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Outline 

I. Background 	on 	Traditional	 Disclosure	 Avoidance	 
Strategies 	and	 Those	 Applied	 to	 the	 Federal	 Employee	 
Viewpoint	 Survey	 (FEVS) 

II. FEVS	 Synthetic	 Data	 Application 
– Methodology 

– Data 	Utility 	Assessments 
– Risk	 Assessments 

III. Summary	 and 	Further	 Research 	Questions 
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	 	 	 	Traditional Strategies Reducing Disclosure Risk 
• Information	 reduction: 

– Top 	coding 	• capping 	ages	 at	 “60+” 
– Rounding 	• converting 	income 	into 	ranges 
– Dropping	 variables 
– Separate 	files	 with 	separate 	sets	 of 	variables 
– Sampling 

– Suppression 	• deleting	c ertain	 values 

• Data	 perturbation: 
– Swapping 	values 	across	 two 	or	 more 	records 
– Noise 	infusion 	(e.g.,	 adding 	random 	errors)	 – generally 	more 	applicable 	for 	

continuous 	variables 
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	 	Problems	 with Traditional Strategies 
• Information	 reduction: 

– Dropping	 variables 	degrades	 overall 	data 	utility	 
– Combining/collapsing	 may	 hide	 key	 relationships	 in 	data 

– Suppression 	might	 produce 	data 	that	 are 	not 	missing 	completely 	at 	random	 
(MCAR) 	(Little 	and 	Rubin,	 2002) 	and 	can 	reduce 	precision 	of 	estimates 

• Data	 perturbation: 
– Data	s wapping	m aintains	 (unweighted)	 marginal	 distributions,	 but 	analyses 	

involving 	the 	swapped 	and 	un-swapped 	variables 	jointly 	can 	be 	distorted 	(Reiter,	 
2012) 

– Noise 	infusion 	can 	also 	attenuate 	correlations	 and 	distort	 relationships	 amongst	 
variables 
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	 	 	Synthetic	 Data to the Rescue? 

• First	 proposed 	by 	Rubin 	(1993),	ge nerating 	synthetic 	data 	is 	a 	
promising	 (and	r apidly 	evolving)	 methodology 	that	 addresses 	
many 	of 	the 	traditional 	strategies’	lim itations 

• Premise:	 model 	the 	observed 	data 	and 	use 	that	 model	 to	 produce 	
plausible 	substitute 	values 

• Two 	types	 of 	synthetic	 data: 
– Fully	 synthetic 	data 	(Raghunathan et 	al.,	2 003) 	– all 	values 	are 	synthesized 

– Partially	 synthetic 	data 	(Reiter,	2 003) 	– only	 some 	values 	are 	synthesized	 
(either 	a 	portion	o f 	variables,	a  	portion	o f 	records,	o r 	some 	combination	o f 	
both) 
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	 	 	Synthetic	 Data: Advantages and Disadvantages 
• Key 	advantage 	of 	fully 	synthetic 	data: 	because 	no 	actual	 values 	are 	

released,	 disclosure 	risk 	is 	extremely 	low 

• Attempts 	to 	match 	synthetic 	data 	with 	external 	databases 	for 	purposes 	
of	disclosure 	are 	pointless 

• Partially 	synthetic	 data	 better	 maintains 	relationships 	in	 the 	data,	 but 	
increases 	disclosure 	risk 

• Key 	disadvantage 	of 	synthetic 	data: 	relationships 	omitted 	from 	model 	
will	n ot	a ppear	i n	t he 	synthetic	 data 	• it 	is 	only 	possible 	for	 analysts 	to 	
rediscover 	what 	is 	accounted 	for 	by 	the 	synthesis 	models 
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	 	 	Background on the FEVS 
• The 	Federal	 Employee 	Viewpoint	 Survey 	(FEVS)	 is 	an	 annual,	 Web-

based	 survey 	of 	full-time,	 permanent,	 non-seasonal	f ederal	e mployees	 
administered	 by 	the 	U.S. 	Office 	of 	Personnel 	Management 	(OPM) 

• As 	of 	2016	 FEVS:	 sample 	size 	~900,000;	 80+ 	agencies 	participating;	 
response 	rate 	just 	under 	50% 

