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Most official seasonal adjustments use the X-11 method and its extensions, available for instance in the 
Census Bureau’s  X-12-ARIMA  software  (Findley et al, 1998).  An important problem with the use of this 
method is how to estimate the variances of the estimators of the seasonal effects and the other components 
that the method produces. Wolter and  Monsour (1981) propose an approach to variance estimation that 
uses the linear approximation to X-11.  The methods of Pfeffermann (1994) and Bell & Kramer (1999) 
build on and extend this approach. The three methods use different definitions of the variance.  

In this paper we propose new definitions of the seasonal and trend components under which the X-11 
estimators of the trend and the seasonal components are almost unbiased in the central part of the series. 
Next, we define the variance and Mean Square Error (MSE) of the X-11 estimators with respect to the 
newly defined trend and seasonal components and we show that under these definitions the variance 
estimators of Pfeffermann (1994) are unbiased. We investigate the behavior of the X-11 estimators of the 
newly defined trend and seasonal components at the two ends of the observed series where they are biased 
and suggest a bias correction procedure.  

The results are illustrated by a small simulation study based on the “Education and Health Services 
employment” (EDHS) series, obtained as part of the Current Employment Statistics program. Finally we 
estimate the bias corrected MSE of the X-11 estimators for EDHS. 

Bias, Variance  and MSE of  X-11  estimators and their estimation  

We begin with the usual notion that an economic time series can be decomposed into a trend or trend-cycle 
component T , a seasonal component St , and an irregular term, It ; Y = T + S + I . Here we consider for t t t t t 
simplicity the additive decomposition but the results can be generalized to the multiplicative 
decomposition, Y = × ×S , using similar considerations as in Pfeffermann et al. (1995). Typically, the T It t t t 

data are obtained from a sample survey, such that the observed value, yt , can be expressed as the 
population value, Yt , plus a sampling error, 

yt = Yt + ε t = Tt + St + et , et = It + ε t , E[et | (Sn ,Tn ;n = 1,..., N )] = 0 ; t = 0,..., N . (1) 

The X-11 program applies a sequence of moving averages or linear filters to the observed data. Thus the X-
11 estimators of the trend and the seasonal components can be approximated as, 

t −1 t−1ˆ S ˆ TSt = ∑ wkt yt −k , Tt = ∑ wkt yt−k , (2) 
k =−N +t k=−N +t 

where the filters S and T  are defined  by the X-11 program options for the given time interval wkt wkt

t =1,..., N . Moreover, at the central part of the series the filters are time-invariant, wS = wS , for kt k 

a ≤ t ≤ N − a , wT = wT , for a ≤ t ≤ N − a , where a , a  are also defined by the X-11 program S S kt k T T S T 
T T S Soptions. Note also that wkt = wk = 0 if k ∉[−aT , aT ] and wkt = wk = 0 if k ∉[−aS , aS ] , and 
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wkt
T = wkt

S = 0 if t − k ∉[1,..., N ] . To simplify summation indexes, we denote for a given series Z , 
C C C C∑ w Z = ∑ w Z and ∑ w Z = ∑ w Z , C = S or T .kt t−k kt t−k k t−k kt t−k 

k C k C: ≠0 k:wk ≠0k wkt 
Remark 1. X-11 and its extensions, like X-12 ARIMA include also “non-linear” operations such as the 
identification and estimation of ARIMA models and the identification and gradual replacement of extreme 
observations. We assume that the time series under consideration is already corrected for outliers. The 
effects of the identification and non-linear estimation of ARIMA models are generally minor, see, e.g., 
Pfeffermann et al. (1995) and Pfeffermann et al. (2000). 

Assuming that St  and Tt  are well defined (although never observed) for −∞ < t < ∞ , define, 
x11 S x11 T x11 x11St = ∑ wk (Tt −k + St −k ) , Tt = ∑ wk (Tt −k + St −k ) , such that St  and Tt  are the outputs of 

k k 
applying the symmetric filters to the signal of the infinite series at each time point t = 1,..., N. Denote 

x11S = {St ,−∞ < t < ∞} and T = {Tt ,−∞ < t < ∞}. Note from (1) that St = E[Ŝ 
t | S, T]  when 

x11a ≤ t ≤ N − a and T = E[T̂ | S, T]  when a ≤ t ≤ N − a , which implies the following obvious S S t t T T 
result.  

x11 x11 x11Result 1. Let e = y − T − S . X-11 decomposes therefore the observed series into the ‘X-11-t t t t 
x11 x11 x11trend’ Tt , the ‘X-11-seasonal component’ St , and the ‘X-11 error’, et ; 

x11 x11 x11y = T + S + e , (3) t t t t 

and at the center part of the series, max(aS , aT ) ≤ t ≤ N − max(aS , aT ) , the X-11 estimators of the trend 
and the seasonal components are almost unbiased with respect to the decomposition (3). 

