
 

 

SABLE: Tools for Web Crawling, 
Web Scraping, and Text Classification 

 
Brian Dumbacher1, Lisa Kaili Diamond1 

Brian.Dumbacher@census.gov, Lisa.Kaili.Diamond@census.gov 
1U.S. Census Bureau, 4600 Silver Hill Road, Washington, DC 20233 

 
Proceedings of the 2018 Federal Committee on Statistical Methodology (FCSM) Research Conference 

 
Abstract 
For many economic surveys conducted by the U.S. Census Bureau, respondent data or equivalent-quality data can  
sometimes be found online such as on respondent websites and government agency websites.  An automated process 
for finding useful data sources and then scraping and organizing the data is ideal but challenging to develop.  
Websites and the documents on them have various formats, structures, and content, so a long-term solution needs to  
be able to deal with different situations.  To this end, Census Bureau researchers are developing a collection of tools  
for web crawling and web scraping known as SABLE, which stands for Scraping Assisted by Learning (as in 
machine learning).  Elements of SABLE involve machine learning to perform text classification and au tocoding.  
SABLE is based on two key pieces of open-source software: Apache Nutch, which is a Java-based web crawler, and 
Python.  This paper gives an overview of SABLE and describes research to date, potential applications to economic 
surveys, efforts in moving to a production environment, and future work. 
 
Key Words:  U.S. Census Bureau, economic statistics, web crawling, web scraping, text classification 
 

1.  Introduction 
 
1.1  Background 
For many economic surveys conducted by the U.S. Census Bureau, respondent data, equivalent-quality  data, and 
relevant administrative records can sometimes be found online.  For example, the Census Bureau conducts public 
sector surveys of state and local governments to collect data on public employment and finance (U.S. Census 
Bureau, 2017a).  Much of this data is publicly available on respondent websites in Comprehensive Annual Financial 
Reports (CAFRs) and other publications.  Another example of an online data source is the Securities and Exchange 
Commission (SEC) EDGAR database.  The EDGAR (Electronic Data Gathering Analysis and Retrieval) database 
contains financial filing information for publicly traded companies and is used often by Census Bureau analysts to 
impute missing values and validate responses for many economic surveys.  Going directly to online sources such as 
these and collecting data passively has a lot of potential to reduce respondent and analyst burden (Dumbacher and  
Hanna, 2017).  For the most part, the Census Bureau’s processes for collecting economic data from online s ources 
are manually intensive.  Efficiency can be improved greatly by using automated methods s uch as web  s craping 
(Mitchell, 2015). 
 
1.2  Challenge 
An automated process for finding useful data sources and then scraping and organizing the data is ideal but 
challenging to develop.  Websites and the documents on them have various formats, structures, and  content , s o a 
long-term solution needs to be able to deal with different situations.  To this end, Census Bureau  researchers are 
developing tools for web crawling and web scraping that are assisted by machine learning.  This collection o f tools 
is known as SABLE, which stands for Scraping Assisted by Learning.  Elements of SABLE involve machine 
learning to perform text classification [for a discussion of text analytics topics, see Hurwitz et al. (2013, chap . 13)] 
and autocoding (Snijkers et al., 2013, p. 478).  Text classification models are used for differen t  reasons, s uch  as 
predicting whether a document contains useful data or mapping scraped data to Census Bureau  termino logy  and 
classification codes. 
 
 
__________________________________ 
Disclaimer: Any views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. 
 

1 

mailto:Brian.Dumbacher@census.gov
mailto:Lisa.Kaili.Diamond@census.gov


 

 

1.3  Outline 
The rest of the paper is organized as follows.  Section 2 gives an overview of SABLE, its machine learning 
methodology, underlying software, and architecture design.  Section 3 covers potential applications and ongoing 
areas of research such as public sector surveys, SEC metadata, and text classification problems for assigning  codes 
to survey write-in responses.  SABLE is currently being moved from a research environment to a production 
environment, and Section 4 describes this effort.  Lastly, Section 5 describes future work, particularly ideas for 
quality assurance. 
 

