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The Medical Expenditure Panel Survey – Insurance Component (MEPS-IC) is a stratified one-stage sample 
design that employs an iterative multi-stage weighting procedure that accounts first for unit non-response 
before post-stratifying to outside control totals.  This weighting procedure is both time-consuming and 
resource intensive, with twenty-one separate iterations.  Currently, variance estimates for MEPS-IC are 
produced using the method of random groups (10 random groups assigned) and are constructed from the 
final adjusted weights.  This “shortcut” approach saves considerable computing resources, but yields 
positively biased variance estimates.  Moreover, while theoretically pleasing, the random group variance 
estimator is known to have high variance in without-replacement samples and yield quite unstable 
estimates when the number of sampled observations in each random group is small (e.g., domain estimates) 
or when there is a high rate of unit or item non-response.  Consequently, the MEPS-IC methodologists are 
interested in pursuing a replicate variance approach that more fully captures the variability in the 
stratification and iterative weighting procedures.  Since the MEPS-IC sample design is highly stratified, the 
traditional stratified jackknife replicate estimator would appear to be the most appropriate replicate method. 
Unfortunately, the large sample size combined with the complex and repetitive weighting procedures 
render this method impossible due to the overwhelming computer-resource demands (Adeshiyan et al, 
2007). 

The choice of an appropriate replicate variance estimator for the MEPS-IC design is complicated:  the 
majority of the non-certainty strata contain several sampled elements, but a small proportion of the non-
certainty strata contain a single sampled unit. Using the method of random groups sidesteps the need for 
collapsing strata for variance estimation.  These same random group assignments can be used to obtain 
more stable variance estimators, such as the delete-a-group jackknife proposed in Wolter (1985, Ch.4, 
p.183).  In its simplest form, delete-a-group jackknife replicates are constructed by sequentially dropping 
each random group from the total estimate and reweighting the remaining cases by the unconditional 
probability of remaining in the replicate; this approach is used by several ongoing programs in our 
Economic Directorate, including the Annual Capital Expenditures Survey and the Quarterly Financial 
Report.  This simple method yields unconditionally unbiased estimates of variances when the estimator 
itself is unbiased and linear and when the random groups are selected in the same manner as the parent 
sample. 

Both the delete-a-group jackknife and the method of random groups are unbiased for stratified simple 
random samples when at least one sampled unit in each stratum is represented in each random group.  Kott 
(2001) presents a variation on the traditional delete-a-group jackknife replicate weighting that allows 
computation of a bound on the bias of the variance estimator when this condition is not met, provided that 
the number of sampled units in each stratum is greater than five.  Additionally, he presents an “extended 
delete-a-group jackknife variance estimator” that produces “nearly unbiased” variance estimates under 

1 This report is released to inform interested parties of ongoing research and to encourage discussion of 
work in progress.  Any views expressed on statistical, methodological, or operational issues are those of the 
author and not necessarily those of the U.S. Census Bureau. 



 

 

 
 
 

 

 
   

 
 

  
  

 

 
 

 
  

 
 

 
    

    
 

  
  

  
 

 
 

   
  

 

 
   

  
   

 
  

   

  
 

   
 

 
  

these circumstances.  The delete-a-group jackknife replicates proposed in the Kott paper employ strata-
specific replicate factors. 

The theory that supports both versions of the delete-a-group jackknife is developed for simple expansion 
(unbiased) estimators of totals. Extending this theory to include calibrated estimates of totals is less 
straightforward, and further extending this theory to ratios of calibrated estimates is not addressed in the 
literature (as far as we could ascertain).   The key statistics released by MEPS-IC fall into this latter 
category. To make sure that our empirical results dovetail with the published theory for the considered 
variance estimators, we restrict our analysis to an important MEPS-IC total, assuming that the ratio-
estimate variances could easily be obtained via Taylor linearization as described in the Variance Estimation 
Methodology Section below.  Before fully recommending a change in the current procedure, additional 
research that includes ratio estimation should be done.   

