluates the proposed method in terms of coverage rate.  
 
 
1. Introduction 
 
Inference for small domain parameters, such as average income for Blacks, or total number of people with body 
mass index (BMI) greater than 30 in a small state, under multistage complex sampling design is very challenging 
because of the limited sample size for the small domains. Traditionally, degrees of freedom (df) are approximated 
using the total number of primary sampling units (PSU) minus the total number of first stage strata to conduct 
inference for both national and domain parameters. However, such estimates may overestimate the true df, which 
has been discussed by Rust and Rao (1996) and Valliant and Rust (2010), among others. One improvement is to 
estimate df for small domain parameters by using a rule of thumb (RT), which is the total number of PSUs that have 
at least one element in the domain, minus the total number of strata that have at least one element in the small 
domain. This has been suggested by Rust and Rao (1996), Korn and Graubard (1999), and Burns et al. (2003). Burns 
et al. (2003) did some empirical studies and showed some benefits of the proposed method. Alternatively, Johnson 
and Rust (1993), Kott (1994), and Valliant and Rust (2010) proposed using Satterthwaite approximation, and the 
coverage rates are very close to the nominal rates if the distribution of variance estimator can be well described by 
the Chi-squared distribution.  
 
The main motive for this research is relating to the limitation that most software packages do not adjust df for small 
domains automatically (Lewis, 2013); hence, some inconvenient manual adjustments need to be done. As an 
example, if using an online analytic systems (OAS), which produces estimates (e.g., for tables) in real-time, there is 
no chance for the user to adjust the df. In general, because of limited data sources or confidentiality concerns, users 
may not have access to microdata to help determine df and apply an RT method. Suppose we have 100 replicates in 
the dataset of OAS and the sample includes only 20 cases in a domain. In an OAS, the inference would be based on 
99 df obtained from the traditional RT method for the domain because, without access to the number of PSUs and 
strata for the domain, the user could not adjust the df. Therefore, the automatic adjustments of df for submitted 
queries are in demand. In addition, most of the existing approaches for adjusting df are based on the Taylor 
linearization variance estimator. We evaluate the replication variance estimator in this paper with the following three 
research objectives: 
 
1. To provide a better inference for parameters associated with small domains based on paired jackknife replication 

variance estimator (JK2), as proposed in Rust and Rao (1996) under multistage complex sampling designs with 
two PSUs per stratum. 
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2. To incorporate our proposed method into an OAS and provide an automatic adjustment of df. 
3. To evaluate the proposed method through simulation by using 2011 National Health Interview Survey (NHIS) 

data. 
 
This paper is organized as follows. In Section 2, we discuss rules of thumb as well as our proposed method for 
adjusting degrees of freedom for domain parameters. Some simulation results are presented in Section 3. We 
continue in Section 4 with some conclusions. 
 
2. Rules of thumb for approximating degrees of freedom for a domain 
 
In this section, we describe the traditional RT for approximating df for a domain D. Then an adjusted RT is 
described, as well as a proposed RT for the paired jackknife replication variance estimator. 
 
2.1 Basic setups and traditional rule of thumb approaches 
 
Suppose we have a finite population (              )                                 , where  ,    
and     are the number of strata, number of first stage units in stratum   and number of second stage units in PSU   
which is in stratum  , respectively. Then,     ,      and      are the covariate, study variable, and domain indicator, 
respectively, for unit   such that        if unit   belongs to domain D and       , otherwise. For simplicity, we 
only assume the two-stage stratified design with    PSUs selected in stratum   by using systematic probability 
proportional-to-size (PPS) sampling design with selection probability           ∑    

  
    and sampling 

weight        
  . The second-stage sampling is assumed to be simple random sampling within each PSU to 

achieve self-weighting with overall target sample size  . In other words, the second-stage conditional inclusion 
probability is            , where       is the target sampling rate. Suppose the parameter of interest is the 
domain mean of study variable  ̅    
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   , with    as the population size for domain D. 

The traditional Hajek estimator (Hajek, 1971) can be written as 
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where             

   is the second-stage conditional weight. 
 
The traditional stratified jackknife variance estimator for two or more PSUs per stratum (JKn), discussed in Shao 
and Tu (1995) and Wolter (2007), can be written as: 
 

 ̂    ∑
    

  

∑   ̂̅   )   ̂̅ ) 
  

   

 

   

 

 
where  ̂̅   ) is the estimate after deleting the kth PSU from stratum h. Specifically, we have 
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with     
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        )      if      and    ,    
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    , otherwise. 

