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Abstract 
The Annual Capital Expenditures Survey (ACES) provides detailed and timely information on capital 
investment in structures and equipment by nonfarm businesses during the year. The data are used to improve 
the quality of current economic indicators of business investments, as well as estimates of gross domestic 
product. Studies conducted by the U.S. Census Bureau have assessed Economic Directorate survey processing 
procedures and targeted areas for improvement. The resulting initiatives for the ACES questionnaire sought to 
reduce the workload of analysts who review and edit write-in responses. The form allows respondents to write-
in a capital expenditure category as an “Other” category, when no other classification can be determined. This 
paper aims to review the use of machine learning to develop and validate predictive models to separate the 
write-ins in the “Other” category into multiple classes.  We will examine how the Census SABLE (Scraping 
Assisted By LEarning) tool is applied to classify the “Other” category into multi-label descriptions: Structures, 
Equipment and Not Applicable.   

Keywords: U.S. Census Bureau, machine learning, SABLE, predictive model 

Section 1. Introduction 
Machine learning is a type of artificial intelligence (AI) that enables software applications to more precisely 
predict outcomes, without being programmed explicitly. The fundamental proposition of machine learning is 
to develop algorithms that can take in data, and then utilize statistical methods to predict outcomes within 
sufficient bounds. The iterative aspect of machine learning is significant by virtue of the model’s exposure to 
unseen data; this provides the ability for autonomous adaptation. AI algorithms learn from previous data to 
produce reliable, repeatable decisions and results (Liu et al., 2017). It is a science that is not brand-new, but 
one that has received modern momentum. An explosion of computing power is at the heart of modern machine 
learning, separating it from the past iterations of machine learning. While many machine learning algorithms 
have existed for decades, the power to automate the application of complex mathematical calculations to big 
data is novel. The production of fast and scalable machine learning algorithms is a recent advancement. 

Section 2. Modernization of Statistical Production 

2.1 ACES Research Overview 
The Annual Capital Expenditures Survey (ACES) provides detailed and timely information on capital 
investment in structures and equipment by nonfarm businesses during the year. The data are used to improve 
the quality of current economic indicators of business investments, as well as estimates of gross domestic 
product. Figure 1 provides a snippet of the questionnaire.  ACES survey Item 2 asks respondents to itemize 
their Expenditures into three classes. Survey respondents are asked to report dollar amounts for Structures in 
column 1, and Equipment in column 2. There is an option to allocate an amount in column 3 for items that 
have not adequately been described by the first two categories.   

 

__________________________________ 
Any views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 

http://searchcio.techtarget.com/definition/AI
http://whatis.techtarget.com/definition/algorithm
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Once that amount is entered, the respondent is directed in Item 3 to detail a written description of that 
Expenditure.  Our goal was to examine the efficacy of using machine learning (ML) techniques to classify 
the written texts in the “Other” category into the descriptions: Structures, Equipment and Not Applicable.   

Figure 1. Write-in classification processes  

 
 

 
Source:  2017 Annual Capital Expenditures Survey, https://www.census.gov/programs-surveys/aces.html

Studies conducted by the U.S. Census Bureau have assessed Economic Directorate survey processing 
procedures and targeted areas for improvement. The resulting initiatives for the ACES questionnaire sought 
to reduce the workload of analysts who review and edit write-in responses.  

In the recommendations of the Census Edit Reduction Team, it was suggested that ACES staff should 
consider making changes to address some of their most analyst burdensome edits, which included the 
classification of write-ins in the “Other” category.  They believed this burden could be relieved through 
automation techniques such as ML. U.S. Census Bureau ML researchers are combining statistics and 
computer science to build algorithms that can solve our business needs more efficiently. This research is part 
of ongoing efforts to modernize statistical production by harnessing the potential of artificial intelligence. 

2.2 Strategies for Modernization 
Recently Statistics Canada conducted a study of the ML techniques currently in use or in consideration at 
statistical agencies worldwide (Chu and Poirier, 2015).  This is an area in which many exciting advancements 
have been made over the past decade.  Findings by Statistics Canada recommended that all National 
Statistical Offices explore the possibility of using ML techniques.   

A wide variety of modeling strategies have been described in the literature. Decision trees have been used by 
Statistics Portugal.  The purpose was to detect errors in foreign trade transaction data. The system was able to 
reduce by half the manual examination of records, while successfully detecting about 90% of the error-
containing records. The Australian Bureau of Statistics (ABS) employed fully automatic categorization 
using support vector machines to code data from their 2006 Australian Census (Clarke and Brooker, 
2011).  A host of other ML strategies are currently in development world-wide. In this work we 
consider two closely linked strategies for classification, Support Vector Machines and Logistic 
Regression. 
 