The MEPS-IC weighting procedures described below are iterative proportional fitting (raking) techniques 
as described in Kalton and Flores-Cervantes (2003).  The final estimates are not linear, and consequently, 
the replicate variance estimates are not necessarily unbiased over repeated samples.  We attempt to use 
unbiased replication procedures, following the recommended procedure for a calibrated estimator with the 
delete-a-group jackknife proposed in Crouse and Kott (2004). 

Having chosen a variance estimation method, a second concern must be addressed: Is there a detrimental 
effect on the variance estimates of not fully replicating an iterative weighting procedure (e.g., replicating 
three iterations of a procedure instead of seven)?  Canty and Davison (1999) explored a similar question 
with a stratified jackknife estimator and showed the reverse empirically (i.e., the variance estimates 
constructed from a fully replicated procedure were “less stable” or “more biased” than those constructed 
from partially replicated procedure.) The question of whether similar findings would hold with the MEPS-
IC data was certainly worth pursuing, if only from a time and computer-resource saving perspective. 

In this paper, we address two concerns for the MEPS-IC:  the appropriate choice of variance estimator and 
the decision to fully or partially replicate a weighting procedure for the selected procedure.  Our research 
focuses on calibrated expansion estimates.  The next section provides background on the MEPS-IC survey 
design and estimation procedures.  Then, we provide an overview of the considered variance estimation 
methods.  Next, we present a simulation study designed to assess the statistical properties of these variance 
estimators under a slightly simplified design.  After that, we present empirical results for all considered 
methods using 2003 MEPS-IC data. We conclude with recommendations for future MEPS-IC applications 
and research, along with some general remarks. 

Background 

The Medical Expenditure Panel Survey - Insurance Component (MEPS-IC) is an annual survey of business 
establishments (locations) and governments. The survey is funded by the Agency for Healthcare Research 
and Quality and conducted by the U.S. Census Bureau. Data are collected on various aspects of employer-
sponsored health insurance, such as whether health insurance is offered, the number of employees enrolled 
in health plans, and the premium amounts, including the employee and employer contribution to the 
premium. MEPS-IC measures quantities such as average premium and contribution per enrollee, the 
percentage of employees enrolled, and the percentage of establishments and governments contributing to 
health insurance.  Because employers are a key source of health insurance in the United States, data are 
used by federal agencies, such as the Bureau of Economic Analysis, the Centers for Medicare and Medicaid 
Services, and the Department of the Treasury, and by state governments, to monitor and predict national 
and state trends in employer-sponsored health insurance. 

MEPS-IC uses two list frames from which two samples are selected: a private sector sample of 
establishments selected from the Census Bureau’s Business Register, and a public sector sample selected 
from the Census of Governments. By far the largest portion of the sample is from the private sector where 
the sample size is approximately 42,000 establishments annually.  Sommers and Reisz (2003) provide 



 

  
  

 
 

   
 

 
    

 
 

 
  

 

 
 

 

      
 

 
   

 

  
 

   
 

 

 

  
 

  
 

 
 

     
 

 
  

 
 

 

details on the MEPS-IC stratification procedure.  Complete details on the MEPS-IC design and 
methodology are available at http://www.meps.ahrq.gov/mepsweb/data_files/publications/mr6/mr6.pdf 
and http://www.meps.ahrq.gov/mepsweb/data_files/publications/mr18/mr18.pdf. 

The MEPS-IC final weights are the product of the sampling weight, a unit non-response adjustment factor, 
and a poststratification factor. The unit non-response adjustment factor is computed iteratively by dividing 
the sample into disjoint weighting cells defined by eight combinations of establishment size and firm size 
within the 50 states plus the District of Columbia cross-classified by type of firm (single or multi-
establishment), and industry.  Cross-classifying all these variables results in a large number of cells with 
small counts, many of which may be zero. Hence, sampling weights are raked to marginal cell totals. 