• Instrument	 consists 	mainly 	of 	attitudinal	 items 	(e.g.,	 perceptions 	of 	
leadership,	 job	 satisfaction)	 on	 a	 Likert-type 	scale,	 but	 also 	about	 a	 
dozen	 potentially 	observable 	demographics 

• Highly	 detailed	 individual-level,	 work-unit 	information	 is 	provided	 by 	
agencies 	for	 sampling/reporting 	purposes 

7 



	 	FEVS Data Releases 

• After	e xtensive 	reporting	 phase,	t hree 	public-release 	data 	files 	
(PRDFs)	ar e 	made 	available 	(see 	
https://www.fedview.opm.gov/2015/EVSDATA/): 
1. General 	(excluding	 LGBT 	item) 
2. LGBT 	(including	 LGBT 	item,	f ewer 	variables,	c ommon	v ariables 	recoded	t o	 

deter 	merging	 with	g eneral 	file) 
3. Trend	( all 	prior 	general 	PRDFs 	stacked	a nd	c oded	f orward	t o	 most 	recent 	

FEVS) 

• Privacy 	Act	 statement	 assures	 respondents 	“In 	any 	public 	release 	
of 	survey	 results,	n o	 data	 will	 be 	disclosed	 that	 could	 be 	used	 to	 
identify	s pecific	 individuals” 
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Striking a	 Compromise 
• In	F EVS,	w ork-unit 	information	a nd	o bservable 	demographics 	compete 	against 	

each	o ther 	with	r espect 	to	 disclosure 	risk 

Higher Disclosure	 Risk 

More 	Work Unit	Info More 	Demographic	Info 

Lower 
Disclosure 
Risk 

Lower 
Disclosure 
Risk 

• For 	lower 	disclosure 	risk,	o ne 	could	r elease 	complete 	work-unit 	detail 	but 	no	 
demographics,	o r 	vice 	versa 	• neither 	is 	ideal 

• More 	appropriate 	approach	i s 	to	 strike 	a	c ompromise,	w ith	t he 	end	g oal 	to 	
minimize 	disclosure 	risk 	while 	maximizing 	data 	utility 
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	 	 	Current Disclosure Avoidance Methods 
• Detailed	 in	 technical	 report	 (OPM,	 2015): 

– Separate 	LGBT	 file 

– Starting 	point	 for	 work	 units: 	agency	 request,	 so 	long 	as	 at	 least	 250	 respondents 
– Certain 	variables	 removed 	and/or	 combined 	(e.g.,	 minority	 status) 
– Categories	 collapsed 	for	 other	 variables 

• Exhaustive 	tabulations	 assessment	 (ETA)	 (Krenzke et	 al.,	 2014)	 
systematically 	examines 	all 	possible 	demographic	 combinations 	within	 a	 
work 	unit,	 flagging	 records	 posing	 a	 disclosure	 risk 

• Work	 unit	 identifiers 	with	 > 	25% 	records 	flagged	 are 	set	 to 	missing,	 and	 
ETA	 is 	done 	once 	more;	 for	 records 	still	 flagged	 (~8000	 in	 FEVS 	2016),	 
only	one 	of	four	“ core” 	demographics 	(gender,	 age 	group,	 supervisory 	
status,	 and	 minority 	status)	 is 	maintained 
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	 	A Partially Synthetic	 Approach 

Schematic Representation	 of Original Data Set: 

Premise:	l eave 	X0	a nd	X 1	i ntact,	but  	model 	
relationship	be tween	X 1 and	Y  (independently	 
within	w ork 	units),	a nd	us e 	to	 derive 	substitute 	
values 	for 	Y 
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	 	 	A Partially Synthetic	 Approach (2) 
• Fifteen	v ariables	comprising	 Y synthesized 	sequentially 	a 	la 	

Raghunathan et 	al. 	(2001) 	using 	“synthpop”	R	 p ackage	 (Nowok et 	al.,	 
2015) 

• Nonparametric	“ ctree” 	method	 used	 exclusively,	 based	 on	 classification	 
and	 regression	 trees 	(CART)	 (Breiman et 	al.,	 1984)	 – successive 	binary 	
splits	partition	d ata	se t	i nto	cells 