2.  SABLE Overview 
 
2.1  Main Tasks 
SABLE performs three main tasks: web crawling, web scraping, and text classification.  Web crawling is the 
automated process of systematically visiting and reading web pages.  Web crawlers, also known as spiders o r bo ts, 
are typically used to build search engines and keep website indices up to date.  For SABLE, web crawling is used to  
discover potential new data sources on external public websites and to compile training sets of documents for 
building classification models. 
 
Web scraping involves finding and extracting data and contextual information from web pages and documents.  This 
is an automated process and an example of passive data collection, whereby the respondent has little awareness o f 
the data collection effort or does not need to take any explicit actions.  In order to scrape data from some documents, 
they might have to be converted to a format more amenable to analysis.  This is especially t rue fo r documents in  
Portable Document Format (PDF).  Models based on the frequencies and locations of important word sequences can 
be employed to find useful data in documents. 
 
Text classification is the task of assigning text to a category, or class, based on  it s  content  and important  word  
sequences.  SABLE uses machine learning to classify text.  Text classification models can be used to predict 
whether a document contains useful data or to map scraped data to the Census Bureau’s terminology and 
classification codes.  The models developed for this task have also found applications beyond web scraping to  the 
automation of classifying survey write-in responses. 
 
Table 1, which is adapted from Dumbacher and Hanna (2017), summarizes the tasks performed by SABLE.  Not  all 
three tasks may be relevant to a given application.  For example, data sources may already be determined, so it  may  
not be necessary to perform web crawling.  In this case, the problem would consist of just scraping and clas sifying 
data from known websites and documents. 
 
 

Table 1. Three Main Tasks Performed by SABLE 
Web Crawling 

• Scan websites 
• Discover documents 
• Compile a training set of documents for building classification models 

Web Scraping 
• Find the useful data in a document using the frequencies and locations of 

important word sequences 
• Extract numerical values and contextual information such as data labels 

Text Classification 
• Predict whether a document contains useful data 
• Map scraped data to the Census Bureau’s terminology and classification codes 

using data labels associated with the scraped data 
• Classify survey write-in responses 

 
 
 
 

2 



 

 

2.2  Machine Learning Methodology 
Some SABLE applications use machine learning to fit text classification models and perform autocoding.  
Specifically, supervised learning is used to assign a class to a piece of text using a set of predictors, or features, and 
a training set of data (Hastie et al., 2009, chap. 1).  This training set contains classes that are assigned by hand and 
regarded as truth.  Creating a large, representative, and good-quality training set is an important but manually 
intensive and time-consuming task.  Text classification models for SABLE are based on features that are 0/1 
variables indicating the presence of word sequences in the text.  These word s equences are known as  n -grams .  
Common so-called “stop” words such as articles and prepositions are removed from the text before creating features 
because they are not expected to be predictive of the class.  Generally speaking, machine learning algorithms  p ick 
up on complicated patterns and associations between the presence of n-grams and classes.  Some algorithms that we 
have tried include Naïve Bayes and support vector machines, which are mentioned in  Sect ion 3.1.  To  evaluate 
model performance, the fitted models can be applied to a separate test or validation dataset with classes that  can be 
regarded as truth.  For each observation in the test set, the predicted class can be compared to the true class. 
 
Figure 1 illustrates fitting and evaluating text classification models in the context of predicting whether documents 
scraped from government websites contain useful data on tax revenue collections.  For more details about this 
application and the machine learning methodology, see Section 3.1 and Dumbacher and Capps (2016).  Also, fo r an  
excellent overview of classification concepts and model evaluation, see Tan, Steinbach, and Kumar (2006, chap. 4). 
 
 

 

Figure 1. Illustration of machine learning process for fitting and evaluating text classification models.  Bas ed on 
Figure 4.3 from Tan, Steinbach, and Kumar (2006, p. 148). 