The non-response adjustment for MEPS-IC is performed in two stages. During data collection, sampled 
cases are contacted by telephone to determine whether they offer health insurance (pre-screener stage). 
Those that do not are considered respondents but are not mailed a form.  Those that do offer health 
insurance are not considered respondents unless they provide further information on the insurance either by 
mail or telephone. Thus, the first stage in unit non-response weighting compensates for unit non-response 
to the initial telephone (pre-screener) interview that indicated that they do in fact offer health insurance. 
The second stage of the unit non-response adjustment accounts for unit non-response where it is unknown 
if the non-respondent offers health insurance incorporating the weights from the first stage of the 
adjustment.  This two-stage unit non-response adjustment process is fully replicated when we compute the 
empirical variance estimates. For the simulation variance estimates, we used a one-stage unit non-response 
adjustment similar to most surveys that have only one stage of data collection. 

MEPS-IC uses seven iterations of raking to ensure that the weights converge and that their sums add up to 
the required marginal cell totals.  In our application, we found out that three iterations were sufficient for 
both full sample and replicate weights after verifying that the adjustment factors had converged in all cells.   

The unit non-response adjusted weights are next controlled to independently obtained employment control 
totals via an iterative two-way raking procedure.  This poststratification procedure uses two cell categories: 
eight combinations of establishment size and firm size within the 51 state sets and industry type. The raking 
is accomplished in seven and one-half iterations (ending with the state by size group rake).  With both the 
nonresponse and poststratification weighting adjustment procedures, we noticed that both of these 
adjustment factors converged after one or two of the 7 or 7.5 iterations.  So, for this study we consider 4 
replicate reweighing procedures for each considered variance method: 

• Replicating the above described weighting procedure 
• Performing 3 iterations (instead of 7 and 7.5 iterations) for both the nonresponse and 

poststratification weighting adjustment procedures 
• Performing 1 iteration for both the nonresponse and poststratification weighting 

adjustment procedures (this is only considered in the simulation part of the study)   
• Performing no iterations; using final weights to construct the replicate weights. 

As stated in the introduction, MEPS-IC currently uses the method of random groups to produce variance 
estimates.  The production variance estimates are constructed from 10 random groups, and the weighting 
procedure is not replicated. Sampled units are assigned to random groups as part of the sample selection. 

In the following sections, we briefly consider the MEPS-IC “shortcut” procedure, but we focus on the 
possibility of obtaining reasonable variance estimates with a replicated procedure that uses a reduced 
number of iterations at each weighting stage.   

Variance Estimation Methodology 

http://www.meps.ahrq.gov/mepsweb/data_files/publications/mr18/mr18.pdf
http://www.meps.ahrq.gov/mepsweb/data_files/publications/mr6/mr6.pdf


 

 

  

 
 

 

 
   

  
 

 
  

   
  

  
 
 

                                            
 

                                                            

  

 

   
  

     
 

  
       

  

 
 

ˆ ~ ~Our discussion below concentrates on expansion estimates of the form X = ∑∑whj yhj , where whj is 
h j∈h 

the final weight associated with unit j in stratum h.  In our applications, the expansion estimates are non-
linear, since this final weight is the product of several iterative adjustments. A Taylor linearization 

ˆ 
estimate of the variance of a ratio estimate ( R̂ = X 

) whose numerator is a proper subset of the 
Ŷ 

denominator is given by 

⎛ X̂ ⎞
2 
⎡ v̂( X̂ ) v̂(Ŷ )⎤ 

v̂(R̂) ≈ ⎜⎜ ⎟⎟ ⎢ − ⎥ˆ ˆ 2 ˆ 2Y X Y⎝ ⎠ ⎣ ⎦ 

The discussion below focuses on obtaining the necessary input variances for this linearization formula. 
Note that this linearization formula can easily include fpc-corrections in the variance estimates and does not 
require an unbiased estimation procedure. 

