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DATA PRIVACY: THE PROBLEM
Scientific 
findings

Policy 
making

National
security
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(Computation) Outcome

Given a dataset with sensitive personal information, 
how can one compute and release functions of the dataset 

while protecting individual privacy?
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ATTACKS ON SDL TECHNIQUES
• Re-identification [Sweeney ’00, …]

– GIC data, health data, clinical trial data, DNA, Pharmacy data, text data, registry 
information, …

• Blatant non-privacy [Dinur, Nissim ‘03], …
• Auditors [Kenthapadi, Mishra, Nissim ’05]
• AOL Debacle ‘06
• Genome-Wide association studies (GWAS) [Homer et al. ’08]
• Netflix award [Narayanan, Shmatikov ‘09]
• Social networks [Backstrom, Dwork, Kleinberg ‘11]
• Genetic research studies [Gymrek, McGuire, Golan, Halperin, Erlich ‘11]
• Microtargeted advertising [Korolova 11]
• Recommendation Systems [Calandrino, Kiltzer, Naryanan, Felten, Shmatikov 11]
• Israeli CBS [Mukatren, Nissim, Salman, Tromer ’14]
• Attack on  statistical aggregates [Homer et al.’08] [Dwork, Smith, Steinke, Vadhan ‘15]

Slide	idea	stolen	shamelessly	from	Or	Sheffet



TAKEAWAYS FROM PRIVACY FAILURES

• Lack of rigor leads to unanticipated privacy failures.

– New attack modes emerge as research progresses.

– Redaction of identifiers, release of aggregates, etc. is 
insufficient.

– Must take auxiliary information into consideration.

s.

Mathematical
facts, not	
matters	of	
policy

• Any useful analysis of personal data must leak some
information about individuals.

• Leakages accumulate with multiple analyses/release



ZERO PRIVACY? 

Is this where we’re headed?

Privacy



NOT GIVING UP, SCOTT

A new line of privacy work in theoretical computer science 
(beginning ~2003)

Yields new concept: Differential privacy (2006)
– Rich theory
– In first stages of implementation and real-world use

• US Census, Google, Apple, Uber, …





Differential privacy is a definition (i.e., standard) 
of privacy

Not a specific technique or algorithm!



Differential privacy is a definition (i.e., standard) 
of privacy

It expresses a specific desiderata of an analysis:

Any information-related risk to a person should not change 
significantly as a result of that person’s information being 

included, or not, in the analysis.



A PRIVACY DESIDERATA
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A PRIVACY DESIDERATA
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Should ignore Kobbi’s info 
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A PRIVACY DESIDERATA
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A PRIVACY DESIDERATA
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A PRIVACY DESIDERATA

Real world:

Data
Analysis

(Computation) Outcome

Should ignore Kobbi’s info 
and Simson’s! and Alex’s!

… and everybody’s!

J’s ideal world:
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A MORE REALISTIC PRIVACY DESIDERATA
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DIFFERENTIAL PRIVACY [DWORK MCSHERRY NISSIM SMITH ‘06]

Real world:

Data
Analysis

(Computation) Outcome

Data
w/J’s 
info 

removed

Analysis
(Computation) Outcome

𝜖-”similar”

Chance of bad 
event almost 
the same in 
everybody’s 

ideal and real 
worlds
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UNDERSTANDING DIFFERENTIAL PRIVACY

• “Automatic” opt-out: I am protected (almost) as if my info is 
not used at all.

• Plausible deniability: I can claim any value for my 
information as outcome is (almost) as likely with that value.

• I incur limited risk: Contributing my real info can increase 
the probability I will be denied insurance by at most 1%.

– When compared with not participating, or contributing fake info.



DIFFERENTIAL PRIVACY AND CONCEPTS FROM 
PRIVACY LAW AND POLICY

• PII: Differential privacy can be interpreted as ensuring that using 
an individual’s data will not reveal (almost) any personally 
identifiable information that is specific to her.

– Here, specific refers to information that cannot be inferred 
unless the individual’s information is used in the analysis.
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DIFFERENTIAL PRIVACY AND CONCEPTS FROM
PRIVACY LAW AND POLICY

✓ PII

• Linkage: Microdata or contingency tables that allow the 
identification of population uniques cannot be created using 
statistics produced by a differentially private tool.

– This can be formalized and proved mathematically.
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DIFFERENTIAL PRIVACY AND CONCEPTS FROM
PRIVACY LAW AND POLICY

✓ PII
✓ Linkage

• Inference: Differential privacy masks the contribution of any single 
individual, making it impossible to infer (almost) any information 
specific to an individual, including whether an individual’s 
information was used at all.
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DIFFERENTIAL PRIVACY AND CONCEPTS FROM
PRIVACY LAW AND POLICY

✓ PII 
✓ Linkage
✓ Inference

Differential privacy provides protection
(far) beyond “identifiability.”

*
 



EXAMPLE: REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Gertrude:

– Age: 65

– She has a $100,000 life insurance policy.

– She is considering participating in a medical study but is 
concerned it may affect her insurance premium.