3 



 

 

2.3  Software 
SABLE is based on two key pieces of open-source software: Apache Nutch, which is a  Java-based web  crawler 
(Apache, 2017), and Python.  To run Nutch, one supplies a list of seed URLs, or starting points of the crawl, and sets 
parameters related to politeness and depth.  Politeness refers to how frequently the web crawler jumps from one web 
page to another.  Visiting pages too frequently can burden websites’ servers.  To avoid this, Nutch is able to 
incorporate a delay as it crawls.  Websites provide politeness parameters such as this to web crawlers through  a file  
called “robots.txt.”  Depth refers to how many levels of links to follow.  A deeper crawl will map  a webs ite more 
extensively but will take longer to run.  Nutch also has filters that one can apply to limit crawling to certain website 
domains and file types.  Nutch first visits the seed URLs and then iteratively follows links down to  the s pecified  
depth, effectively indexing the website.  As Nutch crawls, it stores information about the pages and documents it  
comes across.  This information includes date and time stamps and whether links are duplicates, are b roken , o r 
redirect to other URLs. 
 
Python is a popular programming language for Big Data and data science applications.  SABLE us es Py thon  to 
scrape text and data from documents, process the scraped data, perform text analysis, and fit and evaluate 
classification models.  There are three main Python modules: scikit-learn, the Natural Language Toolkit  (NLTK), 
and PDFMiner.  Scikit-learn is a commonly used machine learning module with many options for classification 
(Pedregosa et al., 2011).  NLTK is used to process and analyze text and also has some machine learning capab ility  
(Bird, 2006).  The NLTK and scikit-learn modules have complementary features that make it easy to fit 
classification models for text.  Lastly, PDFMiner converts PDFs to TXT format and is used in many SABLE 
applications (Shinyama, 2013). 
 
2.4  Architecture Design 
The architecture design for SABLE is fairly simple.  Figure 2 illustrates this design.  SABLE resides on a Linux 
server behind the Census Bureau’s firewall and crawls and scrapes data from external pub lic websites.  Apache 
Nutch is self-contained and consists of the application itself, parameter files for customizing crawls, and directories 
for storing crawl results.  The Python programs are located in a separate folder.  Supplementary files consist of lis t s 
of common “stop” words that are useful for text analysis.  For some problems involving PDF-to -TXT conversion 
and the classification of entire documents, additional folders are used to organize documents according to file format 
and class. 
 
 

 

Figure 2. SABLE architecture design.  SABLE resides on a Linux server behind the Census Bureau’s firewall and  
crawls and scrapes data from external public websites.  Apache Nutch and Python are the two key pieces of 
software. 
 
 

4 



 

 

3.  Applications 
 
3.1  Quarterly Summary of State and Local Government Tax Revenue 
The first application of SABLE was to the Quarterly Summary of State and Local Government Tax Revenue 
(QTax).  QTax is a survey of state and local governments that collects data on tax revenue collections such as 
general sales and gross receipts tax, individual income tax, and corporate net income tax.  As with other public 
sector surveys, much of this data is publicly available on government websites.  In fact, instead of res ponding v ia 
questionnaire, some respondents direct QTax analysts to their websites to collect data.  State and local governments 
publish CAFRs and statistical reports, most of which are in PDF format. 
 
As detailed in Dumbacher and Capps (2016), we used SABLE to crawl state government websites, discover 
potential new sources of tax revenue information, and build a classification model for p red ict ing whether a PDF 
contains useful data.  To do so, we first created a list of seed URLs of home pages of state government departments 
of revenue, taxation, and finance.  We used Nutch to crawl these websites to a depth of three and discovered 
approximately 60,000 PDFs.  To create a training set for use with machine learning, we first selected a random 
sample of 6,000 PDFs, where the sample size was chosen based on an estimate of how long it would take to classify  
the PDFs manually.  Then we applied a PDF-to-TXT conversion algorithm based on the PDFMiner module to 
extract text and put it in the simple format of a single string of words separated by spaces.  The text  in  th is  fo rmat  
could then be used as input to classification models.  About 1,000 PDFs could not be converted to TXT format  fo r 
various reasons.  For the approximately 5,000 PDFs that could be converted, we manually classified them as 
positive (contains useful data on tax revenue collections) or negative.  Lastly, these 5,000 PDFs  were randomly  
divided into training and test sets. 
 