Remark 2. The decomposition defined by (3) into a seasonal component, a trend component and an error 
term is clearly not unique; see, for example, the discussion in Hilmer and Tiao (1982). Bell and Kramer 
(1999) use a similar decomposition: they define the “target” of the seasonal adjustment as the adjusted 
series that would be obtained if there was no sampling error and there are sufficient data before and after 
the time points of interest for the application of the symmetric filter (Bell and Kramer 1999, page 15). 
Thus, the Bell and Cramer seasonal and trend components are defined as, 

Bell,Kramer S Bell,Kramer TSt = ∑ wk (Tt−k + St−k + It−k ) and Tt = ∑ wk (Tt−k + St−k + It−k ) . The difference 
k k 

between (3) and the Bell and Kramer decomposition is therefore that the latter decomposition considers the 
irregular term as a part of the signal. As a result, the MSE of the X-11 estimators of the components 
defined by the decomposition (3) ( see below), is generally higher than the MSE of the X-11 estimators of 
the components defined by the Bell and Kramer decomposition. 

The bias, variance and MSE of the X-11 estimators with respect to decomposition (3), conditional on the 
true components S, T are obtained as follows:  

S SBias[Ŝ 
t | S,T] = ∑ (wkt − wk )(Tt −k + St −k )  (4) 

k 
S S 2Var[Ŝ 

t | S, T] = E{[∑ wkt yt −k − E(∑ wkt yt −k | S,T)] | S,T} = 
k k 

S 2 S 2E{[∑ wkt ( yt −k − St −k − Tt −k )] | S,T} = E[(∑ wkte ) | S,T] , (5)t −k
k k 

x11 2 ˆ 2 ˆ[ ˆ ] = E[(Ŝ − S ) | S, T] = Var S S, T ] + Bias MSE S [ |  [S | S, T ] , (6)t t t t t 

and similarly for the trend. 

By Eq. 5,  the variance of the X-11 estimator of the seasonal component is a linear combination of the 
covariances, Cov(et , ek ) , t, k = 1,..., N .  Following Pfeffermann (1994), let  



  

    

 
  

  

                        

 

 
                                                                                                                                                     

                                                                                                                                    

     
   
  

 
 

   
 

   
 

  
 

 
  

  
  

 
  

  
    

 
  

  
                                 

  

  
 

  
  

 
    

 

ˆ ˆ S T S TRt = yt − St − Tt = ∑ akt yt −k , a0t = 1− w0t − w0t , akt = −wkt − wkt , k ≠ 0 , 
k 

define the linear filter approximation of the X-11 residual term. Then,  

Var(Rt | T,S) = E{[∑ akt ( yt −k − E( yt −k | T,S)]2 | T,S} = Var(∑ aktet −k | T,S) 
k k 

( , R | T,S ) = Cov ( a e , a e | T,S ) = a a Cov e ,e | T,S )Cov R t m ∑ kt t −k ∑ km m−k ∑∑  kt lm ( t −k m−l .  (7) 
k k k l 

Cov  e  S T  , t m  ( ,  ,  t m, =It follows from (7) that v = ( ,e | , ) , = 1,..., N , and u = Cov R  R  | S T) , 1,..., N ,tm t m tm t m 

are related by the system of linear equations,  

U = DV , (8) 

where the matrix D  is defined by the weights a t k  , , = 1,..., N through (7). Since the X-11 residuals, Rkt t

are observed for t = 1,..., N , (and assuming et  is independent of the true trend and the seasonal 
components), Cov R ( ,t Rk | ,S T)  can be estimated from the observed series at least at the central part of the 

* * * *series, t = t ,..., N − t  for some t * > 0 . However, the number of equations in (8) for  t = t ,..., N − t is 
smaller than the number of unknown covariates v = ( ,e | ,Cov  e  S T) , and therefore (8) can not be solved tm t m 

directly and the solution is very unstable. A possible way to overcome this problem is by assuming that the 
covariances vtk  are negligible (and hence set to zero) for | − > Ct k  |  for some constant C, which allows 
then to solve the reduced set of equations obtained from (8). See Pfeffermann (1994), Pfeffermann and 
Scott (1997) and Chen et al. (2003), for different approaches to the estimation of U  and V . 

