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Introduction 
Hot deck procedures use reported values (donors) from the current sample to impute for missing values (recipients). 
Simply put, a recipient unit is matched to a donor unit based on predetermined criteria, and the missing recipient 
value is replaced with the valid value obtained or derived from the donor unit. Replacement values can be directly-
substituted values of a categorical or quantitative value or can be obtained by prorating an available value from the 
recipient with a rate or ratio obtained from the donor. The latter approach is especially useful when the expected 
quantity varies greatly by unit size. In any case, the explicit control over donor eligibility and selection is required to 
obtain plausible imputed values.  This control usually starts with partitioning the sample into disjoint imputation 
cells (also called adjustment cells and imputation classes) using auxiliary variables that are available for both donors 
and recipients (Brick and Kalton 1996), before implementing the matching procedure. The categorical variables 
used to define the imputation cells are either expected to be predictive of the studied outcome variable (e.g., total 
sales or expenditures for a business) or are predictive of nonresponse (Andridge and Little 2010). Candidate units 
within the imputation cells are usually subject to other edit (validation) checks to qualify as donors. 
 
Hot deck imputation procedures are often described as “model free” missing data treatments. Certainly, this claim is 
not entirely true. For example, the variables that define imputation classes implicitly define a nonlinear regression 
model, where the dependent variable is the probability of responding. When imputation classes are equivalent to 
sampling strata, there is an implicit assumption that the key outcome variables have the same mean and variance 
within imputation cell. Likewise, the matching procedures are related to assumed models.  For example, random hot 
deck methods obtain unbiased imputations under a missing-completely-at-random (MCAR) response mechanism or 
under a missing-at-random (MAR) response mechanism when imputation classes are used. Nearest neighbor 
imputation assumes that the outcome variables(s) can be predicted by the auxiliary covariate(s) used in the distance 
function, as do other backwards-forwards selection methods. Similarly, nearest neighbor imputation may be 
appropriate when the response probability is a function of unit size, common in many business surveys (Thompson 
and Oliver 2012; Thompson, Oliver and Beck 2015; Thompson and Washington 2013).  
 
In practice, the choice of implemented hot deck method relies on stated or unstated causal assumptions. Pearl (2010) 
distinguishes between associational and causal assumptions as follows: 
 

“Associational assumptions, even untested, are testable in principle, given sufficiently large sample and 
sufficiently fine measurements. Causal assumptions, in contrast, cannot be verified even in principle, unless 
one resorts to experimental control.” 

 
Propensity score matching is frequently used in observational or experimental studies to control for causal effects. 
The objective is to “balance” participants in the treatment and control panels on selected characteristics to eliminate 
or reduce confounding.  This is accomplished by finding similar pairs of units on these characteristics using a 
predetermined distance measure, then splitting the pairs into separate treatment and control groups so that the study 
approximates a random experiment.  Rosenbaum and Rubin (1983) proposed developing a single propensity score 
function constructed from the full considered set of characteristics for matching, where the modeled propensity 
score represents the unit’s expected response to the treatment. Rubin and Thomas (1996) recommend including all 
potential covariates in the propensity score function, even when not significant, especially when multiple outcomes 

                                                           
1 This report is released to inform interested parties of research and to encourage discussion. Any views 

expressed on statistical issues are those of the authors and not necessarily those of the U.S. Census Bureau. 
 
 



 
 

are studied and there is no consensus on the (statistical or causal) relationship between a particular covariate and 
outcome. From a hot deck implementation perspective, it would therefore be preferable to maximize the covariates 
used in the matching procedure. A single propensity score is certainly convenient but is not necessary for 
implementation. Many matching algorithms use weighted or unweighted combinations of covariates to pair units. 
Moreover, there are strong theoretical and practical arguments in the literature against using the single propensity 
score for matching in the literature, as the score itself is based on an unverifiable model. King and Nielson (2016) 
argue that propensity score matches are biased towards the implemented model which can be greatly misspecified, 
proposing instead to implement full blocking in the experimental design a priori. Smith and Todd (2011) had 
inconsistent results using propensity score matching on income data, even when “robustifying” the procedures by 
matching on the log-odds ratio rather than propensity scores themselves.  Their study provides empirical evidence 
that demonstrates the importance of the strength of the prediction model used for propensity for the outcome 
variables and the high sensitivity of propensity score matching to data quality.  Reducing a set of matching variables 
to a single score based on an assumed model can therefore affect the procedure’s success. 
  
Alternative hot deck imputation procedures can be tested in an experimental design framework using a repeated 
measures design, where imputation classes are the blocks, the donor selection procedures are the treatment, and the 
donated value (or derived imputed value) is the outcome variable. A key objective is to determine the hot deck 
procedure that best reduces nonresponse bias in the program estimates; surveys might extend this to include 
preserving statistical associations between outcome variables. In the causal inference framework, the hot deck 
procedures can control for unit (subject level) effects common to both respondents and nonrespondents in the 
missing data treatment process. Traditionally, propensity scores are designed to summarize the explanatory variables 
relationship to the studied outcome variables. However, a response propensity score could be used when there is 
evidence that covariates predictive of nonresponse are likewise predictive of outcome. For example, the size of a 
business may be predictive of both the response propensity and the reported value of sales. With hot deck imputation 
and propensity score modeling, it is good practice to explicitly account for stratification effects. 
 