Naïve Bayes and support vector machine models using various sets of features were fit  on  the t rain ing s et and 
evaluated on the test set.  The support vector machine using features based on 1-grams and 2-grams performed very  
well with an accuracy of 98 percent and an F1 score of 0.89, which is a measure that balances recall and  p recision 
(Tan, Steinbach, and Kumar, 2006, p. 297).  Such a model could be used to classify future PDFs discovered through 
more extensive web crawling. 
 
3.2  Annual Survey of Public Pensions 
Another public sector survey is the Annual Survey of Public Pensions (ASPP), which collects data on revenues, 
expenditures, financial assets, and membership information for defined benefit public pension funds administered by 
state and local governments.  As with QTax, much of this information can be found online and in CAFRs.  There is  
interest in examining the feasibility of scraping specialized content not currently collected in ASPP from the CAFRs 
of the largest state- and local-administered pension plans.  The main pension statistics are service cost and in terest .  
Figure 3 is a screenshot from the CAFR of the Santa Barbara County Employees’ Retirement System showing 
pension statistics for fiscal years ended June 30, 2014-2016.  In general, there is no standardization in CAFRs across 
governments, but the pension terminology is fairly consistent across government entities and throughout time. 
 
We are currently considering a two-stage approach to scraping service cost and in terest .  A fter converting the 
CAFRs from PDF to TXT format, we use models based on the location of important word  s equences to iden tify  
tables containing the pension statistics.  For example, the phrases “required supplementary information” and 
“changes in net pension liability” tend to indicate the beginnings of tables, whereas the phrases “service cost” and 
“differences between expected and actual experience” indicate table content.  In the s econd s tage, we pars e the 
identified tables and use regular expressions to scrape service cost and interest data.  At the s ame t ime, we t ry  to  
scrape information on what units the figures are in (for example, dollars or thousands of dollars), the names o f the 
pension funds, and the corresponding time period.  It is challenging dealing with tables that have complicated 
structures.  It may make sense to group the tables according to structure and build a separate scraping model for each 
structure type. 
 

5 



 

 

 

Figure 3. Screenshot from the CAFR of the Santa Barbara County Employees’ Retirement System showing pension 
statistics for fiscal years ended June 30, 2014-2016.  The two main items are service cost and interest.  Source: 
http://cosb.countyofsb.org/uploadedFiles/sbcers/benefits/SBCERS 6-30-2016 CAFR With Letters.pdf 
 
 
3.3  Securities Exchange Commission Filing Metadata 
The EDGAR database on the SEC website contains financial filing information for publicly traded companies.  
EDGAR is used often by Census Bureau analysts to impute missing values and validate responses for many 
economic surveys.  In particular, the 10-K and 10-Q reports provide valuable annual and quarterly in fo rmat ion , 
respectively.  For the most part, going into EDGAR or visiting company websites to find out when  new 10-K and  
10-Q reports are available is a manual process.  Ideally, analysts would be notified when new filings and data 
become available. 
 
To this end, we recently started using Python to scrape filing metadata from the EDGAR database.  Every company 
in EDGAR has a Really Simple Syndication (RSS) feed, which can be queried to obtain recent filing in format ion .  
In order to query this RSS feed, one needs to supply the desired filing type (for example, 10-K or 10-Q) and  the 
Central Index Key (CIK) of the company, which is a unique filer identifier used in EDGAR.  We wrote a Python 
script that uses the Beautiful Soup module (Crummy, 2017) to submit a query to the feed and fetch result s in  XML 
format.  Figure 4 shows part of an XML file created using this method.  It contains recent 10-Q filings  fo r Apple 
Computer, Inc. (CIK = 0000320193).  Because the XML file is structured and based on standardized tags, it can  be 
parsed easily using regular expressions or methods within Beautiful Soup to scrape filing dates and, in turn, 
determine whether a filing was made recently.  Other pieces of useful information contained in the XML file include 
the URL to the corresponding report and an indicator for whether the filing is an amended version.  The next step is  
to work with various survey teams to see how they can best use this information and incorporate web scraping and a 
filing notification process into their production cycles. 
 