• Within	 a	 cell,	 values 	are 	synthesized	 randomly 	in	 proportion	 to 	their	 
occurrence 	in	t he 	observed	d ata 

• Created	 M = 	3	 implicates,	 not	 for	 variance 	estimation	 purposes	 per	 se,	 
but 	to 	rule 	out 	deterministic	 relationships 
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	 	 	Visualization of CTREE Method 
• Key	 advantage 	of 	CART 	(Reiter,	2 005): 	find	a nd	e xploit 	only	 most 	important 	

relationships 	from 	a 	large 	pool 	of 	potential 	predictors 	• in	e xample 	below,	 
only	 the 	HQ/field	dut y	 station	i ndicator 	(DLOC) 	and	a gency	 tenure 	(DAGYTEN) 	
are 	needed	f or 	synthesizing	 gender 
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	 	 	Benefits Relative to	 Current Methods 
• Dramatically	 reduced	di sclosure 	risk 

• More 	works 	can	be  	identified 
– 368	 vs	 181	 distinct	 work	 units 

• More 	demographic 	information	c an	be  	included 
– 15	 vs 11	 variables 
– 48	 vs	 31	 total	 demographic 	variable 	categories 

• No	 need	f or 	separate 	LGBT 	file 

• Key	 downside: 	no	 guarantee 	synthetic 	data 	results 	match	t hose 	that 	would	be  	
generated	w ith	t he 	actual 	data 
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	 	 	Results: Univariate Marginal Distributions 
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	 	 	Results: Bivariate Marginal Distributions 
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	 	 	Results: Point Estimate Differences 
Average Percent Positive Difference for 2016 FEVS	Demographic Categories	 
within a Work Unit: Partially Synthetic Data vs Actual Data 
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	 	 	Results: Model Parameter Differences 
Estimated Odds	 Ratio Differences for the Multinomial Logistic Regression 
Model Discussed in Whitford and Lee (2015): 
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	Risk Assessments 

• Traditional 	public-release	 data 	file	 (PRDF) 
• Partially 	synthetic	 PRDF 

• Re-identification	 -- Hundepool et 	al. 	(2012) 	
– Achieved	b y	a n	i ntruder 	when	c omparing a	t arget	 
individual 	in a	s ample	w ith	a n	a vailable	l ist 	of	u nits	 
(external 	file) 	that 	contains	i ndividual 	identifiers	(e .g.,	 
name	a nd	a ddress),	plus a	s et 	of	i dentifying 	variables 

– Occurs	w hen	t he	u nit 	in	t he	r eleased	f ile	a nd a	u nit 	in	 
the	e xternal 	file	b elong 	to 	the	s ame	i ndividual 	in	t he	 
population 
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	Risk Elements 

• Questionnaire	 items 
– 15	indirect	i dentifiers	 
– Mostly	 attitudinal 	

• Work 	unit 
• High	s ampling	r ate 
– Sampling	 rate	 equal	 to	 1 

• About 	50 	percent 	response	 rate 
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Risk Assessment on Traditional PRDF 

• File	 risk	 measure 
– The	e xpected	n umber 	of	p opulation	 uniques given	t he	 
sample	 uniques 

/• ���� = ∑01 �(�* = 1|�* = 1) 
– where	SU  is	 the 	set	 of	 sample 	uniques,	f k is	 the 	sample 	frequency	 
in	c ell	k ,	a nd 	Fk is	 the 	population	f requency	in	 c ell	k  

– Fk must 	be 	estimated 
» Estimated using loglinear models with the Skinner and
Shlomo (2008)	 approach 
• Stabilizes	 estimate 
• Uses	 weights 

• Work	 unit	 and	1 2 	select	 indirect	 identifiers 
– Low 	number 	of	m issing 	values 
– Highly	i dentifiable 
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	 	 	 	 	Risk Assessment on Traditional PRDF (2) 
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	 	 	 	 	Risk Assessment on Traditional PRDF: Results 

• File 	risk	 measure 	was	 computed 	for	e ach 	work	 unit 
– Ranged	f rom 	3%	 to	 69%	 across 	all 	work 	units 	(or 	combined	w ork 	units) 	

with	a  	median	o f 	26%	 and	a  	mean	o f 	28% 

– High	r isk 
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	 	 	 	Risk Assessment on Partially Synthetic	 PRDF 
• First	 look:	 Percentage 	of 	changed 	values 	among	 the 	15	 

indirect	 identifiers,	b y 	work	 unit 
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	 	 	 	 	Risk Assessment on Partially Synthetic	 PRDF (2) 
• Re-identification	 risk 
– What	 is	 the 	expected 	number	o f 	correct	 matches? 

