Respondent Driven Sampling: Introduction and Applications

Sunghee Lee
University of Michigan

Federal Committee on Statistical Methodology Research and Policy Conference
March 7, 2018
Outline

Introduction

Application

Health and Life Study of Koreans (HLSK)

Summary
Introduction

Respondent Driven Sampling (RDS)
Network Sampling vs. RDS
RDS Inferences
Respondent Driven Sampling – 1

• Growing interest in studying hard-to-reach, rare, elusive, hidden populations
 – HIV at-risk population: Sex workers, IDUs, MSMs
 – LGBT populations
 – Recent immigrants

• No clear and practical solution with probability sampling
 – High screening costs
 – Hesitant to be identified
Respondent Driven Sampling – 2

• Proposed by Heckathorn (1997, 2002)
• Popular usage in public health (~$100 million research funds by NIH as of 2011)
• Exploits social networks among rare population members for sampling purposes
 – Sampled members also play a role of a recruiter
 – Incentivized recruitment from own network through coupons and this continues in waves/chains
 – Recruitment assumed to be random within each individual’s network and to follow memory-less Markov chain and reach equilibrium
Respondent Driven Sampling – 3

WAVE 1
- Seed 1
- Seed 2
- Seed 3
- Seed S
- Recruitment Coupon

WAVE 2
- Recruit 1
- Recruit 2
- Recruit 3

WAVE 3
- Recruit 1
- Recruit 2
- Recruit 3

WAVE \(W\)
- Recruit 1
- Recruit 2
- Recruit 3
- Recruit \(R - 2\)
- Recruit \(R - 1\)
- Recruit \(R\)

S. Lee

FCSM Conference
Respondent Driven Sampling – 4

WAVE 1: Seed 1 → Recruit 1 → Recruit 2 → Recruit 3

WAVE 2: Seed 1 → Recruit 1 → Recruit 2 → Recruit 3

WAVE 3: Seed 1 → Recruit 1 → Recruit 2 → Recruit 3

WAVE W: Recruit 1 → Recruit 2 → Recruit 3

Recruitment Chain:
- Seed 1
- Recruit 1
- Recruit 2
- Recruit 3

S. Lee
FCSM Conference
Network/Multiplicity Sampling

• Sirken (1972, 1975)

• Sample from a sample’s network
 – Conduct an interview with a sample
 – Roster eligible kinship members with contact information
 – Sample from the roster
Network Sampling vs. RDS

Similar:
• Rely on social networks

Different:
• Network specification
 – NS: biological siblings, immediate family members
 – RDS: jazz musicians
• Who selects the sample
 – NS: researchers
 – RDS: study participants with coupon
• Selection probability
 – NS: Known
 – RDS: (Mostly) Unknown
RDS Inferences

Issues

1. Nonprobability
 - Within network selection probability may be computed (e.g., # recruits/network size), but
 - Unclear coverage of “network”
 - Measurement error in “network size”
 - With or without replacement?
 - Seed selection probability unknown

2. Dependence
 - Recruiters and recruits are similar

3. None beyond univariate statistics
RDS Inferences: Point estimator

• For binary variables

RDS-I: $\hat{p}_{B}^{RDS-I} = S_{AB} \dd_A / (S_{AB} \dd_A + S_{BA} \dd_B)$

RDS-II: $\hat{p}^{RDS-II} = \sum_{i \in S} (\dd_i^{-1} y_i) / \sum_{i \in S} \dd_i^{-1}$

SS (Gile): $\hat{p}^G = \sum_{i \in S} \left(\hat{\pi}(\dd_i)^{-1} y_i \right) / \sum_{i \in S} \hat{\pi}(\dd_i)^{-1}$

- S_{AB}: proportion of ties (i.e., connections) that cut across A and B (e.g., the proportion of female peers among all peers recruited by all male participants)
- $\dd_A = \sum_{i \in A} \dd_i / n_A$
- \dd_i is degree reported by respondent i
 - Large degree \rightarrow high selection probability \rightarrow small “weight”
- n_A is the sample size of A
- y_i: Outcome variable
- $\hat{\pi}(\dd_i)$: estimated population distribution of degrees through successive sampling
RDS Inferences: Sampling Variance – 1

• Naïve estimator

• Direct estimator by Volz-Heckathorn ($\hat{\theta}^{VH}$)
 - Not usable (requires full network information for all individuals in the population)
 - Only for proportions
 - Assumes first-order Markov process
 • Dependency only between immediate recruiter-recruits
 • Dependency static across chains and waves
RDS Inferences: Sampling Variance – 2

