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County-Level Estimates of Natality
and Mortality Indicators

< Natality
* Preterm birth
 Second and higher order teen birth rates

« Mortality

* Infant mortality
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Outcomes from the National Vital
Statistics System

Preterm birth (2013-2015)

A e Percent of infants born before 37 completed
‘ , weeks gestation
» Aggregated over 3 years
Second and higher order teen births
® (2007-2016)

Repeat births to teen mothers

Number of second or higher order births per
1,000 females 15-19 years

* Annual trends over 10 years




Outcomes from the National Vital
Statistics System

Infant mortality (2013-2015)

* Infant (< 1 year of age) deaths per 1,000 live births
» Aggregated over 3 years
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Methods

= Hierarchical Bayesian models
— Integrated Nested Laplace Approximation (INLA) in R

e Latent Gaussian models
— Besag, York, Mollié (BYM) models

» Spatial random effect, intrinsic conditionally
autoregressive structure
» Non-spatial random effect

* Fast and flexible
— Many ‘built-in’ likelihoods and latent models

available
» Temporal random effects, space-time interaction
terms



Other Approaches

= CARBayesinR
— Intrinsic conditionally autoregressive models
— Not as flexible as INLA
e Gaussian, binomial, Poisson outcomes
— MCMC simulations can be slow

= WinBUGS/OpenBUGS
— Flexible
— Slow, very computationally intensive
* Can take weeks to run



Preterm birth rates

= Babies born too early have higher rates of death and
other adverse health outcomes

https://www.marchofdimes.org/mission/prematurity-reportcard.aspx, SOURCE: National Vital Statistics System
S



https://www.marchofdimes.org/mission/prematurity-reportcard.aspx

INLA Model: Preterm birth rates

= Binomial models with spatially structured random effects:
Y,~Binomial(N, p)
logit(p) =a+ u+ v,
— N;=number of births in county i
— o = intercept

— u, = spatially structured random effect
— v, = non-spatial random effect

= Compared results with:

— Poisson, zero-inflated Poisson, zero-inflated binomial models (R-
INLA)

— Poisson and binomial models in CARBayes



County-level preterm birth rates, 2013-2015:
INLA estimates
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County-level preterm birth rates, 2013-2015:
INLA estimates: selected states
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INLA vs. CARBayes

m imates and 95% credible intervals
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Second and higher order teen birth
rates, 2007-2016

= Having more than one child as a teen is associated with negative
health, emotional, social, and financial outcomes

— Infants more likely to be born too early or too small
— Limited educational and employment opportunities for the teen

Percentages:

Less than 15%
o 15-19%

B ester then 205

https://www.cdc.gov/vitalsigns/teenpregnancy/index.html, National Vital Statistics System, teens, ages 15-19,2010
s
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INLA models: Second and higher
order teen birth rates, 2007-2016

" Binomial space-time interaction models:
Y,,~Binomial(N,, p,)

logit(p;) = o + A+ B, + C;

— N, = number of births in county i at time t

— p,. = probability of teen births in county i at time t
— o = intercept

— A, = spatially structured random effect

— B, =time term

— C, = space-time interaction term



Second and higher order teen birth rates
2007

Births per 1,000
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Second and higher order teen birth rates
2008

Births per 1,000
population
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Second and higher order teen birth rates
2009

Births per 1,000
population
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Second and higher order teen birth rates
2010
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Second and higher order teen birth rates
2011

Births per 1,000
population

0-2

2.01-4

4.01-6

6.01-8

8.01-10

10.01-12

12.01-14

=14




Second and higher order teen birth rates
2012
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Second and higher order teen birth rates
2013

Births per 1,000

.T . population
}i_ - 0-2
(sl
éi“l, 2.01-4
(G
'ﬁ#g . #l‘ 4.01-6
A
‘ 6.01-8

10.01-12

12.01-14



Second and higher order teen birth rates

2014
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Second and higher order teen birth rates
2015
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Second and higher order teen birth rates
2016
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Infant Mortality Rates

= Considered a key marker of the overall health
of a society

— The United States has a higher infant mortality rate
than similarly developed nations

" |n 2015, 27 states met the Healthy People 2020
target of 6.0 infant deaths per 1,000 live births

— Infant mortality rates higher in southern states



INLA models: Infant Mortality
Rates, 2013-2015

= Zero-inflated Poisson models with spatially structured
random effects

0, with probability p
PrOb(-yl )~{Poisson(y),with probability (1-p)
log(y)) =a + u+ v, + log(£)

— E;= exposure, number of births in county i
— o = intercept
— u; = spatially structured random effect
— v, = non-spatial random effect
= Compared results with:
— Poisson, binomial, zero-inflated binomial models (R-INLA)

— Poisson and binomial models in CARBayes



Infant deaths per 1,000 live births, 2013-2015:
INLA estimates

Deaths per
1,000 births




Infant deaths per 1,000 live births, 2013-2015:
CARBayes estimates

Deaths per
1,000 births
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Discussion

— Birth or death rates at the county level are often unstable,
suppressed for small areas

— Aggregating over several years or larger geographic regions
can mask patterns and trends

e Variation within states or over time

* Areas of high or low values that cross state boundaries

Preterm birth Infant mortality

Percent of
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Limitations and Strengths

" = Model-based estimates might
0 smooth away important effects
\~'|| " People trust direct estimates (real

data) more
— “Black box” models, assumptions

= Various model-based approaches produce rather
consistent results
— For a variety of birth and death outcomes examined
* INLA, CARBayes, WinBUGS/OpenBUGS
 Different likelihoods and models with/without
covariates
— The overall patterns are very similar



Conclusions

= Model-based approaches can be used to generate county-
level estimates of birth and death rates

— Examine variation across the entire U.S.

— Pick up on important spatial or temporal patterns that
might be masked by state estimates or other groupings
(urban/rural)

— Provide information relevant to public health efforts at the
state or local level

— Shed light on risk/protective factors associated with
population health outcomes
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INLA Models

>

Preterm birth

numerator ~ 1 + f(region, model="bym", graph="map")
inla (formula, family="binomial" ,Ntrials=denominator, data=data,
control.compute=list (dic=TRUE, cpo=TRUE, waic=T))

Teen birth rates
numerator ~ 1 + year + f(region, model="“bym", graph="map") +
f (interaction, model="rwl")

inla (formula, family="binomial" ,Ntrials=denominator, data=data,
control.compute=list (dic=TRUE, cpo=TRUE, waic=T))

Infant mortality
numerator ~ 1 + f(region, model="bym", graph="map")

inla(formula, family="zeroinflatedpoissonl", E=denominator,
data=data, control.compute=list(dic=TRUE, cpo=TRUE, waic=T))



Helpful References

=  http://www.r-inla.org/

= Bivand R, Sha Z, Osland L, Thorsen IS. A comparison of estimation methods
for multilevel models of spatially structured data. Spatial Statistics
2017;21:440-459.

= Blangiardo M, Cameletti M, Baio G, Rue, H. Spatial and spatio-temporal
models with R-INLA. Spatial & Spatio-temporal Epidemiology. 2013;4:33-49.

= Carlin BP, Louis TA. 2009. Bayesian Methods for Data Analysis. New York:
Chapman and Hall.

= Lawson A. 2013. Bayesian Disease Mapping: Hierarchical Modeling in Spatial
Epidemiology. New York: Chapman and Hall.

= Lawson A, Biggeri AB, Boehning D, Lesaffre E, Viel JF, Clark A, Schlattmann P,
Divini F. Disease mapping models: an empirical evaluation. Statistics in
Medicine 2000;19:2217-2241.
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