 

6 

http://cosb.countyofsb.org/uploadedFiles/sbcers/benefits/SBCERS%206-30-2016%20CAFR%20With%20Letters.pdf


 

 

 

Figure 4.  Screenshot of an XML file containing information on recent 10-Q filings for Apple Computer, Inc. (CIK 
= 0000320193).  This XML file was created in Python using information scraped from the company’s RSS feed  on  
EDGAR. 
 
 
3.4  Economic Census Write-ins 
The Census Bureau classifies business establishments according to the North American Indust ry Clas sificat ion 
System (NAICS).  NAICS groups establishments into industries based on the activities in which they are p rimarily  
engaged and where revenue is generated.  For more information about NAICS, see U.S. Census Bureau (2017b).  To 
assign NAICS codes to business establishments, the Census Bureau uses information from different sources such as 
the Economic Census, the Internal Revenue Service (IRS), and the Social Security Administration.  Aspects of 
NAICS coding can be manually intensive, and efficiency can be improved through autocoding.  Kornbau (2016, sec. 
2) and Kearney and Kornbau (2005) describe a NAICS autocoder that was developed to assign NAICS codes to new 
businesses. 
 
Another application of SABLE involves developing a NAICS autocoder for write-in res ponses to  the Economic 
Census.  The self-designated kind of business (SDKB) question on the Economic Census form asks respondents to  
describe their business and gives the respondent the option of writing in a description  if it  does  not  appear on  a 
checklist.  The machine learning methodology and text classification models used in SABLE are being  app lied  to  
this setting to examine the feasibility of assigning a NAICS code to an establishment based on the business 
description and other information such as the business name.  The plan is to use the hundreds of thousands of SDKB 
write-ins from the 2002, 2007, and 2012 Economic Census and business descriptions from the IRS’s SS-4 form as  a 
training set to build and evaluate classification models [the SS-4 form is used by businesses to apply for an 
Employer Identification Number]. 
 

4.  Moving to a Production Environment 
 
4.1  Research Environment 
Much of the initial research for SABLE was done in the Census Bureau’s Center for Applied Technology  (CAT), 
which is a sandbox-like environment for collaboration and innovation.  Workstations in the CAT are not connected 
to the Census Bureau network, so users are able to experiment with software not currently approved for use Census 
Bureau-wide.  The CAT is a great place to develop proofs-of-concept and showcase successful efforts, which can be 
used to support a business case for moving projects into production.  Confidential data are not allowed in the CAT.  
This did not pose a problem for SABLE because the web scraping and text classification problems at the time dealt  
with publicly available data from state and local government websites. 
 
 
 

7 



 

 

We had access to a single Linux server in the CAT and were able to install and experiment  with  various Py thon 
modules for web scraping and machine learning.  During the summer of 2017, we obtained access to the CAT’s new 
cloud environment, which is an Amazon Web Services (AWS) instance.  We installed Apache Nutch in this 
environment and in July 2017 successfully crawled the Alabama Department of Revenue website as a test.  Apache 
Nutch is designed to take advantage of the parallel processing that AWS offers, so we might use the cloud 
environment to explore this in the future. 
 
4.2  Authority to Operate 
After doing further testing in the CAT and demonstrating SABLE’s usefulness, it was time to move from a research 
environment to a production environment.  One of the first steps in the process was obtain ing  approval from the 
Census Bureau’s Standards Working Group (SWG) to use Apache Nutch outside of the CAT.  In  Ju ly  2017, we 
defended our request before the SWG and answered questions related to software requirements and  the current  
availability of software that performs similar functions.  Apache Nutch 1.13, the most recent version at the time, was 
approved by the SWG.  Later in the year, we were also able to obtain two new Linux servers fo r SABLE, one fo r 
development and another for production. 
 