To use the method of random groups, we randomly divide the non-certainty component of the sample into 
G mutually exclusive groups using the same sampling methodology used to select the parent sample 
(Wolter, 1985, pp. 31-32).  Each random group’s sample weight (whj) is then reweighted to represent the 
full sample by multiplying the random group estimate by G. [Note: G sets of replicate weights are assigned 
to each sample unit j, where the gth replicate weight is zero when unit j is in random group g].  Certainty 
cases are included in each random group without any replicate weight adjustment.  The full sample 
estimation procedure is then applied to each of the replicate weights (e.g., non-response adjustments, post-
stratification). These replicate weights are then used to calculate replicate estimates for the characteristic of 
interest.   

The random group variance for an estimate X̂ is 
G 

∑ ( X̂ 
i −X̂ 

0 )2 

i=1vRG ( X̂ ) = 
G(G −1) 

where G is the number of random groups, X̂ 
i  is the ith replicate estimate, and X̂  is the full-sample 0 

estimate. 

Random group variance estimation has two drawbacks.  First, random group estimation can be 
unpredictable when applied to samples selected without replacement because the random group estimator 
“tends to estimate the variance as if the sample were selected with replacement” (Wolter, 1985, p.43).  The 
second drawback is the instability of the random group variance estimates, especially when the number of 
sampled observations in each random group is small (as with the MEPS-IC sample) or when there is a high 
percentage of unit non-response. 

The delete-a-group jackknife variance estimation method can be applied to the same types of sample 
designs as the random group method. Again, the non-certainty portion of parent sample is divided into G 
random groups.  However, the delete-a-group jackknife replicate estimate is computed for each replicate g 
by removing the gth random group from the full sample.  As with random group estimates, jackknife 
replicates are obtained by weighting each replicate estimate to represent the full sample.  Again, certainty 
cases are included in each replicate with no replicate weight adjustment.   Since jackknife replicate sample 
sizes are larger than the corresponding random group replicate sample sizes, delete-a-group jackknife 
variance estimates are often more stable at least for smooth statistics such as expansion estimators, ratio 
estimators, or regression estimators.  The delete-a-group variance estimator for an estimate X̂  is 



 

                                                    

 

 
 

 
   

   
 

  
 

         
 

   
  

 

  

 
 

    

   

 
  

  
 

    
   

 
 

     
 

    
 

  
  

 
   

  

 

                                                 
  

G 

vDAG ( X̂ ) = ( X̂ 
i −X 0

2ˆ )  (1) 
G 

(G 1) 
i 1 

where G is the number of delete-a-group jackknife groups, X̂ 
i  is the ith delete-a-group jackknife group 

estimate, and X̂  is the full-sample estimate.   0 

As stated in the introduction, MEPS-IC employs a calibration estimator, with iterative proportional fitting 
used at both the unit-nonresponse and poststratification weighting stages.  For our replication, we follow 
the recommended procedure outlined in Crouse and Kott (2004) for both random group and delete-a-group 
jackknife estimation. We refer to this variance estimator as the simple delete-a-group jackknife estimator. 

Kott (2001) presents a conditionally unbiased2 delete-a-group jackknife variance estimator for a stratified 
SRS-WOR design that employs strata-specific replicate factors defined as 

nh/ (nh -nhg)  (2)  

where nh denotes the number of sampled units in stratum h and nhg the number of sampled units assigned to 
random group g in stratum h.  For a stratified SRS-WOR design and a simple expansion estimator, Kott 
(2001) proves that his delete-a-group jackknife variance estimator is approximately unbiased for the true 
variance when (1) the sample size in each stratum is larger than the number of random groups and (2) all 

∑
= 

sampling fractions are negligible (less than or equal to 1/5) and is biased upwards otherwise.  Thus, the 
delete-a-group jackknife estimator is unbiased if and only if units from each sample stratum are represented 

− 

in each replicate.  For a simple unbiased total estimate, Kott (2001) develops the extended delete-a-group 
jackknife to account for the situation where condition (2) is true and condition (1) is not, specifically where 
nhg = 0 in several strata. Let Shg be the set of nhg sample units in stratum h and random group g. The 
extended delete-a-group jackknife (DAGE) replicate weights are 

w hj when Shg is empty
∈−(1 [n 1]Z) when j 

where Z2 = G/[(G-1)nh(nh –1)].  The extended delete-a-group jackknife reduces to the “usual” delete-a-
group jackknife variance estimator when all nh are greater than G. 