In this paper, we examine using alternative variations of propensity score matching to obtain hot deck donors to 
account for late and total unit nonresponse in the Advance Monthly Retail Trade and Food Services Survey 
(MARTS).  The MARTS is a probability sample of companies, subsampled from the Monthly Retail Trade and 
Food Services Survey (MRTS), whose respondents provide “early” estimates of monthly sales in retail trade 
industries; the more reliable monthly estimate is provided a few weeks later in the MRTS publication. In the 
following section, we provide background on the MARTS sample design and estimation procedures, along with a 
detailed discussion on the specific missing data. This study is part of a larger research project investigating 
alternative missing data treatments (imputation and estimation procedures) designed to reduce revision difference 
between the advanced monthly estimates of sales from MARTS and the corresponding preliminary estimates (for the 
same time period) from MRTS.  
 
Here, we focus on determining an effective propensity matching algorithm for the MARTS nonrespondents, 
considering greedy and optimal matching procedures.   We develop alternative propensity matching approaches, 
evaluating each donor selection approach empirically on 12 months of historic data from the MARTS and MRTS 
collections, specifically March 2016 through February 2017.  We further evaluate alternative hot deck donor pool 
criteria on our recommended propensity matching methods, describing the data-availability and quality trade-offs of 
each proposed criterion. We finish with a few situational observations and recommended next steps, as well as some 
general remarks. 
 
Background 
 
The MARTS and MRTS are monthly economic indicators published by the U.S. Census Bureau providing estimates 
of total retail trade across the many industries in the retail trade sector. These estimates serve as inputs into quarterly 
Gross Domestic Product (GDP) published by the Bureau of Economic Analysis. Estimates from the MARTS are 
released approximately nine working days after the reference month and provide an early estimate of total monthly 
sales for certain industries. One month later, the MARTS sales estimate is superseded by the preliminary estimate 
from the MRTS; the MRTS estimate may be further revised to incorporate data from late reporters. Large revisions 
between the MARTS estimates and the corresponding MRTS estimates are highly scrutinized, especially when the 
revision reverses the direction of the seasonally adjusted month-to-month percent change. Consequently, the U.S. 
Census Bureau is investigating methodological enhancements to the current procedures designed to minimize these 



 
 

revisions.  Czaplicki, Gonzalez, and Bechtel (2018) presents exploratory research into alternative estimators for 
MARTS. We focus specifically on item imputation.  
 
The MRTS uses a stratified simple random sample without replacement (SRS-WOR) design, subsampled from the 
Annual Retail Trade Survey.  MARTS uses a stratified probability proportional to size sample without replacement 
(PPS-WOR) design with the unit’s MRTS sampling weight as measure of size; the realized MRTS sample is the 
sampling frame.  MARTS is therefore subsampled from a subsample. Companies that exceed a predefined industry 
cutoff for sales are included in the MARTS sample with a probability of one and are hereafter referred to as 
certainty units. All other sampled units – whose selection probability is less than one – are referred to as 
noncertainty units.  Sampling weights for the same unit will often differ between the two surveys (MRTS and 
MARTS). A new MRTS sample is selected approximately every five years. A new MARTS sample is selected 
approximately every two and a half years with new MARTS samples introduced at the same time as the new MRTS 
sample and again approximately halfway through the MRTS sample cycle. While there are some large companies 
that will remain in consecutive MARTS samples, further overlap between consecutive samples is not attempted.  For 
more details about the MARTS design, see ; 
for more details about the MRTS design, see 

https://www.census.gov/retail/marts/how_surveys_are_collected.html
https://www.census.gov/retail/mrts/how_surveys_are_collected.html.  

 
MARTS sample units are asked to provide a response within approximately seven business days, whereas MRTS 
sample units are given five weeks to provide a response for the same reference period.  Figure 1 plots unweighted 
unit response rates for MARTS from May 2010 through May 2016. A new MRTS sample was introduced in 2012, 
along with the new MARTS sample. A second MARTS sample was introduced in 2015. The sharp increase in 
response rates in late 2013 is due the government shutdown of October 2013 which delayed several data releases, 
thereby giving sampled units more time to respond for those months.  
 

 
Figure 1:  Unweighted unit response rates for MARTS from May 2010 through May 2016 overall and by certainty status 

https://www.census.gov/retail/marts/how_surveys_are_collected.html
https://www.census.gov/retail/mrts/how_surveys_are_collected.html


 
 

The MARTS respondent sample tends to fatigue over time.  Sample fatigue is especially evident in the non-certainty 
domain. Introducing a new MARTS subsample tends to correct for respondent fatigue; notice the large increase near 
the end of 2015. In general, certainty units respond to MARTS at a higher rate than the noncertainty units.  This is 
typical of business surveys where large units are more likely to respond than smaller units in part due to the analyst 
nonresponse follow-up procedures (Thompson and Oliver 2012; Thompson, Oliver, and Beck 2015). However, as 
many of the MARTS certainty units are in sample “indefinitely,” the introduction of a new MARTS subsample does 
not address their sample fatigue. Unit response rates for MARTS tend to be quite low, especially as the length of 
time since the sample introduction increases. With response rates as low as seen in the 2014 and 2015 survey years, 
it is questionable whether the set of MARTS respondents is representative of the intended MARTS sample (Gotway 
Crawford 2013).  Finally, MARTS data are right censored.  On occasion, a unit will not respond to MARTS or will 
provide a late response to MRTS in a reference period, but will provide a timely response to the advance report in 
the subsequent period. However, MARTS units that do not respond for two or more consecutive months generally 
drop out of the survey completely; this is also true for the MRTS-only units. 
 