Remark 3. Pfeffermann (1994) developed his variance estimators under the Postulate: 
∑ akt (St −k + Tt −k ) ≅ 0  at the center of the series. Although this assumption seems to hold approximately 
k 

x11 x11in practice, it is essentially impossible to test it. Note that this Postulate implies that  (T,S) = (T ,S ) 
at the center of the series, which is not generally true, see the results of the simulation study below. On the 
other hand, as shown above, Pfeffermann’s (1994) method produces consistent estimators for the variance 
defined by (5). 

Estimation of the MSE of the X-11 estimators is complicated. The error term, et , can be usually assumed 
to be independent of the true trend and the seasonal components, and therefore the variance in (5) does not 
depend on the signal. On the other hand, by (4), the bias of the estimator is a function of S,T and its value 
depends on the particular realization of the signal and therefore estimating of the bias requires strict model 
assumptions that could be hard to validate. Instead of estimating the MSE given the trend and the seasonal 
components, we propose therefore to estimate instead the expected MSE, 

x11 2 ˆ 2 ˆS S,T { [ E Bias S,T ]}  E{MSE[Ŝ ]} = E{E[( ˆ − S ) | ]} = E Var S | S,T ]}  + { [S | . (9) t t t t t 

Note that E{MSE[Ŝ 
t ]}  can be considered as the best predictor of MSE[Ŝ 

t ]  under a square loss function. 
Assuming that the error term, et  is independent of the true trend and the seasonal components, the first 
term in (9) does not depend on the signal and therefore it can be estimated by use of Pfeffermann (1994) 
method. The second term can be estimated by the following parametric bootstrap procedure, which is 
illustrated in the simulation study: 

(a) Fit a parametric model and estimate the parameters of the separate models identified for the trend, the 
seasonal component, the irregular term and the sampling errors. See Steps 1–3 of the simulation study 
where we use the models identified by SEATS, accounting for the sampling error information. 
(b) Generate B series, yb ,b = 1,..., B , each of sufficient length for applying the symmetric filters to the 

central N months of the generated series, by independently generating the four component series, and store 



  

   

 
 

   

 

 
  

 
   

  

 
   

 
 

  

  

     
 

 

 
 

 
 

  
 

 
 

 

    
 

       
 

  
 

   
 

  
 

 
 

the trend and the seasonal components. For each generated series compute the bias, 
b S S b bBt = ∑ (wkt − wk )(Tt−k + St−k ) , see  Steps 4-6 of the simulation study.  

k 
2 ˆ b )2(c) Estimate E Bias  { [St | S,T]}   by averaging (B  over  b = 1,..., B ., see  Eq. 10 . t 

Remark 4. Bell and Kramer (1999) estimate the unconditional MSE of the X-11 estimator with respect to 
Bell,Kramer Bell,Kramer Bell, Kramer 2S ,T , that is, they estimate E[(Ŝ − S ) ] , instead of estimating t t 

Bell,Kramer 2E[(Ŝ − S ) | S,T] , which is similar to the use of (9).  t t 

Simulation study  

We illustrate the implications of the use of the new definitions of the trend and the seasonal component in 
(3), and their estimation, and compare it to the estimation of the corresponding ‘true’ components by use of 
simulations. The simulations use the models fitted to the series “Education and Health Services 
employment” (EDHS), with observations from January, 1996 through December, 2005, (N=120). 
We also estimate the  MSEs of the X-11 trend and seasonally adjusted estimators of the true series. 

Our interest in this series is in the month-to-month change in employment. As explained in Scott, et al. 
(2004), we consider the log ratios of the EDHS series, corrected for outliers as the original series (see 
Remark 1).  

As the main objectives of the study we consider the estimation of the trend and the seasonally adjusted 
(SA) series. Correspondingly to decomposition (3), the definition of “X-11 SA series” is, 

x11 x11 ˆ − ˆ AAt = Yt − St . X-11 estimate of the SA series (SAE) is defined as At = yt St = ∑ wkt yt −k where 
k 

A S A Sw = 1− w , w = −w , k ≠ 0 .0t 0t kt kt 

The study consists of the following steps:  

Step 1. Fit an ARIMA model to the observed series using X-12-ARIMA.. 