Note that the extended delete-a-group jackknife requires at least two sampled elements per stratum. 
Unfortunately, in more than one instance, the MEPS-IC sample comprises one sampled unit from a stratum. 
Consequently, for extended delete-a-group jackknife replication, such strata must be collapsed; note that 
this same problem occurs with a stratified jackknife application.  Our extended delete-a-group jackknife 
begins with the replicate weights assigned in equation (3), then calibrates the replicate sampling weights 
using the Crouse and Kott (2004) procedure. Kott (2001) does not provide any theoretically-based 
modifications for the extended delete-a-group jackknife variance estimator with a calibrated estimator, and 
the Crouse and Kott (2004) paper does not employ the extended delete-a-group jackknife. Thus, our 
application follows the procedures described for the simple delete-a-group jackknife estimator after 
assignment of replicate weights (using the extended delete-a-group jackknife replicate weights), and this 
“ad hoc” (and not theoretically driven) approach is definitely a concern in interpreting our results. 

In theory, the extended delete-a-group estimator should be better suited to the MEPS-IC sampling design 
than the other variance estimators considered in this paper.  However, the DAGE replicate factors are 
defined under the assumption of stratified SRS-WOR sampling design, where the design weights are equal 
to the inverse of the probability of inclusion.  This requirement is not strictly observed in the MEPS-IC 

2 conditioned on the selected sample. 

wh
g − S     (3)  w hj h hg 

(1 Z) otherwise+w hj 

⎧ 
⎪
⎨
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production system, although it is in our simulation study.  Moreover, the extended delete-a-group jackknife 
requires that each stratum contain at least two sampled elements per stratum, but this condition is not met 
with the MEPS-IC design.  So, this requires that the survey practitioner employ a collapsed stratum 
procedure, which can add bias to the variance estimates. 

Our evaluation begins with a simulation study designed to assess variance estimation affects using the 
alternative replicate estimators.  Our study uses a simplified MEPS-IC design drawn from a simulated 
population.  For our simulation, we confined our population to four industries proposed by our subject-
matter experts (Construction, Retail Trade, Finance, and Wholesale Trade) in four states (Illinois, New 
York, North Carolina, and Washington). Instead of using the survey’s sampling strata, we created three 
collapsed firm-size categories in each region x industry cell.   

We modeled our population data from the 2003 MEPS-IC empirical data, using the SIMDAT algorithm 
(Thompson, 2000) to generate multivariate observations of current and previous year’s establishment 
employment size within each possible industry/state/size class combination, matching the original sample 
population counts.  

From this population, we selected 5000 stratified simple random samples without replacement using the 
same sampling rates as the original survey.  In each sample, we randomly assigned response status 
indicator variables and multi-establishment/single-establishment indicator variables to each sampled unit 
using propensities modeled from our survey data.  

We used these 5000 random samples to construct the empirical variance (“truth”) of our final weighted 
estimate of total employment: 

5,000 )
∑ (X r − X )2 

r =1VT ( X̂ ) = 
5,000 

thwhere X̂  is the r  sample estimate, and X  is the mean of the 5000 sample estimates.  Our fully r 

calibrated estimator from these 5,000 samples is essentially unbiased, i.e., (X − µ) / µ = 0.01,  where µ 
is the population value of total employment. 