MARTS uses a link relative estimator (Madow and Madow 1978), a synthetic estimator that multiplies a benchmark 
total from the prior month by an estimate of the month-to-month change (trend) using MARTS sample units with 
data in both the current and prior month.  A unit is considered to be influential if the industry month-to-month 
change estimate differs “substantively” when the unit is deleted. Under this definition, the certainty MARTS units 
are often influential, as are several of the largest noncertainty units. Although MARTS does not perform a 
generalized imputation procedure for all nonrespondents, selected influential nonresponding units’ sales values are 
estimated by subject matter experts using a combination of past company data, calendar effects, and subject matter 
knowledge. The procedures for obtaining a replacement value may differ by company, industry, and analyst, but do 
have common elements. An analyst imputed value from MARTS is retained in MRTS unless (1) the unit provides a 
reported value (late reporter), (2) the analyst-imputed value is visibly different from the estimated industry trend, or 
(3) or the analyst-imputed value fails an edit test. 
 
Analyst-imputed values in MARTS are reviewed by more than one subject matter expert to promote consistency 
across the survey. However, the procedure is subjective, and the applications will vary. Replacing these subjective 
procedures by a more objective and repeatable procedure would be an enhancement to the survey procedures, if the 
replacement procedure can be shown to help reduce revision error or have better – or equivalent – statistical 
properties, especially if the replacement procedure(s) were easily automated and not overly computer resource 
intensive. 
 
Propensity Matching and Hot Deck Imputation Procedures for MARTS 
 
We evaluated two different matching algorithms for pairing donors with recipients, using publicly available SAS 
software developed by Bergstralh and Kosanke at the Mayo Clinic (http://www.mayo.edu/research/departments-
divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-
sas-macros):  (1) the gmatch macro, which implements greedy matching and (2) the vmatch macro, which 
implements optimal matching. These programs allow weighted or unweighted combinations of continuous 
covariates, where the larger weight indicates more importance in the matching criteria. Both applications allow 
caliper matching2 on one or more covariates. Both programs select one or more donors per recipient. The two 
programs also offer a choice of transformations for the matching variables and two distance measures to match 
donors to recipients.  
 
There are three key elements to implementing propensity matching: 
1. Imputation cell definition (blocks) 
2. Matching variables 
3. Donor pool requirements (control definitions) 
 
Greedy matching pairs donors to recipients sequentially. Consequently, the sort order of the input file is another 
factor that might affect the matching outcome.  With optimal matching, the recipient selected for a given donor has 
the closest Euclidean distance over all eligible donors, subject to minimizing the total aggregated distance over all 

                                                           
2 A maximum allowable distance is specified between match variables. 

http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros


 
 

recipients; sort order is irrelevant.  Greedy matches are designed for processing large files with large numbers of 
variables, where the computing resources required by optimal matching could be prohibitive. Greedy matching can 
also be advantageous in prioritizing matches, when combined with a directed sort. 
 
With any imputation procedure, it is important to account for the key features of the survey design in the imputation 
cell definitions to the extent possible, as recommended by Andridge and Little (2009), among others. The usage of 
the donor value in imputation is another important consideration.  The majority of business populations are highly 
skewed. When the key estimate of interest is a survey total, direct substitution of values from a donor could yield 
biased estimates. Instead, a common hot deck imputation procedure applies a donor ratio to an available recipient 
value. For example, administrative data could be available for all sampled units. In this case, the selected donor 
would provide a ratio of the studied outcome variable value to the corresponding administrative data value; the 
imputed value would be obtained by multiplying the recipient’s administrative data value by the donated ratio.   
 
Retail data are highly seasonal.  If the imputation cells are designed to group units with similar seasonal patterns, 
then prorating the recipient value by a donor’s current month-to-prior month change can help ensure that the 
imputed values have similar seasonal effects as reported values, in addition to accounting for differences in unit size.  
Of course, deriving the imputed value via a donor ratio does restrict both the donor and recipient pools, excluding 
units with missing or zero prior month values. In the causal inference framework, the outcome variable is the unit-
level month-to-month change ratio, with the propensity matching pairing donors (control group) to recipients 
(treatment group) with similar expected rates of change.  Imputation cell definitions should take differing seasonal 
patterns into account as well as the survey design.  Matching variables should “explain” the month-to-month change 
ratio, in the sense of being highly predictive and having an intuitively understandable interpretation.  
 
The donor pool requirements are intertwined with the imputation cell definitions. One of the strongest arguments for 
implementing hot deck methods is that they guarantee plausible imputed values (Andridge and Little 2010).  If the 
seasonal patterns differ between imputation cells, then plausibility is only possible when donors are restricted to one 
imputation cell (i.e. no collapsing, unless the collapsed cells have very similar seasonal patterns). For the MARTS 
application, the donor pools for MARTS nonrespondents would be drawn from MRTS-only sampled cases and 
MARTS respondents. Since MRTS-only units have a much later due date than the MARTS units, it is unlikely that 
there would be sufficient reported data in the current statistical period to use current month-to-prior month change in 
practice. Instead, the donors would need to provide historic month-to-month change ratios, either from one year ago 
(accounting for seasonal effects) or from an earlier calendar year with the same calendar effects (number of 
Mondays, Tuesdays, etc.) as the reference period (accounting for seasonal effects and trading day).  The first 
approach has advantages in terms of timeliness and simplicity and could likely be applied for a large percentage of 
the sampled MARTS units. However, the second approach requires historic data for the donors from five years ago 
in our application, an even less recent period. A new sample for MRTS was introduced in December 2012, so that 
five-year-old historic data values were not available for many of the noncertainty MRTS units. Consequently, we 
restricted the donor/recipient pool to MRTS certainty units, eliminating MRTS-only noncertainty units from 
eligibility in the donor pool and MARTS noncertainty units that are also MRTS noncertainty units from the recipient 
pool.  
 