EXAMPLE: REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Based on her age and sex, she has a 1% chance of dying next year. Her life 
insurance premium is set at 0.01 x $100,000 = $1,000.

• Gertrude is a coffee drinker. If the medical study finds that 65-year-old female 
coffee drinkers have a 2% chance of dying next year, her premium would be set 
at $2,000.

– This would be her baseline risk: Her premium would be set at $2,000 even if 
she were not to participate in the study.

• Can Gertrude’s premium increase beyond her baseline risk?

– She is worried that the study may reveal more about her, such as that she 
specifically has a 50% chance of dying next year. This can increase her 
premium from $2,000 to $50,000!



EXAMPLE: REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Reasoning about Gertrude’s risk

– Imagine instead the study is performed using differential 
privacy with ε = 0.01.

– The insurance company’s estimate of Gertrude's risk of dying in 
the next year can increase to at most

(1+ ε)× 2% = 2.02%.

– Her premium would increase to at most $2,020. Therefore, 
Gertrude’s risk would be ≤ $2020 - $2000 = $20.



EXAMPLE: REASONING ABOUT RISK
GERTRUDE’S LIFE INSURANCE

• Generally, calculating one’s baseline is very complex (if possible at all).

– In particular, in our example the 2% baseline depends on the 
potential outcome of the study.

– The baseline may also depend on many other factors Gertrude does 
not know.

• However, differential privacy provides simultaneous guarantees for 
every possible baseline value.

– The guarantee covers not only changes in Gertrude’s life insurance 
premiums, but also her health insurance and more.



COMBINING DIFFERENTIALLY PRIVATE ANALYSES

Combination of 𝜖-differentially private computations results in 
differential privacy (with larger 𝜖).

This is extremely important for privacy.

It is a (unique) feature of differential privacy.

Most, if not all, other known definitions of privacy do not 
measure the cumulative risk from multiple analyses/releases.



THE “PRIVACY BUDGET”
The parameter 𝜖 measures leakage and can be treated as a 
“privacy budget” which is consumed as analyses are performed.

Theorems help manage the budget by providing a bound on the 
overall use of the privacy budget.

This is a feature, not a bug!

Consider how ignoring the fuel gauge would 
not make your car run indefinitely without 
refueling.







DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

(District Q and its data are stylized examples.)

ε = 0.005 



DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

ε = 0.01 

(District Q and its data are stylized examples.)



DIFFERENTIALLY PRIVATE COMPUTATIONS

carefully crafted random noise 

ε = 0.1 

(District Q and its data are stylized examples.)



WHAT CAN BE COMPUTED WITH DIFFERENTIAL 
PRIVACY?

• Descriptive statistics: counts, mean, median, histograms, 
boxplots, etc.

• Supervised and unsupervised ML tasks: classification, 
regression, clustering, distribution learning, etc.

• Generation of synthetic data

Because of noise addition, differentially private algorithms 
work best when the number of data records is large.
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U.S. CENSUS BUREAU
http://onthemap.
ces.census.gov

2008 AD
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GOOGLE

2014 AD
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APPLE

2016 AD
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2018 AD
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TRANSITIONING TO PRACTICE
• A new concept:

– How to communicate its strengths and limitations?
– What are the “right” use cases for implementation at this 

stage?
• Access to data:  

– Via a mechanism; Noise added
– Limited by the ”privacy budget”

• Setting the budget is a policy question

• Matching guarantees with privacy law & regulation
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MAIN TAKEAWAYS

• Accumulating failures: anonymization & traditional SDL 
techniques

• Differential privacy:
– A standard providing a rigorous framework for developing 

privacy technologies with provable quantifiable guarantees
– Rich theoretical work, now transitioning to practice

• First real-world applications and use
– Not a panacea; to be combined (wisely!) with other 

technical and policy tools

*
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LEARNING MORE ABOUT DIFFERENTIAL PRIVACY

• [Nissim et al, 2017] Differential Privacy: A Primer for a 
Non-technical Audience, Harvard’s Privacy Tools project.

• [Dwork 2011] A Firm Foundation for Private Data 
Analysis, CACM January 2011.

• [Heffetz & Ligett, 2014] Privacy and Data-Based 
Research, Journal of Economic Perspectives.

• [Dwork & Roth, 2014] The Algorithmic Foundations of 
Differential Privacy, Now publishers.

+ Online course material, lectures and tutorials.

less
technical

technical
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PROJECTS, SOFTWARE TOOLS [PARTIAL LIST]
[Microsoft Research] PINQ
[UT Austin] Airavat: Security & Privacy for MapReduce
[UC Berkeley] GUPT
[CMU-Cornell-PennState] Integrating Statistical and Computational Approaches to Privacy
[US Census] OnTheMap
[Google] Rappor
[UCSD] Integrating Data for Analysis, Anonymization, and Sharing (iDash)
[UPenn] Putting Differential Privacy to Work
[Stanford-Berkeley-Microsoft] Towards Practicing Privacy
[Duke-NISS] Triangle Census Research Network
[Harvard] Privacy Tools
[Georgetown-Harvard-BU] Formal Privacy Models and Title 13
[Harvard-Georgetown-Buffalo] Computing over Distributed Sensitive Data
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