2.3 Support Vector Machines 
Support Vector Machines (SVMs) were developed by Vapnik (2000) based on the structural risk 
minimization principle from statistical learning theory.  Statistical Learning Theory, the backbone of SVMs, 
provides a new framework for modeling learning algorithms, merges the fields of ML and statistics, and 
inspires algorithms that overcome many theoretical and computational difficulties.   In recent years, SVMs 

https://www.census.gov/programs-surveys/aces.html
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has found a wide range of real-world applications, including face detection from images (Osuna et al., 1997; 
Shih and Liu, 1996), object recognition (Blanz et al., 1996; Hayasaka et al., 2006), speaker identification 
(Schmidt, 1996; Moreno and Ho, 2003), biomedical data classification (Shoker et al., 2005), and text 
categorization (Joachims,1997). The many applications of SVMs for text categorization generated 
considerable research interest for our study. 

Joachims (2001) explains how SVMs can achieve good classification performance despite the high-
dimensional feature spaces in text classification.  The complexity of text-classification tasks are analyzed and 
sufficient conditions for good generalization performance are identified.  The paper also provides a formal 
basis for developing new algorithms that are most appropriate in specific scenarios.  The disadvantage of SVMs 
is that the classification result is purely dichotomous, and no probability of class membership is given (Masood 
and Al-Jumaily, 2013).  Another disadvantage of SVMs is the black box nature of these functions.   

2.4 Logistic Regression 
Regression modeling is one of several statistical techniques that enable an analyst to predict a response based 
upon a set of inputs.  Linear regression models are commonly used when the range of the response is 
continuous, and can theoretically take any value.  LR, invented in the 19th century for the description of the 
growth of population and the course of chemical reactions, predicts the probability of an occurrence of an event 
by fitting data to a logistic curve (Zhang, Johnson, and Wang, 2012).  As the output is restricted to the interval 
(0, 1), the assumption of an infinite range fails.  The logistic function used in this prediction method is useful 
in that it can take any value from negative infinity to positive infinity as input.   
 

 

 

2.5 Comparison between Logistic Regression and Support Vector Machines 
Logistic regression is a statistical model.  Here the dependent variable is a category (Structures or 
Equipment).  We have a set of text as predictors or features, which come from our survey write-in responses.  
This is called training data in ML terminology.  The statistical maximum likelihood technique is used to find 
optimal values for the model parameters. The resulting model is used to predict the class of new survey 
write-ins. 

Support Vector Machines, however, are non-probabilistic classifiers. It has the same goal as LR. Given 
training data, find the best SVM model, and use the model to classify new survey responses. The difference 
is that the optimization problem is finding the hyperplane that best separates the write-ins labeled 
“Structures” from those labeled “Equipment”.   

The research question considered in this work, is whether these two approaches, a traditional linear approach, 
and a newer, nonlinear approach can give us better insights into the classes that our ACES write-in data fall 
in.  

Section 3. Methodology 

3.1 Data 
The data used in this study was provided by ACES staff from data collection acquired in survey years 2015 
and 2016. The classification goal is to predict if write-ins in the “Other” category are truly Structures, 
Equipment, or Not Applicable.   
 
We have disproportionate class labels in the response variable.  The total data set consisted of 13,560 labelled 
write-ins, of which 10,228 were labelled Equipment, 1,579 were labelled Structures, and 1,753 were labelled 
Not Applicable. The distribution of our write-in data is pictured in Figure 2.  
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Figure 2. Write-in classification processes  

 

 

Classification Breakdown

1,753 

1,579 

10,228 

 -  2,000  4,000  6,000  8,000  10,000  12,000

Classification

Equipment Structures Not Applicable

10,228

 
Source: U.S. Census Bureau, 2015 and 2016 Annual Capital Expenditures Survey 
 

3.2 Steps for Text Analysis 
The collected data were transformed to a structured format. These steps are commonly applied for information 
retrieval, information extraction and data mining.  This was done by applying text processing techniques on 
the write-ins. Punctuations and numbers were removed from the write-in text. Next, all of the letters were 
converted to lowercase. Another common preprocessing step is the removal of white space. It is typically the 
result of all the left over spaces or tabs that were not removed along with the words that were deleted. All white 
space was removed.  