With MARTS, a natural choice for imputation cell might be the MARTS tabulation industry, which is congruent 
with the survey’s seasonal adjustment procedures 
(https://www.census.gov/retail/marts/how_surveys_are_collected.html).  However, these industry definitions are not 
necessarily those used in the sample design, which uses a more disaggregated industry definition.  Using the 6-digit 
North American Industry Classification System (NAICS) industry approximates an important feature of the MARTS 
and MRTS survey designs, without accounting for unit size as done in sampling and estimation. There are other 
correspondence issues with sampling unit and tabulation unit discussed below that make the choice of tabulation 
industry as imputation cell less desirable than on the surface. Given the high level of unit nonresponse (and the 
restriction to MRTS-certainty units), the number of donors in the 6-digit NAICS industries can be very small 
without incorporating an additional size category.  Using the 3-digit NAICS industry as the imputation cell generally 
sidesteps the small sample size problem but introduces the larger concern discussed above, namely the potential for 
implausible imputations.  Figure 2 illustrates this, presenting side-by-side boxplots of unit-level month-to-month 
change for MRTS certainty respondent units for the 6-digit NAICS industries within the NAICS 448 category 
(clothing and clothing accessory stores) using historic data from March 2016. The boxplot on the far left presents the 
distribution within the aggregated 3-digit industry; the remaining boxplots present the 6-digit level distributions.  

https://www.census.gov/retail/marts/how_surveys_are_collected.html


 
 

Notice that the shape and spread for the 3-digit distribution is quite different from the others, and selection of an 
unusually large or small donor ratio could lead to an implausibly imputed value in several of the 6-digit NAICS.  
 

 
Figure 2:  Distributions of Month-to-Month Change in NAICS 448 (Clothing and Clothing Accessory Stores) for MRTS Certainty 
Respondents in March 2016 

The apparent differences in unit level month-to-month change distributions between 3-digit and 6-digit industries 
are endemic. Ultimately, we decided to use 6-digit industry throughout. Unfortunately, this decision leads to “un-
imputable” recipients in some cases, as both the greedy and optimal matching software only use each donor once. 
This is a limitation of the considered procedures. However, the remaining unit nonresponse will be addressed at the 
estimation stage via the link-relative estimator. 
 
By and large, we found strong evidence of a causal relationship between unit size and month-to-month change, 
namely that larger units often exhibit smaller month-to-month change in sales than smaller units within the same 6-
digit NAICS. Figure 3 illustrates this, presenting side-by-side boxplots of unit-level month-to-month change MRTS 
certainty respondent units for the 6-digit NAICS industries within the NAICS 448 category using historic data from 
March 2016. In these boxplots, MARTS certainty status is a proxy for size, as the largest units are included with 
certainty in both MARTS and MRTS.  The red boxplots present the MARTS certainty unit distribution and the blue 
boxplots represent the corresponding noncertainty unit distributions in the parent 3-digit NAICS.  In six of nine 
NAICS, the median change value is smaller for the certainty units. In any case, the two sets of distributions are not 
the same within industry. Accordingly, we decided to incorporate unit size into the matching criteria by using prior 
month sales as a matching variable. 
 



 
 

 
Figure 3:  Distributions of Month-to-Month Change in NAICS 448 (Clothing and Clothing Accessory Stores) for MRTS Certainty 
Respondents by MARTS Certainty Status in March 2016 

The survey research literature discusses the potential effects of complex business organizational structure on 
response (See Thompson, Oliver, and Beck 2015 for a literature review).  As in many business surveys, MARTS 
and MRTS have to distinguish between the survey (sampling) unit, the reporting unit, and the tabulation unit. A 
survey unit is a business selected from the underlying statistical population of similarly constructed units (i.e., from 
the sampling frame). A reporting unit is an entity from which data are collected. Finally, a tabulation unit houses the 
data used in estimation, representing the data at the level used in tabulation.  
 
In a household survey, the reporting unit is usually the sample unit (the sampled address) or is developed from the 
listed roster of address occupants, and the reporting units are the tabulation units.  With a business survey, the three 
types of unit can differ. The survey unit is defined on the sampling frame, the reporting unit is established by the 
sampled unit for reporting convenience (of the sampled unit), and the tabulation can be directly derived (from 
aggregated reporting units) or can be an “artificial” construct used for data storage. In MRTS and MARTS, a 
sampled company may operate in multiple industries. To ease respondent burden, the reporting unit may provide 
data on a single form covering all pertinent industries. Upon processing, these response data are allocated (“split 
out”) among tabulation units, using percentage distributions provided by the survey unit or industry models.  Figure 
4 illustrates the allocation process for a single company that operates in three different industries. For MARTS, the 
same month-to-month change ratio will be applied to all tabulation units associated with a reporting unit, as the 
allocation percentages are constant [On a side note, this provides more justification for donating a month-to-month 
change ratio instead of a value for this survey].  In our analyses, the number of industries associated with the 
reporting unit is the proxy for organizational complexity and was considered as a matching variable. 



 
 

                                                           

 
Figure 4:  Illustration of Survey Unit, Reporting Unit, and Tabulation Units for MARTS and MRTS 

Identifying an informative response propensity model proved to be quite challenging.  The association between unit 
size, length of time in sample, and months since last response and current month response status was consistently 
strong.  Intuitively, we believed that unit drop-out was related to two factors: sample fatigue or business decline. If 
the former, then we do not anticipate an association or causal relationship between response propensity and month-
to-month change in sales. However, a failing business could show a steady decline in sales, yielding very different 
month-to-month change ratios from other – more typical – businesses in the same industry.  We hoped to develop 
response propensity models for MRTS units by fitting logistic regression models to predict response status or by 
fitting Cox proportional hazards regression models to the failure-time data (Cox 1975) to develop a survival function 
score predicting the unit’s probability of continuing to participate in MARTS in the current month.   
 