In 1,000 of the 5000 samples, we assigned sample units to 16 random groups, then used these 1000 samples 
to study the statistical properties of each variance estimation method for this estimator over repeated 
samples, computing the following statistics:    

1,0001 ∑v ( X̂ 
r )1,000 r=1 

meth 

Relative Bias −1 
VT ( X̂ ) 

where v ( X̂ )  is the variance estimate for a given variance estimation meth r 

method and sample r, and VT ( X̂ ) is the “true” variance. 

1,0001 2∑[vmeth ( X̂ 
r ) −VT ( X̂ )]

1,000 r=1Stability 
VT ( X̂ ) 



 

    
 

 
  

 

  
 

    
  

 
 

 
    

     
 

  

 

 
   

  
 

 
 

 

 

  

 

 

 
 

 

 

 

 

 

 
 

 

 
 

  
  

 
 

 

Coverage The proportion of 90% confidence intervals constructed from each of the 1,000 
samples/variance estimator (meth) that contain the true population total.  
Following Kott (2001), our confidence intervals are constructed with a t-statistic 
with 15 degrees of freedom. 

Relative bias measures the proximity of the variance estimator to the true variance over repeated samples, 
as well as the direction of the bias.  The stability measures the variability of the variance and can be viewed 
as a coefficient of variation of the variance estimators.  The optimal variance estimator will have relative 
bias and stability near zero, and 90% confidence interval coverage.  The number of random groups is a key 
difference between our simulation study and the realized design.  For our simulation study, we decided 
against using ten random groups (as done with the MEPS-IC survey) because of the decrease in degrees of 
freedom in computing coverage rates, believing that the coverage rates constructed with a t-statistic with 
nine degrees of freedom could potentially be too high to distinguish differences between any of the 
variance estimators. 

Table 1 presents our simulation results.  All statistics are reported as percentages. We present four sets of 
results per variance estimation methods:  one that uses the final weights to construct replicate estimates (0 
iterations); two that utilizes “partially” replicated weighting procedures (1 and 3); and one that fully 
replicates the production weighting procedures (7).  Coverage rates that are not statistically different from 
the nominal 90-percent are indicated by an asterisk. 

Table 1:   Simulation Results    

Variance 
Estimation 

Method 
Estimate Number of 

Iterations 
Relative 

Bias Stability Coverage 

Random 
Groups 

Total 
Employment 

0 184.03 214.42 100 
1 9.13 643.87 94.5 

3 16.89 577.91 95.4 

7 21.96 566.38 96 

Delete-a-Group 
Jackknife 

Total 
Employment 

0 184.03 214.42 100 

1 -34.88 45.89 94.3 

3 -37.70 47.76 93.8 

7 -37.67 47.75 93.8 

Extended 
Delete a Group 

Jackknife 

Total 
Employment 

0 1444.33 1470.08 100 

1 -44.73 51.86 92.6 

3 -45.76 52.59 91.3* 

7 -45.71 52.55 91.3* 

The results from Table 1 can be summarized as follows: 

• Regardless of variance estimator, the variance estimates constructed with a shortcut estimator are 
highly positively biased and extremely unstable.  These effects are particularly evidenced with the 
extended delete-a-group jackknife variance estimator.  This provides some evidence for discontinuing 
the current production procedure, which constructs replicate weights from final weights. 

• With the method of random groups, the positive bias (overestimation) of the variance estimates 
increases as iterations are added to the replication procedure. This has the undesirable effect of 
increasing the overestimation as the replication procedure more closely mimics the production 
procedure.  Moreover, these estimates are very unstable.  The confidence intervals constructed with the 



 

 

  
   

  
 

   
  

   
   

 
  

 
 

 
   

 
   

 
   

 
  

 
 
 

 

 
    

 
 

    
 

 
Empirical Results  
 

 
    

  

   

 

random groups estimates are very wide.  These wide intervals would make it difficult to test for 
significant differences between parameters of interest.  Again, these results provide evidence for 
discontinuing the current production procedure variance estimation method for MEPS-IC. 