A further preprocessing technique is the removal of stop words. They are words which are filtered out before 
or after processing of natural language data (text). Any group of words can be chosen as the stop words for a 
given purpose. Stop words are words that are so common in a language that their information value is almost 
zero, i.e., they do not carry significant information (Blair, 1979). We would not want these words taking up 
space in our database, or taking up valuable processing time. Some examples are “a”, “about”, “be”, “do”. 
Therefore, it is recommended to remove them before further analysis. In this work we remove them with the 
Natural Language Toolkit (NLTK) library in python. 
 

 

Word (or n-gram) frequencies are typical units of analysis when working with text collections. The general 
term n-gram means ‘sequence of length n’.  A three-word sequence is called a trigram, a sequence of two words 
is called a bigram, and a single word is called a unigram.  It may come as a surprise that reducing a book to a 
list of word frequencies retains useful information, but this has been demonstrated in natural language 
processing (NLP) research. Treating texts as a list of word frequencies (a vector) also makes available a vast 
range of mathematical tools developed for studying and manipulating vectors. 

Text feature extraction is the process of transforming what is essentially a list of words into a feature set 
that is usable by a classifier.  In Bag-of-Words feature selection, the document is treated as an unordered list 
of words.  Under this approach, words are ranked solely by their frequencies. In this case, the set of feature 
vectors can be considered as a matrix where each row is one instance and each column represents a word 

http://en.wikipedia.org/wiki/Euclidean_vector#History
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found in any of the documents.  Thus, each cell (𝑖𝑖, 𝑗𝑗) represents the number of times a word appears in the 
text of the document. It can be noted that this model builds a 𝑛𝑛 × 𝑚𝑚 matrix where, for our work, 𝑛𝑛 is the the 
number of write-ins and 𝑚𝑚 is the number of words without repetition that appear in the 𝑛𝑛 write-ins.   
 
In our analysis, we were able to extract features by using an n-gram model to transform the data into feature 
vectors for use in our models. We gathered word frequencies (or term frequencies) associated with texts into a 
document-term matrix using the CountVectorizer class from the scikit-learn python package.  
 

 

 

 

 

 

3.3 Implementing Machine Learning Algorithms 
The most widely used library for implementing ML algorithms in Python is scikit-learn.  This library is a 
Python module integrating a wide range of state-of-the-art ML. This package focuses on bringing ML to non-
specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, 
documentation, and API consistency.   

A well-fitted model should not just provide good prediction accuracy on the data it was fitted to, it should also 
generalize to data not yet seen. We can estimate this generalization accuracy with a technique called cross-
validation. The simplest form of cross-validation is as follows: the data are separated into a training set and a 
test set.  The algorithm is fit on the training set and the accuracy (e.g. the percent correctly classified) is 
evaluated on the test set, giving an estimate of how the fit generalizes.  

All classifiers will have various parameters which can be tuned to obtain optimal performance. Tuning is 
performed for varying values of the tuning parameters, searching for those that give the best generalization 
accuracy (Guenther and Scholau, 2016). This can be done by choosing a small number of possible values to 
test for each parameter, and trying all possibilities on the grid of their combinations. This is known as a grid 
search. In the context of ML, hyperparameters are parameters whose values are set prior to the commencement 
of the learning process. In scikit-learn, hyperparameter tuning can be conveniently done with the 
GridSearchCV estimator.  It takes as input an estimator (such as accuracy) and a set of candidate 
hyperparameters.  Cross-validation scores are then computed for all hyperparameter combinations, in order to 
find the best one.  In this research we tune the LR and SVMs with GridSearchCV. 

For LR, we use the sklearn.linear_model.LogisticRegression package in this scikit-learn library. 

Parameters are as follows:  

•penalty: It specifies the norm used in penalization. It can be ‘l1’, or ‘l2‘. The default value is ‘l2'. 
•C: It is the inverse of the regularization strength.  Smaller values specify stronger regularization. 

We first observe that setting the parameter C is crucial as performance drops for inappropriate values of C. The 
LR regularization parameter was set in the range of (C = 10−4, 10−3,...,105, 106).  A large C can lead to an overfit 
model, while a small C can lead to an underfit model.  We used GridSearchCV with 5-fold cross-validation 
to tune C in this hyperparameter space.  

The package used for SVM classification in the scikit-learn library is svm.SVC. 
 