Unfortunately, the fitted logistic regression models3 using SAS PROC LOGISTIC (SAS/STAT 9.3 User’s Guide 
2015) rarely converged. The response pattern for MRTS units is monotonically decreasing as the time in sample 
increases. However, logistic regression assumes a sinusoidal response function, inappropriate for our data. We 
considered alternative model fitting approaches to the same data – specifically fitting Binomial, Poisson, and 
Negative Binomial distribution log and logit link functions using the SAS PROC GENMOD (SAS/STAT 9.3 
User’s Guide 2015) – but the models rarely converged. The failure to converge could be due to inappropriate model 
choice. However, it is more likely due to the weakness of the collective sets of covariates in predicting nonresponse 
unless the unit is extremely likely to respond (response propensity ≈ 1, generally the largest units who responded in 
the prior month) or is extremely unlikely to respond (response propensity ≈ 0, generally the smallest units who had 
not responded in more than one month). Whitehead, Oliver and González (2014) reported similar model-fitting 
difficulties attempting to fit propensity models to the Quarterly Services Survey data. In the same vein, the omnibus 
test (all βI = 0) was rarely rejected with the proportional hazards regression models fit using the SAS PROC PHREG 
(SAS/STAT 9.3 User’s Guide 2015).  
 
Table 1 presents the candidate matching variables by matching algorithm. With the greedy matching applications, 
the first two variable applications represent random hot deck and nearest neighbor hot deck, respectively, with donor 
usage limits of 1. Random hot deck should be a baseline i.e. any improvements in statistical performance over the 
baseline is attributable to the purposive match. Nearest neighbor hot deck imputation is recommended when unit 

3 Following Phipps and Toth (2012), we did not incorporate sample design into our models, as we were trying to 
identify characteristics that were predictive of responding to the survey, not developing models that could be 
extrapolated to the larger population. 



 
 

size is predictive of outcome, and represents a simplest case approach to purposive matching. The remaining 
methods explicitly incorporate our causal assumptions into the matching procedures. For methods three and five, 
recipients are sorted by descending prior month sales allowing the largest units to get their best matches before the 
smaller units are matched.   
 
Table 1: Studied Propensity Matching Applications 

  Hot deck method Match Variables Sort Variables 
Greedy 1 Random hot deck Random number Random number 

2 Nearest neighbor* Prior Month Sales Random number 
3 Propensity Prior Month Sales Prior months sales 
4 Propensity Prior Month Sales and Number of 

Identified Industries for Reporting Unit 
Random number 

5 Propensity Prior Month Sales and Number of 
Identified Industries for Reporting Unit 

Prior month sales 

Optimal 1 Propensity  Prior Month Sales N/A 
2 Propensity Prior Month Sales and Number of 

Identified Industries for Reporting Unit 
N/A 

*A donor can only be used once. 
 
All applications use Euclidean distances. To facilitate weighting in the matching criteria, the match variables are 
standardized to have mean 0 and standard deviation of 1 using PROC STANDARD (SAS/STAT 9.3 User’s Guide 
2015). 
 
Evaluation Study 
 
We divided our evaluation into two separate phases: 
 
Phase 1:  Compare the alternative matching applications listed in Table 1 to find the method(s) that are most 

effective in selecting donors that yield plausible data 
Phase 2: Compare the statistical performance of the recommended matching algorithm from Phase 1 using 

donated ratios from a year ago (accounting for seasonality) and using donated ratios from five 
years ago (accounting for seasonality and trading day) 

 
We constructed test decks from 12 months of data from respondent MRTS certainty units with both current period 
(xt) and prior period positive sales values (xt-1). The restriction on the current period value provides a measure of 
“truth”; the restriction on the second allows imputation in all industries [Note: there are industries where zero values 
are expected that are ignored in this phase of research]. The first phase of the study uses only the current and prior 
period values in the statistical period. The second phase of the study further restricts the donor pool by placing the 
same restrictions on the two sets of historic ratios.  
 
All computations are performed within MARTS tabulation industry. However, to simplify notation, industry code is 
not referenced in the notation below.  The objective of this evaluation is to compare statistical performance of each 
matching criteria on the available MARTS sample in the studied statistical period. In each industry and statistical 
period, let nt represent the number of MARTS sample units that provided valid response data in the current and prior 
statistical periods and are also MRTS-certainty units. Since the MARTS certainty units are considerably larger than 
the remaining noncertainty units, we randomly split these cases into donors and recipient groups within 6-digit 
NAICS in each statistical period.  With greedy matching, the results are conditional on the donor and recipient pool; 
we hoped that the independent splitting by statistical period would lessen the effects of this confounding. The 
remainder of the donor pool consisted of MRTS-only certainty respondents in the current statistical period. The 
remainder of the recipient pool consisted of MARTS noncertainty units that were sampled with certainty in MRTS. 
In summary, there are ndt donors from MARTS and nrt recipients in MARTS (nt = ndt + nrt), with an additional set of 
donors obtained from the MRTS-only certainty cases. Since the greedy and optimal matching perform one-to-one 
matches, when there are fewer donors than recipients in an imputation cell, there will be some remaining unimputed 
cases. Thus, the total number of imputed units in imputation cell is given by 𝑛𝑛𝑟𝑟𝑟𝑟′ = ∑ 𝐼𝐼𝑖𝑖

𝑛𝑛𝑟𝑟𝑟𝑟
𝑖𝑖=1  where 𝐼𝐼𝑖𝑖  is a 0/1 indicator 

of successful (> 0) imputation for recipient i. 