• Raw-to-Raw 
• Synthetic-to-Raw 

• Raw-to-Raw	 -- Exact	 matching 
– For	e ach 	work	 unit,	t he 	match 	was 	conducted 	on 	15	
indirect	 identifiers 
• Some 	multiple 	records 	with	t he 	same 	subgroup 
• Example: 	If 	3	 records 	have 	the 	same 	characteristics,	t hen	r isk 	is 	a 	1	
in	3  	chance 	of 	matching 	correctly 

– On 	average,	8 8	 percent	 matched 	correctly,	r anging	 from	 57	
percent	 to	 98	 percent	 across 	work	 units 

– Did 	not	 account	 for	ap proximate 	50	 percent	 response 	rate,	
which 	lowers 	the 	risk	 value 
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	 	 	 	 	Risk Assessment on Partially Synthetic	 PRDF (3) 
• Synthetic-to-Raw	 -- Probability-based	 matching 
– Used 	Westat’s WesLink SAS 	macro,	b ased 	on 	log-likelihood 	
estimation 

– Identify	 group 	of 	best	 matches	 for	e ach 	record,	g iven 	the	
work	 unit	 and 	the 	15	 indirect	 identifiers 
• Threshold	i s 	set 	to	 minimize 	false 	positives 	and	f alse 	negatives 

– Probability 	of 	correct	 match 	computed 	for	e ach 	individual	
record 
• If 	the 	true 	record	wa s 	among	 the 	best 	matches 

– Probability 	of 	correct 	match	 = 	1 	/ 	(# 	of 	best 	matches) 
• If 	the 	true 	record	wa s 	not 	among	 the 	best 	matches 

– Probability 	of 	correct 	match	 = 	0 

– File 	risk	 was 	computed 	the 	average 	of 	the 	probabilities 	
• 0.43	 percent,	no t 	accounting	 for 	the 	response 	rate 
• 20	 units 	ranged	f rom 	1.0	 percent 	to	 2.2 	percent 
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	 	 	 	 	Risk Assessment on Partially Synthetic	 PRDF (4) 
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Summary 
• Partially 	synthetic 	2016 	FEVS 	data 	does 	not 	produce 	perfect 	replications 	

of	th e 	actual 	data,	 but 	results 	are 	reasonably 	close 	and	 devoid	 of 	any 	
systematic 	biases 

• Differences 	tend	 to 	zero 	as 	sample 	sizes 	increase,	 as 	do 	measures 	of 	
disclosure 	risk 

• Of	 course,	 no 	guarantee 	all	 conceivable 	analyses 	will 	be 	as 	harmonious 	
as 	those 	presented 	here 

• Open	 question:	 is	 the 	extra	 noise 	a	 fair 	price 	to 	pay 	in 	exchange 	for 	
more	d etailed	 demographic	 and	 work	 unit	 information,	 and	 
dramatically 	reduced	 disclosure 	risk? 
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	 	Further Research Questions 
• Could	d ata	u tility	be 	increased	i f 	fewer	v alues	were 	synthesized? 

– Do 	not 	synthesize 	variables 	that 	are 	not 	highly	 identifiable 	(e.g.,	i ntention	 
to 	leave) 

– Synthesize 	only	 a 	subset 	of 	variables 	for 	a 	subset 	of 	records 	with	hi gh	 
disclosure 	risk 

• Could	t he 	analysis	weights	be 	recalibrated	i n	som e 	way	to	make 	results	 
more	c oncomitant? 

• Are 	there 	other	 solutions? 
– Remote 	access 	servers 
– Hybrid	a pproach	o f 	both	t he 	traditional 	statistical 	disclosure 	limitation	 

techniques 	(coarsening	 and	s uppression) 	and	s ynthetic 	data 
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