• Bootstrap by Salganik ($\hat{\nu}^S$)
 1. Group non-seeds by characteristics of recruiter (e.g., recruited by male vs. female)
 2. Randomly sample a seed
 3. Sample a non-seed from the group based on the seed in 2
 4. Sample a non-seed from the group based on the non-seed in 3
 5. Continue this until the bootstrap sample size equals to n

- Only for proportions
- Assumes first-order Markov process only on the inference variable
RDS Inferences: Sampling Variance – 3

• Bootstrap based on recruitment chains
 1. Randomly sample a seed and preserve its entire recruitment chain
 2. Continue until the bootstrap sample size equals to n

- Can be used for all statistics across all variables
- Do not assumes first-order Markov process
Application: Health and Life Study of Koreans (HLSK)

Funded by the National Science Foundation (GRANT NUMBER SES-1461470)
HLSK

• Targets foreign-born Korean American adults in
 – Los Angeles County
 – State of Michigan

• Web-RDS survey
 http://sites.lsa.umich.edu/korean-healthlife-study/
 – Unique number required for participation
 – Incentive payment through checks

• Target n=800 (currently ~600)

• Benchmarks from American Community Survey
HLSK Formative Research

• 3 rounds of focus group discussions
 – ~30 participants; 2 rounds in Korean and 1 in English
 – Discussion focused on
 • Web surveys
 → URL, Web site contents, etc.
 • Concept of RDS
 • Coupons
 → Up to 2 coupons
 → “Expire” in 2 weeks
 • Level of incentives
 → $20 for main, $5 for follow-up, $0 for recruitment
HLSK Data Collection

- Started with 12 seeds in LA in June 2016
- MI added in November 2016

LA seeds (initially)
 - Recruited through referral
 - Balanced on gender, age, dominant language
 - In-person introduction about the study

→ It became clear the protocols would not work
 - Provide recruitment incentives
 - Add more seeds
HLSK Data Collection Progress

- Site LA: n=336, 123 seeds, 638 coupons
- Site MI: n=270, 88 seeds, 519 coupons

S. Lee
HLSK vs. ACS – 1

• American Community Survey 2011-2015 data
• HLSK sample estimates
 – Unweighted (UW)
 – RDS-I
 – Weighted: RDS-II
 – Weighted: Post-stratification (PS) by age, sex, educ
 – Weighted: RDS-II + PS
HLSK vs. ACS – 2

LA Estimates (n=336)

MI Estimates (n=270)

Proportion

Age > 30, Male, Edu >= College, Married, Worked past wk, Arrived >= 2000, US Citizen, High Eng Prof, ADL Diff

ACS

UW

ACS

UW

S. Lee

FCSM Conference

-21-
HLSK vs. ACS – 3

Benchmarks and Sample Estimates: LA (n=336)
HLSK vs. ACS – 4

Benchmarks and Sample Estimates: LA (n=336)
HLSK vs. ACS – 5

- HLSK sample estimate CI
 - Unweighted (UW), Naïve
 - RDS-I, Naïve
 - RDS-I, Chain-bootstrap (CB)
 - Weighted: RDS-II, Naïve
 - Weighted: RDS-II, CB
HLSK vs. ACS – 6

LA CI Comparison (n=336)

<table>
<thead>
<tr>
<th>Age >30</th>
<th>Edu >=College</th>
<th>US Citizen</th>
<th>ADL Diff</th>
</tr>
</thead>
</table>

Proportion

- UW,NAIVE
- RDS-I,NAIVE
- RDS-I,CB
- W:RDS-II,NAIVE
- W:RDS-II,CB
Summary
What did we learn? – 1

• Non-cooperation is an issue for generating long chains (memorylessness unlikely)
• Had to improvise to make RDS “work”
• Sample size (hence, chain length) is a random variable affected by many (mostly unknown) factors
• Inferences unclear and limited
What did we learn? – 2

• YET, difficult-to sample groups can be recruited
 — highly-educated young recent immigrants
 — low Korean density areas (e.g., MI UP)
Where should we go?

• Non-cooperation is critical for
 – meeting theoretical assumptions (hence, inferences)
 – study design
 – replications of the same study

• Yet to be addressed in the literature and accounted for in inferences
Thank you
sungheel@umich.edu
References