 
 

 
We computed the following evaluation statistics within each imputation cell: 
 

Mean Absolute Error (MAE)     𝑀𝑀𝑀𝑀𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎 = ∑  �𝑥𝑥𝑡𝑡,𝑟𝑟(𝑖𝑖) − � 
𝑋𝑋𝑡𝑡,𝑑𝑑(𝑖𝑖)
𝑎𝑎𝑎𝑎

𝑋𝑋𝑡𝑡−1,𝑑𝑑(𝑖𝑖)
𝑎𝑎𝑎𝑎 � 𝑥𝑥𝑡𝑡−1,𝑟𝑟(𝑖𝑖)�
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Where 𝑥𝑥𝑡𝑡,𝑟𝑟(𝑖𝑖) is the reported (true) value of sales for MARTS recipient i at time t, 𝑥𝑥𝑡𝑡,𝑑𝑑(𝑖𝑖)

𝑎𝑎𝑎𝑎  and 𝑥𝑥𝑡𝑡−1,𝑑𝑑(𝑖𝑖)
𝑎𝑎𝑎𝑎  are the values 

for times t and t-1 for the donor assigned to recipient i selected using algorithm a and matching variables m, xtj is the 
value of the MARTS unit j at time t, 𝑤𝑤𝑡𝑡,𝑟𝑟(𝑖𝑖) is the MARTS sampling weight, and Kj is a 1/0 indicator for a MARTS-
donor unit. The unweighted MAE measures the average magnitude of the error per imputed unit and is therefore 
conditional on obtaining matched values.  The unconditional relative bias (URB) measures the overall effect of the 
imputation error on the tabulated estimates for a given donor selection method. When an imputation cell contains 
fewer donors than recipients, this measure will be biased.  The conditional relative bias (CRB) provides the direction 
of the imputation bias (if it exists) for the imputed units and gives some indication of magnitude. However, this 
measure will be extremely sensitive to unit size. For example, the CRB could be close to zero if the imputed value 
for the largest unit was approximately the same as the true value, even if the remaining imputes are poor. The 
reverse could also be true i.e. the imputation error could be close to zero for the majority of the smallest units in the 
imputation cell, but a poorly imputed large unit could yield a very large CRB.   
 
We use a five-percent significance level for all the hypothesis tests discussed in the results presented below. 
 
Evaluation:  Phase 1 (Selection of Donors) Results 
 
In this phase of research, we compare the alternative matching applications listed in Table 1 to find the method(s) 
that are most effective in selecting donors that yield plausible data. We focus on MAE as our primary criterion, 
using the CRB results to reinforce our initial conclusions. As mentioned above, the CRB is very sensitive to unit 
size. We do not use the URB in this analysis because the contribution from the un-imputed MARTS donors tends to 
obscure the contribution from the recipient cases. The URB is more useful in the second phase of this research. 
 
Our first comparison examines differences in accuracy when using one variable versus two (holding the matching 
algorithm constant), using chi-square tests for independence to substantiate suspected treatment differences. Recall 
that matching and imputation were performed independently by statistical period and tabulation industry. Thus, in 
this analysis and the sort comparison described below, the blocks (subjects) are tabulation industry.  Our exploratory 
analyses did not find any evidence for or against a relationship between the number of identified industries for the 
reporting unit and month-to-month change, but the subject matter experts felt strongly that it should be considered. 
This contrasts with the consistent evidence of an association between unit size and month-to-month change 
described above. To perform these tests, we set an indicator variable = 1 when the MAE from the 2-variable match 
was smaller than the corresponding 1-variable match. In all applications, we rejected the null hypothesis of 
independence, providing evidence that omitting the second variable (number of identified industries for the reporting 
unit) improved the matching quality on MAE (p-value = 0.0007 for Greedy Match/Random Sort, p-value = 0.0002 
for Greedy Match/Ordered Sort, p-value = 0.0314 for Optimal Match). We performed analogous tests with the CRB, 
with the same results (p-value = 0.0001 for Greedy Match/Random Sort, p-value = 0.0001 for Greedy 
Match/Ordered Sort, p-value = 0.0246 for Optimal Match).  Consequently, we dropped the 2-variable match options 
from further consideration.  
 
Next, we looked at the effect of sorting with the Greedy Matching (1-variable), again performing chi-square tests for 
independence. For these analyses, we set an indicator variable = 1 when the MAE (or CRB) from the match obtained 
using an ordered sort (Greedy match method 3) was smaller than the corresponding match obtained using a random 
sort. With the MAE, the results were less conclusive, with a p-value = 0.0623 and indeed, there were several 



 
 

industries where the results within the same industry were split between the two methods. With CRB, results 
differed greatly by industry, and we were unable to reject the null hypothesis of independence (p-value = 0.2146). 
 
This left us with four candidate matching algorithms: (1) random hot deck, (2) nearest neighbor hot deck with a 
donor limit of 1, (3) greedy matching with units sorted by descending prior month sales with prior month sales as the 
matching variable, and (4) optimal matching on prior month sales. The evaluation is a complete block design 
experiment. In our design, the tabulation industries represent the blocks, and the treatments are the matching 
algorithm.  The independent variable (obtained each statistical period) is the evaluation statistic, either MAE or 
Absolute Value of CRB. Typically, a complete block repeated measures design is analyzed using a two-way analysis 
of variance (ANOVA). At a minimum, ANOVA assumes that the residuals have the same variances 
(homoscedasticity), but inferences that use the F-test require that variances are i.i.d. normal. Instead of making this 
tenuous assumption, we used the Friedman Test (Friedman 1940), the two-way ANOVA that uses rank as the 
measure of interest. There are two assumptions for this test: (1) the results between block are approximately 
independent i.e. the results for one product do not influence the results for the other products; and (2) within block, 
the observations can be ranked in order of interest.  Demsar (2006) recommends a minimum of five treatments to 
attain comparable power to the ANOVA test; Conover (1999, Chapter 5.8) does not provide a similar limit on 
number of treatments or number of blocks, but does note that the power of the tests is directly affected by both. We 
used the more conservative two-way analysis of variance statistic on ranks recommended by Iman and Davenport 
(1980). 
 