 
Parameters are as follows: 

•C: It is the regularization parameter, C, of the error term. 
•kernel: It specifies the kernel type to be used in the algorithm. It can be ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, 
‘precomputed’, or callable. The default value is ‘rbf'. 
•degree: It is the degree of the polynomial kernel function (‘poly’) and is ignored by all other kernels. The 
default value is 3. 
•gamma: It is the kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’. If 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is ‘auto’, then 1

n
 features will 

be used instead. 
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Training SVMs with a linear kernel is faster than with any other kernel. When you train a SVM with a linear 
kernel, you only need to optimize the C regularization parameter.  When training with other kernels, you also 
need to optimize the 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 parameter, which means that performing a grid search will usually take more 
time.   Therefore, linear kernels are indeed very well suited for text-categorization.  It should be kept in mind, 
however, that it is not the only solution and in some cases using another kernel might be better. The 
recommended approach for text classification is to try a linear kernel first, because of its advantages.  An SVM 
with a linear kernel is similar to logistic regression. Therefore, in practice, the benefit of SVMs typically comes 
from using non-linear kernels to model non-linear decision boundaries.  In this study, in an effort to get the 
best possible classification performance, it was of interest to try the other kernels to see if accuracy was 
improved. 
 

 
 

 

 

We did a set of experiments with different kernel functions such as the linear, RBF, polynomial, and sigmoid 
in order to see the quality of generalization for each kernel function. Using sklearn’s SVM implementation 
svm.SVC, we apply a grid-search to find the best pair (𝐶𝐶,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) for each kernel function using 5-fold cross-
validation. In order to increase efficiency, we try exponentially growing sequences of (𝐶𝐶,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) to identify 
good parameters (C = 2−5, 2−3, ...,215; 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 2−15,2−12, ...,212).  After the optimal (𝐶𝐶, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) is found, the 
training data is trained using the SVMs with different kernels and the best parameters to generate the final 
models.  After testing our SVM algorithm with various kernel transformations, we identified the linear kernel 
as the most efficient kernel that resulted in the highest classification results.  

3.4 Model Evaluation Metrics 
We define classification accuracy as the percentage of write-ins for which the classification agreed with the 
known categories.  A write-in whose fitted state differs from the ground truth label, is defined to be an error.  
Classification accuracy, false discovery rate, specificity, and sensitivity were used as performance metrics.  
Following Rueda and Diaz-Uriarte (2007), we used the confusion matrix defined in Table 1 to estimate rates.  
We also calculated Cohen’s Kappa coefficient (Cohen, 1960) from the confusion matrices to measure 
agreement beyond chance between the fitted results and the ground truth data.  Kappa values range between 
−1 (all write-ins incorrectly classified) and 1 (all write-ins correctly classified).  A Kappa value equal to zero 
indicates a performance no better than random. 

We determined the entries of the confusion matrix as outlined in Table 1.  The entries in the confusion matrix 
have the following meaning in the context of this study:  Ee is the number of correct predictions that a write-
in is Equipment. En is the number of incorrect predictions that a write-in is Not Applicable, when in fact it is 
Equipment.  Es is the number of incorrect predictions that a write-in is Structures, when in fact it is Equipment.  
E. represents the total number of write-ins that were truly Equipment.  Another way of expressing this total of 
write-ins that were truly equipment, is from the summation of the terms 𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸.  These totals are 
presented in the last column of the confusion matrices.   

Table 1.  A confusion matrix (Provost and Kohavi, 1998) contains information about actual and predicted 
classifications derived by a classification system.  The confusion matrix used to calculate rates (Rueda and 
Diaz-Uriarte, 2007) 

True Class 
Predicted Class 
equipment structures not applicable Total 

Equipment Ee Es En E. 
Structures Se Ss Sn S. 
Not Applicable Ne Ns Nn N. 

 

 
 
 
 

The formulas used to calculate these statistics are defined below.  To understand the statistics, it is helpful to 
refer to Table 1.  
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Correct Classification Rate 
 

 

 

 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑛𝑛 + 𝑆𝑆𝐸𝐸
𝐸𝐸. +𝑁𝑁. +𝑆𝑆.

 

 False Discovery Rate 

𝐹𝐹𝐹𝐹𝐶𝐶 =
𝐸𝐸𝐸𝐸 + 𝐸𝐸𝑛𝑛

𝐸𝐸𝑛𝑛 + 𝑁𝑁𝑛𝑛 + 𝑆𝑆𝑛𝑛 + 𝐸𝐸𝐸𝐸 + 𝑁𝑁𝐸𝐸 + 𝑆𝑆𝐸𝐸
 

               Specificity                              

𝑆𝑆𝑆𝑆𝐸𝐸𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆 =
𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸 + 𝐸𝐸𝑛𝑛
 

Sensitivity 

𝑆𝑆𝐸𝐸𝑛𝑛𝐸𝐸𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑛𝑛 + 𝑆𝑆𝐸𝐸
𝑁𝑁. +𝑆𝑆.