In terms of df estimation for  ̂   , the traditional RT has been used frequently, which estimates the df by the number 
of PSUs (m) – number of strata (H), where   ∑   

 
    (see Heeringa et al. (2010), among others). However, it is 

well known that the traditional RT overestimates the true df (see, for example, Rust and Rao (1996), Valliant and 
Rust (2010)). 
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2.2 Adjusted rule of thumb and Satterthwaite approaches 
 
An alternative approach is to adjust the RT by estimating the df as the number of PSUs with at least one element in 
domain D (  ) minus number of strata (  ) with at least one element in domain D. The adjusted RT has been 
suggested in Rust and Rao (1996) and Korn and Graubard (1999) for inference with domain parameters. Burns, et al. 
(2003) conducted a simulation study and found that the df produced by the adjusted RT is much smaller than the 
traditional RT method for small domain estimation and the adjusted RT outperforms the traditional RT in terms of 
hypothesis testing. 
 
For any replication method, Bryant (1994) suggested first producing multiple variance estimators based on several 
random subsets of the original replication weights, then estimating the df by using Satterthwaite approximation, 
which is   ̂     ̂  ̂  ̂̅ )       ̂  ̂  ̂̅ ) , where  ̂  ̂  ̂̅   and    ̂  ̂  ̂̅ )  are the sample mean and variance 
based on the multiple variance estimators created previously. In the paper, simulation studies show that the proposed 
methods are not stable in terms of estimating df. Prior to that, Johnson and Rust (1993) proposed several empirically 
derived effective df by using Satterthwaithe approximation and tested the effectiveness by using National 
Assessment of Educational Progress data. Kott (1994) proposed using Satterthwaite approximation of df for 
hypothesis testing of domain-based regression coefficients. For a single stage design, Valliant and Rust (2010) 
compared the traditional RT with the Satterthwaite method in a simulation study and found that the Satterthwaite 
approximation was closer to the true Monte Carlo df and the corresponding confidence interval had better coverage 
rates. The Satterthwaite method assumes  ̂  ̂̅ ) follows the Chi-squared distribution with df, where  ̂  ̂̅ ) denotes 
either Taylor linearization or replication variance estimators. Because    ̂  ̂̅ )     and      ̂  ̂̅ )     , then 
the    can be estimated by   ̂     ̂  ̂̅ )      ̂  ̂  ̂̅ ) , where    ̂  ̂  ̂̅ )  is the variance estimator of  ̂  ̂̅ ). 
More details are presented in Valliant and Rust (2010). Most of the existing methods consider the Taylor 
linearization variance estimator except Johnson and Rust (1993) and Bryant (1994). 
 
2.3 Adjusted rule of thumb for paired jackknife 
 
In this section, we assume      for         . We consider the paired jackknife estimator (JK2) proposed in 
Rust and Rao (1996). The JK2 approach produces a good balance between the number of replication weights and 
precision of the variance estimator. Basically, one of the two original replication weights from JKn is randomly 
selected for each stratum, which generates   replication weights using JK2. The variance estimator for JK2 can be 
written as 
 

 ̂    ∑   ̂̅   )   ̂̅ )  
   , 

 
where  ̂̅   ) is the estimate after deleting the kth PSU from stratum h and it is defined in Section 2.1. 
 
The traditional RT for estimating df of  ̂    is the number of strata  . The df produced by the adjusted RT can be 
approximated by   , which is the number of variance strata   with at least one element in  . In order to produce 
better inference for small domains, and to further reduce the number of replication weights, Nixon, et al. (1998) 
proposed a combined jackknife method (CJK2) to create replication weights. The following three steps describe the 
CJK2 procedure: 
 
Step1: Sort the variance units by variance strata. 
Step 2: Combine the adjacent two variance strata (e.g., combine variance stratum 1 with variance stratum 2, variance 
stratum 3 with variance stratum 4, and so on) and form two larger PSUs by randomly pairing one PSU from each 
variance stratum. 
Step 3: Create paired jackknife replication weights based on the combined variance strata and variance units. 
 