For each evaluation statistic, we ranked the outcome from the four treatments within statistical period and industry 
(using the mean value of the ranks for ties), aggregated the ranked values within industry, and performed the 
Friedman Tests within statistical period.  Tables 2 and 3 provide the aggregated ranks over industry by statistical 
period for MAE and CRB, respectively. Here, the omnibus test is of primary interest, where the null hypothesis is 
that the aggregated ranks for each treatment are all equal. If the null hypothesis is rejected, then pairwise 
comparisons are appropriate. The final column of each table provides the p-value for the omnibus test.  
 
Table 2:  Aggregated Ranks for MAE Comparison with Industries as Subjects, 

Statistical 
Period 

Random Hot 
Deck 

Nearest 
Neighbor 

Greedy 
 (Size Sort) 

Optimal P-Value 
(Friedman) 

201603 89 67 76 68 < 0.0001  
201604 83 72 74.5 70.5 < 0.0001  
201605 87.5 73.5 71.5 67.5 < 0.0001  
201606 92 69 69.5 69.5 < 0.0001  
201607 89 71.5 68 71.5 < 0.0001  
201608 92.5 71.5 59.5 76.5 < 0.0001  
201609 108 61.5 66 64.5 < 0.0001  
201610 84 80.5 67.5 68 < 0.0001  
201611 91.5 67.5 64.5 76.5 < 0.0001  
201612 81.5 70 75.5 73 < 0.0001  
201701 97.5 75 64 63.5 < 0.0001  
201702 89 67.5 76 67.5 < 0.0001  

(All) 1084.5 846.5 832.5 836.5  
 
The significant results shown in Table 2 can be attributed to the poor performance of the Random Hot Deck relative 
to the other three methods. Optimal matching and greedy matching with units sorted by descending prior month 
sales yield similar MAE’s on average, although there is no consistent pattern within industry and across statistical 
period. 
 
Table 3:  Aggregated Ranks for Absolute Value of CRB Comparison with Industries as Subjects, 

Statistical 
Period 

Random Hot 
Deck 

Nearest 
Neighbor 

Greedy  
(Size Sort) 

Optimal P-Value 
(Friedman) 

201603 71 82 80 67 < 0.0001  
201604 90 74 67.5 68.5 < 0.0001  
201605 74.5 73.5 70.5 81.5 < 0.0001  



 
 

201606 86 75 69.5 69.5 < 0.0001  
201607 86 66.5 71 76.5 < 0.0001  
201608 91.5 60.5 73.5 74.5 < 0.0001  
201609 99 70.5 64 66.5 < 0.0001  
201610 71 75.5 76.5 77 < 0.0001  
201611 71.5 78.5 75.5 74.5 < 0.0001  
201612 87.5 69 71.5 72 < 0.0001  
201701 94.5 67 64 74.5 < 0.0001  
201702 99 73.5 68 59.5 < 0.0001  

(All) 1021.5 865.5 851.5 861.5  
 
Initially, we planned to take the direction of the CRB into account as well as the magnitude. However, negative 
relative biases were extremely rare, and there was consistent pattern within industry and statistical period by 
treatment. Consequently, we focus on the magnitude of the CRB. Again, Random Hot Deck has the worst 
performance.  In this case, the other three treatments are about equally effective, even given the earlier caveats about 
the CRB’s sensitivity to unit size. 
 
For both MAE and CRB, the greedy matching with units sorted by size and the optimal matching slightly 
outperform the nearest neighbor applications.  Of the two, there is little compelling evidence to recommend one 
method over the other for these data. However, greedy matching can give very poor results at the end of the list, 
when donors may be very different from recipients. This is not a consideration with optimal matching, since the 
distance is minimized over all recipients. Furthermore, there were software issues with the greedy matching when 
there were fewer donors than recipients (the software would not execute). In these cases, we “tricked” the 
application by switching donor and recipient classifications. This bookkeeping was unnecessary with the optimal 
matching software. For these reasons, we decided to restrict the matching algorithm to optimal matching to compare 
alternative donor pools.  
 
Evaluation:  Phase 2 (Selection of Hot Deck Donor Pool) Results 
 
In practice, insufficient MARTS/MRTS respondent data will be available to use for imputation in the current 
statistical period. Instead, matched donors will provide historic ratios, either from the same two month period in the 
prior year (seasonal ratios) or from the most recent year with the same weekday composition by month as the current 
year (seasonal ratios and trading day effects), which for March 2016-February 2017 is five years earlier. There are 
excellent arguments for using the second set of donor ratios with retail trade data, which are highly seasonal with 
consistently significant trading day effects in most industries. However, adding these further restrictions on the 
donor pools does limit the number of potentially imputed missing observations.  
 
Table 4 presents summary statistics for the donor-to-recipient ratios obtained from our datasets (30 industries). To 
obtain these measures, we compared counts within industry and statistical period, then averaged the measures within 
industry (across statistical periods). The summary measures presented in Table 4 use the entire set of averaged ratios 
(across industries). Of course, these ratios will vary within industry by statistical period and may not be 
representative of what would be seen in a production system due to our experimental design. However, they do 
provide some insight into the effects of restricting the donor pool. 
 