• In contrast to the random group variance estimates the simple delete-a-group jackknife estimates are 
underestimates.  However, they are considerably more stable than their random group counterparts. 
With this set of samples the degree of underestimation does not appear to greatly affect coverage; all 
confidence intervals are still conservative, although improved over the random group intervals, and the 
coverage rates for three and seven iterations are closer to the nominal value of 90%.  Both the relative 
bias and stability worsen slightly as the number of iterations increases. 

• The extended delete-a-group jackknife variance estimates appear to be less sensitive to the number of 
iterations used than the other methods.  Like their simple delete-a-group jackknife counterparts, these 
variance estimates are quite negatively biased.  Moreover, their stability is slightly higher, reflecting 
the additional variability due to the replicate factors.  Coverage rates for three and seven iterations are 
at the nominal value, demonstrating very little practical impact on coverage from the underestimation. 

Ultimately, the simulation study results demonstrate that some form of weight adjustment replication is 
clearly preferable to the currently used shortcut procedure, regardless of variance estimator.  With all 
methods, the results from a partially replicated weighting procedure (using three iterations) have similar 
statistical properties as those obtained from a fully replicated procedure.  This result is quite consistent with 
those presented in Canty and Davison (1997). 

Considered jointly the simulation study results provide evidence that both versions of the delete-a-group 
jackknife estimator have important statistical advantages over the method of random groups.  These 
advantages are particularly evident in terms of stability.  Both versions of the delete-a-group jackknife 
estimator yield estimates that are drastically more stable than their random groups counterparts. The 
advantage of using the more stable variance estimator is evidenced by the improved coverage rates. 
Certainly the degree of underestimation shown by the relative bias is an area of concern.  We suspect that 
these statistics are exaggerated by the results of few extreme samples. (This exaggeration applies to the 
random group bias estimates as well).   

The choice of simple versus extended delete-a-group jackknife is less obvious when viewing the simulation 
study results.  With three iterations, the stability is quite comparable.  The simple delete-a-group jackknife 
is less biased than its extended delete-a-group jackknife counterpart, but both are severe underestimates 
(with an essentially unbiased estimator).  The coverage rates for the extended delete-a-group tend to “tip 
the scales” towards this method, but with some cautions in interpretation, recognizing that we do not fully 
replicate the survey design and cannot be completely sure the differences between our model and the true 
data are sufficiently substantial to effect our results. 

Survey decisions are rarely made based on simulation results alone.  Table 2 presents empirical 
comparisons constructed from the 2003 MEPS-IC data set.  We include results from the current production 
method (random groups/0 iterations) for comparative purposes only. 

Table 2:   Empirical Results (2003 MEPS-IC Data)  

Variance 
Estimator 

Number of 
Iterations Estimate Estimate Standard 

Error 
Coefficient 
of Variation 

Random 
Groups 0 Total 

Employment 109576005 1,651,697 0.0151 

3 Total 
Employment 109576005 643,427 0.00587 
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7 Total 
Employment 109576005 382,860 0.0035 

Delete-a-
Group 

Jackknife 

3 Total 
Employment 109576005 296,079 0.0027 

7 Total 
Employment 109576005 311,424 0.0028 

Extended 
Delete-a-

3 Total 
Employment 109576005 546,475 0.00499 

Group 
Jackknife 7 Total 

Employment 109576005 483,274 0.00441 

In interpreting these empirical results, it is important to remember that they are computed from one sample, 
not one thousand and that we use ten random groups instead of 16.  As a result, the extended delete-a-group 
jackknife replicate factors are generally the stratum-specific replicate factors described by (2).  The shortcut 
standard error is relatively large which implies a wide confidence interval. This observation is similar to 
those from the simulation study results. Finally, notice that the simple delete-a-group jackknife standard 
errors appear to be less sensitive to the number of weighting iterations than the other methods.  This is 
consistent with the simulation study results. 