Step 2. Re-estimate the parameters of the model by use of REGCOMNT program (Bell, 2003), accounting 
for the presence of the sampling error component. (We model this component using the autocovariance 
estimates of the sampling errors as computed by the Bureau of Labor Statistics.)  

Step 3. Identify the trend, seasonal, and irregular component models by use of signal extraction, available 
in the experimental software X-12-SEATS developed by the Census Bureau. The models and parameter 
estimates used in the simulation study are as follows: 

Trend- Tt ; ARIMA(1,1,2) with parameters -.90, .06, -.94 and disturbance variance 0.5; 
Seasonal component- St ; ARIMA(11,0,11) model with AR-coefficients equal to 1,  MA-coefficients equal 
to, .70, .42, .17, -.04, -.20, -.30, -.37, -.39, -.38, -.34, -.28, and disturbance variance 4.5; 
Irregular component- It ; white noise with disturbance variance 18.0;  
Sampling error- ε t ; MA(1) with MA-coefficient -.15 and disturbance variance 58.68. 

Step 4. Generate independently 3,000 series from the component models developed in Step 3 and add them 
up to form new original series yt

b . Each generated series has length N+96, N = 120 , so that the application 
of X-11 to the full series gives values approximately equal to the “final” X-11 values for the central N 
points. Store the series yt

b  and their components, b = 1,...,3,000 . 
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Step 5. Fix the form of the X-11-ARIMA model for the original series. For each series generated in Step 4 
estimate the parameters of the ARIMA models and compute the filter weights wkt

A and wkt
T , reflecting 

extrapolation with forecasts based on the model identified for the series. 

Step 6. For each series generated in Step 4 and the weights obtained in Step 5 define, 

ˆ b A b b T bT̂At = ∑ wkt yt−k , t = ∑ wkt yt −k , 
k k 

b b b A b b b b b T b b~ ~ At = E( Â 
t | Tb ,S ) = ∑ wkt (Tt−k + St−k ) , Tt = E(T̂ 

t | Tb ,S ) = ∑ wkt (Tt −k + St −k ) , 
k k 

x11,b A b b x11,b T b bAt = ∑ wk (Tt−k + St−k ) , Tt = ∑ wk (Tt −k + St −k ) , 
k k 

, b b A A b b T b  b  b T T b b[ ˆ [ ˆBt
A b  = Bias  A  t | S ,Tb ] = ∑ (wkt  − wk )(  Tt −k + St −k ) , Bt 

, = Bias  T  t | S ,Tb ] = ∑ (wkt  − wk )(  Tt −k + St −k ) , 
k k 

t = 48,..., N + 48 ; b = 1,...,3,000 . 

Step 7. Compute the Empirical Root MSE of the X-11 estimators with respect to the ‘true components’ 
b x11,b x11,bAb ,T  and with respect to the ‘X-11 components’ A ,T , and the Empirical Standard Deviation 

(SD) of the X-11 estimators  

3,000 3,000b 1 b b b 1 b bRMSET,S ( Â 
t ) = ∑ ( Â 

t − At )2 , RMSET,S (T̂ 
t ) = ∑ (T̂ 

t − Tt )2 ;
3,000 b=1 3,000 b=1 

3,000 3,000b 1 b x11,b 2 b 1 b x11,b 2RMSEx11( Â 
t ) = ∑ ( Â 

t − At ) , RMSEx11(T̂ 
t ) = ∑ (T̂ 

t − Tt ) ;
3,000 b=1 3,000 b=1 

3,000 3,000ˆ b 1 ˆ b % b 2 b 1 b ~b )2SD A ( )  = (A − A ) , SD(T̂ ) = (T̂ − T ,t ∑ t t t ∑ t t3,000 b=1 3,000 b=1 

Step 8. For each series generated in Step 4 estimate the variances of the X-11 estimators by the method 
developed in Pfeffermann (1994); see Pfeffermann (1994) and  Pfeffermann and Scott (1997) for details. 