Table 4:  Summary Statistics on Average Donor to Recipient Ratios and Donor to Donor Ratios in the Study 

Ratio Min. Q1 Med. Q3  Max. 
Donors (1 Year Ago) to Recipients 0.89 1.69 2.14 3.19 5.58 
Donors (5 Years Ago) to Recipients 0.55 0.97 1.38 1.69 2.70 
Donors (5 Years Ago) to Donors (1 Year Ago) 0.24 0.50 0.59 0.73 1.00 

 
Using the older ratios greatly reduces the donor pool in many cases. In turn, this will have an effect on the matching, 
since there are fewer choices.  Using the more current ratios (from a year ago) creates more matching options.  
 
Of course, if the trading day effect is as important as the seasonal effects, then it would be unwise to use the larger – 
and more recent – sets of ratios. We performed chi-square tests for independence to assess the treatment effect 



 
 

(donor choice) on MAE and on the Absolute Unconditional Relative Bias (URB), again ignoring direction (neither 
method consistently underestimated). Except for the rare case when there are different numbers of imputed 
recipients within the same imputation cell – which occurs when one or both of the donor pools contained fewer 
observations than the intended number of recipients – the denominator for the MAE is the same within imputation 
cell and industry for each treatment. Using the URB guarantees similar conditions. However, the treatment effects 
on the URB are somewhat mitigated by the large MARTS donor units’ values that are included in the numerator and 
denominator, making this a less informative measure.   
 
With the MAE, there was a significant treatment effect (p-value = 0.0006):  in 17 industries, the 5-year-old donor 
imputation outperformed the 1-year old donor imputations in the majority of statistical periods; in 11 industries, the 
reverse was true; and in two industries, the methods tied. With the URB, there was also a significant treatment effect 
(p-value=0.0475):  in 16 industries, the 5-year-old donor imputation outperformed the 1-year old donor imputations 
in the majority of statistical periods; in nine industries, the reverse was true; and in five industries, the methods tied.  
 
These results are statistically significant. However, there are systematic differences by industry, likely due to the 
differing trading day effects. Furthermore, the corresponding MAEs within an industry and statistical period often 
differed by at least 10-percent (i.e. the MAE’s were at least 10-percent higher for the “worse” method). Choosing 
the wrong imputation method could therefore lead to severe overestimation. In the cases where the 5-year old donor 
ratios were preferable, there really was no “trade-off” between the reduced donor pool size and imputation quality. 
Unfortunately, when the reverse was true, then the larger donor pool does appear to lead to improved imputation. 
 
Furthermore, the study design that we use is not a realistic proxy for production. We restrict our analysis data to 
respondents (to provide a “true” value) and randomly split the largest units into donors and recipients. In reality, the 
donor and recipient composition will not be as congenial. Moreover, optimal matches will be optimized for the 
available data and may not be as effective as seen here. What’s more, for the study period, we were fortunate that 
the calendar that matched the current-year weekday composition was only five years old.  For 2017-2018, the most 
recent calendar match would be 2006-2007.  In this case, the benefits of incorporating trading day effects into the 
imputation might be offset by changes in the economy beyond seasonality, in addition to the severe limitations on 
the donor pool. In theory, the imputation method that yields the most accurate predicted values should in turn lead to 
the estimated MARTS total that is closest to the preliminary MRTS estimate for the same reference period. Failing 
to find this single method, we recommend testing both on empirical MARTS data, constructing the resultant link 
relative estimated totals, and performing additional comparisons before making any recommendations. 

Finally, another challenge with imputing with historic month-to-month changes, no matter how many years in the 
past, are the effects of price. Some retail industries, namely gas stations and fuel dealers, have sales levels that 
are extremely price driven. Prices can shoot up over matter of days or weeks causing large month-to-month 
changes that are not part of any repeating seasonal pattern. Using these historic month-to-month changes for current 
month imputation could be problematic. 

Conclusion 
 
Hot deck imputation is often lauded for yielding plausible imputed values without depending on an unprovable 
model, in contrast with other deterministic or stochastic imputation methods such as regression or ratio imputation 
or sequential regression multiple imputation, to name a few examples. However, hot deck imputation applications 
implicitly use models, for developing imputation cells and as match variables. Similarly, propensity score matching 
relies on models. For both, conventional wisdom tends to shy away from parsimonious models. After all, why not 
include any possible variable that could be predictive of outcome? 
 
In surveys, restricting matching variables can be the wise choice. Often – as was seen here – our intuition is simply 
not validated by outcome. In our applications, the effectiveness of the propensity score matching actually decreased 
as variables were added. This decreased effectiveness might be due to a wrongly assumed causal relationship. 
Equally likely, it could have been the consequence of the more restrictive matching conditions. Regardless of the 
reason, the recommendation to restrict the set of matching variables seems to defy conventional wisdom. 
 



 
 

Or, does it? Traditionally, propensity score matching combines a set of covariates into a single score, the prediction 
of the collective set of variables to the studied outcome. This presupposes that such a set of covariates can be found. 
This is the same challenge that often impedes the development of viable response propensity models in business 
surveys.  Demographic surveys often have a suite of available predictors.  Business surveys often do not. Hence, the 
emphasis on data collection, especially for the largest sampled businesses in a survey. Often, there is no substitute 
for the sampled units.   
 
Of course, this general problem could change, as auxiliary data become more available and “big data” analysis 
techniques become more accessible. Having more data sources could solve the “lack of predictor” problem. That 
said, it could also introduce new coverage discrepancies as well as unit discrepancies with their own errors. In the 
meantime, the simple propensity optimal matching algorithm studied – and ultimately recommended – in this paper 
provides an easily implemented missing data treatment that relies on a minimal set of assumptions and can (in many 
cases) provide viable and automated predictions. 
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