After creating the CJK2 replication weights, and by using the similar procedures as JK2, the corresponding 
traditional RT and adjusted RT can be computed. Table 1 in the Appendix summarizes the comparison among 
existing and proposed methods. 
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3. Simulation study 
 
A simulation study conducted using the 2011 NHIS public use file with a sample size of 33,014 of sampled adults is 
discussed in this section. The Sample Adult dataset was downloaded from the Centers for Disease Control and 
Prevention website: http://www.cdc.gov/nchs/nhis/nhis_2011_data_release.htm (accessed 12/18/2013). After 
deleting cases with missing values for study variables AHEIGHT (Height), AWEIGHTP (Weight), and BMI (Body 
Mass Index), there were 30,075 cases remaining in the data set, which was treated as the finite population for 
simulation study. There were 1,000 Monte Carlo samples selected using  a two-stage stratified PPS without 
replacement sampling design for each Monte Carlo sample. Thirty strata were created by combining STRAT_P 
(variance stratum) 1-10, 11-20…291-300. After combining strata, there were       PSUs per each stratum  . 
After creating the strata       PSUs were selected within each stratum h by using a systematic PPS design, where 
the size measure was the total population per PSU. Conditioning on the selected PSUs, persons were selected via 
simple random sampling without replacement (SRSWOR) in each PSU in order to produce an overall equal 
probability sample. The following two variance estimators were considered: 
 
1. Paired Jackknife (JK2) variance estimator described in Section 2.3; and 
2. Combined Strata Paired Jackknife (CJK2) variance estimator described in Section 2.3. 
 
The df were estimated by the following two approaches for both JK2 and CJK2: 
 
1. The traditional RT described in Section 2.3; and 
2. The adjusted RT described in Section 2.3. 
 
Three significance levels (0.01, 0.05, and 0.1) were considered to construct confidence intervals for the two study 
variables AWEIGHTP (Weight) and BMI (Body Mass Index). We considered two minority domains in the study, 
namely, Black (15% of total population) and Asian (6% of total population). We used       as the overall sample 
size. For JK2, there were 30 strata and 60 PSUs. For CJK2, there were 15 strata and 30 PSUs. The average sample 
sizes per PSU are presented in Table 2 in the Appendix. The following five parameters of interest were investigated: 
 
1. Average BMI (Body Mass Index); 
2. Average AWEIGHTP (Weight); 
3. Regression coefficient (Slope) of AWEIGHTP (Weight) versus AHEIGHT (Height); 
4. Total number of Black (or Asian) with BMI > 30 (or BMI > 25); and 
5. Traditional RT estimation of df and adjusted RT estimation of df for all the above cases. 
 
For parameters 1-4 above, we compared the two approaches based on the coverage rate, which is equal to the 
percentage of samples for which the confidence interval resulting from the Monte Carlo sample contains the true 
value of the parameter. Ideally, it should be equal to the nominal level (e.g., 95% for a significance level equal to 
0.05). For parameter 5, we calculated the Monte Carlo bias, which is presented in Table 3. We found that both the 
traditional RT and adjusted RT approaches overestimate the true df, but the adjusted RT approach has a smaller 
Monte Carlo bias than the traditional RT. According to Figures 1-3 in the Appendix, for parameters 1-3 and Black or 
Asian domains, the adjusted RT approach has better coverage rates than the traditional RT approach. In other words, 
the differences between the simulation coverage rates and target coverage rates are smaller. The intervals for the 
Black domain are much closer to the nominal coverage rate than that for Asians since there are fewer Asians in the 
population. All the confidence intervals have smaller coverage rates than the nominal rates, which means that the 
estimators for df have positive bias. According to Figure 4, both traditional RT and adjusted RT approaches for the 
“Total number of Asians with BMI>30” produce unacceptable coverage rates, because of the extremely rare 
corresponding domain. As seen in Table 4, the expected sample size for “Asians with BMI>30” is very small, which 
may contribute to the inadequate performance in terms of coverage rates. According to Figure 5, for parameter 4 
“Total number of Asians with BMI>25,” the coverage rates are much better than previous parameter “Total number 
of Asians with BMI>30,” which confirms that the sample size for the domain makes a large impact on the 
estimation of df. The results are constrained by the simulation setup. Therefore, we note that the evaluation was 
focused on a stratified multistage PPS with two PSUs per stratum for the df adjustment approach. They are further 
limited by the data set considered, which was the NHIS with study variables AHEIGHT (Height), AWEIGHTP 
(Weight) and BMI (Body Mass Index). The parameters of interest included only means, regression coefficients, and 
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totals. In our simulation study; the sample selection for the simulation is assumed to be spread evenly across PSUs 
within strata. 
 