 

Section 4. Results 
The processing results of each algorithm are given in Tables 2 and 3. We determined the entries of the confusion 
matrix as outlined in Table 1 of Section 3.   

Table 2.   Confusion Matrix Results for Logistic Regression 
True Class 

 
Predicted Class 
Equipment 
(e) Structures (s) Not Applicable 

(n) 
Total 

 Equipment (E) 1386 1 3 1390 
 Structures (S) 7 194 7 208 
 Not Applicable (N) 12 8 182 202 
 Total 1405 203 192 1800 

 
Table 3.   Confusion Matrix Results for Support Vector Machines 

True Class 
 

Predicted Class 
Equipment 
(e) Structures (s) Not Applicable 

(n) 
Total 

 Equipment (E) 1387 1 2 1390 
 Structures (S) 7 193 8 208 
 Not Applicable (N) 12 8 182 202 
 Total 1406 202 192 1800 

 
Table 4 summarizes the four performance statistics for predicting Equipment and Structures in the test data set.  
SVM and LR achieved almost an identical correct classification accuracy of 97.9%. LR and SVM tied for a 
false discovery rate of .76%. SVM and LR had the same specificity at over 99%.  LR achieved the best 
sensitivity of 91.7%. The Cohen’s Kappa coefficients range from .9432 to .9433.  The Kappa values indicate 
that model results were not due to chance.  LR slightly outperformed SVMs in terms of the metrics calculated 
in Table 4. 
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Table 4.  The performance statistics for the compared methods on the test data, and Cohen’s Kappa 
coefficient. 

Model SVMs LR  

Correct Classification Rate .9789 .9789 

False Discovery Rate .0076 .0076 

Specificity .9978 .9978 

Sensitivity .9146 .9171 

Cohen’s Kappa coefficient .9432 .9433 

          
 

 

 

 

 
 

 

Section 5. Conclusions 
The analytic methods were found to be roughly equivalent in terms of their classification ability as 
demonstrated by several performance measures.  LR remains the clear choice when the primary goal of model 
development is to look for possible causal relationships between independent and dependent variables, and a 
modeler wishes to easily understand the effect of predictor variables on the outcome given that the model 
equation is also provided.  

In this study, LR achieved the highest correct classification rate, specificity, sensitivity, and the lowest false 
discovery rate.  Finally, LR had the highest Kappa value, indicating this model had higher chance-corrected 
agreement with the ground truth data than SVM.  For this data set, LR slightly outperformed SVM on several 
measures. These findings give us confidence that predictions from a deployed LR model will be comparable 
to the results produced by survey analysts.  

We have also demonstrated that a traditional linear approach can give as good, or better predictive accuracy 
than a newer, nonlinear approach in the case of detecting the classes that our ACES write-in data fall in. We 
hope these results further the study of text categorization, as this research continues to become an essential 
topic in the study of ML and artificial intelligence. 

The short-term goal of this work is to deploy our LR model into production for the 2017 ACES survey year, 
which in addition to allowing us to predict the write-in class, provides a probability associated with the 
prediction. This will be useful to both analysts reviewing our predictions, and future performance assessments.  
We also expect to receive more training data in the future that we want to be able to incorporate quickly into 
our model.  Thus, we can propose that using LR will be more efficient. This modeling will improve operating 
performance by harnessing the power of Census data to make intelligent predictions. 

Section 6. Future Research 
A question we should address is whether it is possible to reduce the total number of features in the dataset. One 
approach is to use principal components analysis to reduce the number of features. Another approach is to use 
LR to select features and then use those features in an SVM.  Studying the effects of the different features on 
the classification rate is out of scope of this paper.  However, the design of good features is an important 
component for successful classification.  Therefore, it is an important direction for future work. 

Though empirical studies have shown that it is difficult to decide which metric to use for different problems, 
each approach has specific features that measure various aspects of the algorithms being evaluated (Li et al., 
2009). It is often difficult to state which metrics are the most suitable to evaluate an algorithm (Aftarczuk, 
2007). Assessing the performance of ML algorithms based on predictive accuracy, is often inappropriate in the 
case of imbalanced data. Chawla (2002) showed that a combination of over-sampling the minority class and 
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under-sampling the majority class can achieve better classifier performance (in ROC space) than only under-
sampling the majority class.  Other approaches to the construction of classifiers from imbalanced datasets 
should be considered, along with an evaluation of performance measures. 
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