Right now, MEPS-IC uses the method of random groups with replicate weights constructed from the final 
weights to estimate their variances.  The many statistical drawbacks of this approach were known 
beforehand, but it was believed that the degree of standard error overestimation was not severe.  Our report 
presents evidence to the contrary for total estimates.  Also, results from our simulation study provide 
evidence against the usage of the random group variance estimator since the variance estimators are 
unstable even when the weight adjustment procedure is replicated. 

Where does this take us?  Again, from our simulation study using a totals estimates it appears that there are 
substantial statistical benefits to replacing the random group estimator with one of the two examined delete-
a-group jackknife variance estimators.  The choice of which version is less obvious. 

The results from the simulation study tend to support the use of the extended delete-a-group jackknife over 
the simple jackknife in terms of confidence interval coverage.  On the other hand, the variance estimates 
constructed from the simple delete-a-group jackknife have smaller absolute bias and are slightly more 
stable then their extended delete-a-group jackknife counterparts.  Both sets of corresponding variance 
estimates are underestimates, and the degree of underestimation on the average from either method is not 
insubstantial.  However, both sets of delete-a-group jackknife variance estimates are fairly stable, so it is 
quite possible that the large relative biases are caused by a few very divergent samples (this contention is 
further supported by confidence interval coverage rates that are close to the 90% nominal value obtained 
with either variation of the delete-a-group jackknife).  

The empirical results are inconclusive.  We believe that it would be unwise to make any decisions about the 
MEPS-IC variance estimation procedure based on the empirical results alone or to extrapolate these results 
to other samples.  On paper, the extended delete-a-group jackknife variance estimator is more suited to the 
MEPS-IC design.  Unfortunately, the realized MEPS-IC sample does not satisfy all of the assumptions 
required for unbiased variance estimation with this method.  Furthermore, we use an ad hoc application of 
the extended delete-a-group jackknife, whose theory is only fully developed for a simple expansion 
estimator, not a calibrated estimator.  In contrast, there is some theory to support the simple delete-a-group 
jackknife variance estimator with a calibrated estimator, at least for survey totals. 
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As just stated, our research was limited to survey total estimates, but the key estimates for MEPS-IC are 
ratio estimates. Before making any final recommendations for MEPS-IC similar research needs to be 
repeated employing these key ratio estimates.  With that said, when considering MEPS-IC total estimates, 
the only clear choice from our presented study is against any form of the random group variance estimator 
and against the usage of a “shortcut” variance estimator that uses final weights to construct the replicate 
weights.  Our results suggest that either method of the delete-a-group jackknife variance estimator would 
be preferable, and that we can achieve comparable results without fully replicating the weighting 
procedure.  We cannot say that either delete-a-group jackknife variance estimator is anywhere near optimal 
for this survey design and calibration procedure. 

Finally, we continue our quest for a variance estimator for MEPS-IC that has good statistical properties, is 
consistent with the survey design, and is not overly resource-intensive.  Adeshiyan et al (2007) eliminated 
the stratified jackknife due to resource constraints but were unable to find a consistently good linearized 
jackknife estimator, so these methods are not considered (they probably would be anyway, given the 
notable proportion of non-certainty strata containing one sampled unit). With this survey’s design, one 
could consider using the bootstrap as an alternative replicate variance estimator.  An alternative approach 
could be to use a model-assisted variance estimator as proposed in Deville and Sardnal (1992) or the 
design-based (non-replicate) variance estimator described in Lu and Gelman (2003).  The latter approach is 
particularly appealing, since the authors’ apply their variance estimation decomposition to a survey with a 
very similar design and a similarly complex iterative multi-step weighting procedure to MEPS-IC. In the 
meantime, we recommend the standard or extended delete-a-group jackknife variance estimation over the 
method of random groups. 

The authors thank Anne Kearney, Rita Petroni, and Jenny Thompson for their useful comments on earlier 
versions of this manuscript. 
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