4. Conclusions 
 
The adjusted RT approach for inference of domain parameters through an automated adjustment of df while using a 
version of the Paired Jackknife (JK2 or CJK2) has been evaluated through a simulation study using 2011 NHIS data. 
Under the simulation setup, there was some improvement seen in the adjusted RT approach over traditional RT for 
means, regression coefficients, and totals for larger domains in terms of coverage rates and the estimation of df. For 
a total for a very small domain (< 1%), neither the traditional nor adjusted RT approaches performed well. The 
benefits of the adjustment are greatest when there are few PSUs, e.g., when producing estimates for geographical 
domains. Furthermore, the adjusted RT method can be considered as having potential improvement over the 
traditional RT approach under a potential application to OAS or other software that produces results in real-time. 
 
The following items would be interesting to pursue in future research: 
 

 Consider balanced repeated replication (BRR) and Fay’s BRR for estimating means, totals, regression 
coefficients, and even quantiles or quantile regression. 

 Compare the traditional stratified jackknife variance estimator with adjusted RT Satterthwaite’s method, 
and Bryant (1994)’s method with proposed methods in a unified way. 

 Estimate df for the estimates that incorporate information from multiple surveys. For example, the control 
totals for weight calibration can be obtained from another complex survey. In this case, we may need to use 
the replicate weights from both surveys to determine the df for the calibrated estimates. 

 Create multiple bootstrap variance estimators based on Booth, Butler, and Hall (1994) and Chauvet (2007). 
Then use Satterthwaite’s approximation to estimate df. 
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Appendix: Tables and Figures 
 
Table 1 Comparison of different approaches for estimating the df 
 
Select literature Df Variance approach Estimates Inference 
Johnson and Rust 

(1993) 
Satterthwaite General replication Mean, df point estimate, standard 

error (SE), confidence 
interval (CI) 

Bryant (1994) Satterthwaite General replication df point estimate, SE 
Kott (1994) Satterthwaite Taylor regression 

coefficient 
hypothesis testing 

Korn and 
Graubard (1999) 

Adjusted RT Taylor mean Mean, SE 

Burns et al. 
(2003) 

Adjusted RT Taylor mean, df point estimate, 
hypothesis testing 

Valliant and Rust 
(2010) 

Traditional RT, 
Satterthwaite 

Taylor total, ratio, df point estimate, SE, CI 

This paper Adjusted RT JK2, CJK2 mean, regression 
coefficient, total, 

df 

point estimate, SE, CI 

 
Table 2 Average sample sizes per PSU 
 

Domain JK2 CJK2 
Overall 3.3 6.6 
Black 0.5 1.0 
Asian 0.2 0.4 

 
  

http://www.amstat.org/sections/srms/Proceedings/papers/1998_052.pdf
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Table 3 Monte Carlo bias for the estimated degrees of freedom 
 

Approach Domain Diff between est 
df and target df 

Parameter 

Avg. Height Avg. 
Weight 

Avg.B
MI 

Regression 
Coefficient 

Total 
BMI>30 

JK2 
Black Traditional 20.0 21.3 22.0 25.2 18.6 

Adjusted 6.2 7.5 8.2 11.4 4.8 

Asian Traditional 25.5 28.1 27.7 29.3 27.9 
Adjusted 4.4 7.0 6.5 8.1 6.7 

CJK2 
Black Traditional 7.8 8.1 9.0 11.2 7.4 

Adjusted 4.3 4.6 5.5 7.7 3.9 

Asian Traditional 11.2 12.7 13.3 14.8 13.0 
Adjusted 3.4 4.8 5.4 7.0 5.2 

 
Table 4 Expected sample size in each domain 
 

 
Black Asian Overall 

Total 30 13 200 
BMI>25 22 5 126 
BMI>30 11 1 55 

 
Figure 1 Simulation coverage rates – average BMI 
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Figure 2 Simulation coverage rates – average weight 
 

 
Figure 3 Simulation coverage rates – regression coefficient 
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Figure 4 Simulation coverage rates – total with BMI > 30 
 

 
 
Figure 5 Simulation coverage rates – totals for Asians with BMI > 30 and BMI > 25 
 

 