In consultation with the Census Bureau’s Economic Applications Division and Office of Informat ion  Security, it  
was determined that SABLE needs an Authority to Operate (ATO).  The ATO process involves SABLE undergoing 
a risk profile to determine what security controls are needed and a later security assessment to determine whether 
those controls are being met.  In preparation for the assessment, we need to establish evidence fo r s at isfy ing the 
controls, write documentation, and develop procedures for tasks such as making change requests, manag ing  code, 
and auditing users.  The assessment is expected to take between six and ten weeks after submitting evidence. 
 
4.3  GitHub Repository 
To share our work with the public, other government agencies, and interested private companies, we had  s ome 
SABLE files uploaded to a new repository on the Census Bureau’s GitHub account in October 2017.  This 
repository is located at the following URL: https://www.github.com/uscensusbureau/SABLE.  It currently contains 
two Python programs, one for converting PDFs to TXT format and another for fitting  and  evaluating basic text  
classification models such as Naïve Bayes, logistic regression, and decision trees.  There are als o  s upp lementary  
files of stop words in various languages and some documentation files. 
 
GitHub users can comment on our work, propose changes to the code, and even copy, or “fork,” the repository to  
their own account so they can edit the code themselves and take the project in their own direction.  To get these files 
onto GitHub, we had to obtain approval from Census Bureau information technology officials and submit the code 
to an internal Python review process that checks for things such as references to servers, unused imported modules, 
and proper exception handling.  We plan to update the files on GitHub and release new features periodically. 
 

5.  Next Steps 
 
5.1  Quality Assurance 
With SABLE going through the ATO process and into production, we are thinking about how to integrate quality 
into the system early on and establish procedures for assessing quality on a regular basis.  The following  are s ome 
ideas for quality assurance.  Regarding web crawling, the URLs and content of websites change frequent ly , and it  
would be important to re-crawl websites to make sure the most up-to-date pages and documents are being 
discovered.  Perhaps subject matter experts could conduct manual crawls of certain sections of websites and check 
whether Nutch is discovering important documents.  These manual crawls could also inform how deep to crawl. 
 
In assessing data scraped to supplement or replace current survey collections, we could check relationships s uch as 
current year data to prior year data, how the scraped data compare to data for respondents within the same sampling 
stratum, and outliers.  Static bounds could be set for current year versus prior year comparisons as well as  with in-
stratum comparisons.  This should be done every survey statistical period with subject matter experts investigat ing 
any data points that do not meet the criteria.  In general, there should be some sort of basic quality and  reliab ility  
check run for each statistical period for a given survey, with a more thorough analysis done annually.  The analysis 
would include checking the bounds mentioned previously and, as with web crawling, manual s craping to  check 
whether SABLE is scraping the desired data properly. 
 

8 

https://www.github.com/uscensusbureau/SABLE


 

 

In terms of assessing the quality of machine learning methods, it is also imperative to get analysts and other subject  
matter experts involved.  We are considering best practices for having subject matter experts help  create good-
quality training sets and assess the quality of classification model predictions in ways other than accuracy, precision, 
recall, and other common evaluation criteria.  For example, in classification problems, not all clas s es are equally  
important.  There are different misclassification costs that analysts could help identify and quantify. 
 
5.2  Future Work 
The ATO process is ongoing, and we will continue working to ensure SABLE functions p roperly  and  meets the 
security controls identified in the risk profile.  As mentioned previously, we would like to update the SABLE files  
on the Census Bureau’s GitHub account periodically.  Ultimately, the goal is to use SABLE to create a data product 
based on scraped data.  The public sector applications seem like good candidates for such a data product. 
 
In terms of future applications, there is a project very similar to the NAICS autocoding project.  This one involves 
the North American Product Classification System (NAPCS), which is a hierarchical classification system of goods 
and services and complements NAICS.  For more information about NAPCS, see U.S. Census Bureau (2017c).  
Respondents to the 2017 Economic Census are able to write in descriptions of their products.  An  au tocoder that 
assigns NAPCS codes to product descriptions could be based partly on these t rain ing data and could  improve 
efficiency greatly in future Economic Censuses. 
 