b bDenote the estimates by V̂ ( Â 
t ) and V̂ (T̂ 

t ) , and define, 
∧ 3,000 ∧ 3,000 

ˆ b 1 ˆ ˆ b ˆb 1 ˆ ˆb( )  = ( ) , SD T = ( ) .SD A V A ( )  V T t ∑ t t ∑ t3,000 b=1 3,000 b=1 

For the original EDSH series estimate the variances of the X-11 estimators by the method developed in 
A b, ,T bPfeffermann (1994). Denote the estimates by V̂ ( Â 

t ) and V̂ (T̂ 
t ) . Using the estimates Bt  and Bt

obtained in Step 6 of the simulation study compute the estimates of the squared bias when estimating the 
‘X-11 components’, 

3,000 3,000 
ˆ{ 2 ˆ 1 A b, 2 ˆ 2 ˆ 1 T b, 2E Bias  [At | S,T ]}  = ∑ (Bt ) , E Bias { [Tt | S,T ]}  = ∑ (Bt ) ,  (10) 

3,000 b=1 3,000 b=1 

and define the estimate of (9) for the original series as, 
∧ ˆ ˆ ˆ ˆ 2 ˆ ∧ ˆ ˆ ˆ ˆ 2 ˆ( )  = ( )  + E Bias [A | S,T ]},  RMSE T = V T ) + E Bias [ | S,T]}.  RMSE A V A { ( ) (  {  T  (11) t t t t t t 

The results of the study are summarized in Figures 1–4.  



  

 

   
 

 

  
 
 

  
 

 

     
 
 

Figure 1. Empirical SD and Root MSE of X-11 SA Estimators when estimating the true SA series, 
b b b x11,b b x11,bA = Y − S  and when estimating the X-11 SA series A = Y − S . 

∧b b b bSD( Â 
t ) is drawn in red, SD( Â 

t )  in blue, RMSET,S ( Â 
t ) in black and RMSEx11( Â 

t )  in green.  

Figure 2. Empirical SD and Root MSE of X-11 Trend Estimators when estimating the true Trend,  Tb   and 
Tx11,bwhen estimating the X-11 Trend  . 

∧b b b bSD(T̂ 
t )  is drawn in red, SD(T̂ 

t )  in blue, RMSET,S (T̂ 
t )  in black and RMSEx11(T̂ 

t )  in green.  



  

   
 

 

 

  
 

  
  

    
 

 

  
 

 

 
      

 

x11,b b x11,bFigure 3. Empirical Root MSE of  X-11 SAE when estimating the X-11 SA series A = Y − S , 
and estimates of the SD and Root MSE of  X-11 SAE when estimating the X-11 SA series for the original 
EDHS series (see Eq. 11). 

∧ ∧bRMSEx11( Â 
t )  is drawn in green, RMSE( Â 

t )  in red and SD( Â 
t )  in blue. 

Figure 4. Empirical Root MSE of the X-11 trend estimator when estimating the X-11 trend component 
Tx11,b , and estimates of the Root MSE and Standard Deviations of the X-11 trend estimator when 
estimating the X-11 Trend component for the original EDHS series (see Eq. 11). 

∧ ∧bRMSEx11(T̂ 
t )  is drawn in green, RMSE(T̂ 

t )  in red and SD(T̂ 
t )  in blue. 

Conclusions. 
 
1) In this study the Empirical RMSEs of the X-11 estimators when estimating the true components are 
higher than the Empirical RMSEs when estimating the X-11 components defined by (3), which illustrates 
that the X-11 decomposition (3) is different from the ‘true’ decomposition used in the simulations. 



  

  
 

 

  
 

  
  

  
 

 

 
 

 

 
 

 
 

  
 

 
    

   
 

  
 

  

  
 

 
 

 
 

   

 
  

  
 

  
 

2) For the 5 years in the center of the series the X-11 estimators are almost unbiased when estimating the 
newly defined  X-11 components but at the beginning and at the end of the series there are nonnegligible 
biases. 

3) Pfeffermann (1994) estimate of the variance approximates closely the empirical variance of the X-11 
SAE when estimating the X-11 SA component, and overestimates slightly the empirical variance of the X-
11 Trend estimator when estimating the X-11 trend. 

4) Figures 3 and 4 illustrate that the proposed RMSE estimator (Eq. 10) corrects the bias incurred by the 
use of Pfeffermann (1994) variance estimators at the ends of the series when estimating the newly defined 
X-11 components. More extensive simulations are needed in order to test that the bias corrections are of the 
right magnitude. 
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