Acknowledgments 
 
The authors would like to thank Carma Hogue, Andrew Baer, and Stephen Kaputa of the U.S. Cens us Bureau fo r 
reviewing this paper and providing helpful comments.  Thanks also to Carol Caldwell, Anne McGaughey , Charles 
Stockton, Douglas Peed, Andrea Roberson, Selvaratnam Sridharma and the staff of the Census Bureau’s Center fo r 
Applied Technology for their contributions and help regarding SABLE. 
 

References 
 
The Apache Software Foundation. (2017). Apache Nutch. <http://nutch.apache.org>. Accessed December 1, 2017. 
Bird, S. (2006). NLTK: The Natural Language Toolkit. Proceedings of the COLING/ACL 2006 Interactive 

Presentation Sessions. Sydney, Australia: Association for Computational Linguistics, 69–72. 
Crummy. (2017). Beautiful Soup. <https://www.crummy.com/software/BeautifulSoup/>. Accessed December 14, 

2017. 
Dumbacher, B. and Capps, C. (2016). Big Data Methods for Scraping Government Tax Revenue from the Web. 

2016 Proceedings of the American Statistical Association, Section on Statistical Learning and Data Science. 
Alexandria, VA: American Statistical Association, 2940–2954. 

Dumbacher, B. and Hanna, D. (2017). Using Passive Data Collection, System-to-System Data Collection, and 
Machine Learning to Improve Economic Surveys. 2017 Proceedings of the American Statistical Associat ion, 
Business and Economic Statistics Section. Alexandria, VA: American Statistical Association, 772–785. 

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining , In ference, 
and Prediction (Second Edition). Berlin, Germany: Springer. 

Hurwitz, J., Nugent, A., Halper, F., and Kaufman, M. (2013). Big Data for Dummies. Hoboken, NJ: John  W iley  & 
Sons, Inc. 

Kearney, A.T. and Kornbau, M.E. (2005). An Automated Industry Coding Application for New U.S. Business 
Establishments. 2005 Proceedings of the American Statistical Association, Business and Economic S tat istics 
Section. Alexandria, VA: American Statistical Association, 867–874. 

Kornbau, M.E. (2016). Automating Processes for the U.S. Census Business Register. 25th Meeting of the Wiesbaden  
Group on Business Registers. 

Mitchell, R. (2015). Web Scraping with Python: Collecting Data from the Modern Web. Sebastopol, CA: O’Reilly  
Media, Inc. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., 
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. 
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 

Shinyama, Y. (2013). PDFMiner. <http://www.unixuser.org/~euske/python/pdfminer/index.html>. Accessed 
December 12, 2017. 

9 



 

 

Snijkers, G., Haraldsen, G., Jones, J., and Willimack, D.K. (2013). Designing and Conducting Business Surveys. 
Hoboken, NJ: John Wiley & Sons, Inc. 

Tan, P.N., Steinbach, M., and Kumar, V. (2006). Introduction to Data Mining. New York, NY: Pearson. 
U.S. Census Bureau. (2017a). Federal, State, & Local Governments. <https://www.census.gov/govs/classification/>. 

Accessed December 1, 2017. 
U.S. Census Bureau. (2017b). North American Industry Classification System. 

<https://www.census.gov/eos/www/naics/>. Accessed December 1, 2017. 
U.S. Census Bureau. (2017c). North American Product Classification System. 

<https://www.census.gov/eos/www/napcs/>. Accessed December 1, 2017. 
 
 

10 


	SABLE: Tools for Web Crawling,Web Scraping, and Text Classification
	Abstract
	1.1 Background
	1.2 Challenge
	1.3 Outline
	2. SABLE Overview
	2.1 Main Tasks
	2.2 Machine Learning Methodology
	2.3 Software
	2.4 Architecture Design
	3. Applications
	3.1 Quarterly Summary of State and Local Government Tax Revenue
	3.2 Annual Survey of Public Pensions
	3.3 Securities Exchange Commission Filing Metadata
	3.4 Economic Census Write-ins
	4. Moving to a Production Environment
	4.1 Research Environment
	4.2 Authority to Operate
	4.3 GitHub Repository
	5. Next Steps
	5.1 Quality Assurance
	5.2 Future Work
	Acknowledgments
	References



