
 

 
 

 

 
 
 

       
 

  
 

 
 

   
  

   
 

  
  

 
  

 
   

 

       
   

 
     

  
 

   
     

 
    

    
 

    

        
  

  

 

   
     

Using Markov Chain Monte Carlo for Modeling Correct 
Enumeration and Match Rate Variability 

Andrew Keller 

U.S. Census Bureau 
Washington, DC 20233/andrew.d.keller@census.gov 

This report is released to inform interested parties of ongoing research and to encourage discussion of work in 
progress.  The views expressed on statistical, methodological, technical, or operational issues are those of the 
author and not necessarily those of the U.S. Census Bureau. 

Abstract 

The Census Bureau conducted the Accuracy and Coverage Evaluation (A.C.E.) with the goal of producing estimates 
of the net coverage error of Census 2000.  The A.C.E. used dual system methodology to estimate the net coverage 
error.  Dual system estimates were created for population subgroups called post-strata. A problem in model-based 
evaluation of coverage with respect to smaller geographies is that the variance between blocks and within those 
geographies needs to be specified in order to estimate a coverage correction factor.  To improve coverage estimates, 
effort has been made towards advancing models involving smaller geographies.  This paper offers Markov chain 
Monte Carlo (MCMC) methods as a computer intensive method to generate these estimates.  Specifically, random 
effects models of the correct enumeration and match rates at the block level are developed to specify this variance 
with an accompanying statement of precision. 

Background 

The A.C.E. used two samples to evaluate coverage for Census 2000, the population sample (P sample) and the 
enumeration sample (E sample). The P sample estimated persons that should have been enumerated in the census at 
that location according to census residence rules but were not.  The P sample consisted of people rostered from a 
sample of housing units in a specific location (independent of the census) from a sample of census block clusters 
(from now on referred to as blocks). It was populated based on the results from a person interview, independent 
from the census enumerations in the sample blocks. 

The E sample estimated census erroneous enumerations that should not have been included anywhere in the census 
or at the specific location. The E sample consisted of census enumerations. It was identified in the same set of 
census blocks selected for the P sample.  E-sample enumerations who matched to P-sample people were counted as 
correct enumerations. Nonmatched E-sample enumerations underwent a follow up interview to determine whether 
they were correct enumerations for the specific location. 

The A.C.E. divided the population into 416 post-strata where smaller groupings were combined or collapsed to 
produce more stable estimates.  A post-stratum was a group of people sharing demographic and geographic 
characteristics that were assumed to have the same probabilities of inclusion in the census (U.S. Census Bureau 
2004).  A post-stratum was composed of an E-sample post-stratum and P-sample post-stratum pair.  Within a single 
post-stratum, the dual system estimate (DSE) formula was defined as: 

CEk / EkDSE = census × DDRATE × (1) k k k M k / Pk 

where: 
k : Post-stratum 

census k : The census count within post-stratum k 
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DDRATEk : The ratio of data defined census records to all census records within post-stratum k 1. 

CEk : Weighted estimate of correct enumerations in post-stratum k 

Ek : Weighted estimate of enumerations in post-stratum k 

M k : Weighted estimate of matches in post-stratum k 

Pk : Weighted estimate of P-sample records in post-stratum k 

The model development described in this paper focuses on the third term for Formula 1, the ratio of the correction 
enumeration (CE) rate and match rate.  The CE rate quantifies the ratio between total E-sample enumerations and a 
smaller subset of correct E-sample enumerations. The match rate quantifies the ratio between total P-sample people 
and a smaller subset of P-sample people who matched to a census enumeration.  This ratio drives the calculation of 

DSE
(1), and the resulting coverage correction factors, CCFk = k . 

census k 

The goal of this research is to eventually model CE and match rate variances between blocks within a specified 
geography.  From the model-based approach used here, coverage estimates can be made from the modeled CE rate 
and match rate.  The model-based rates, pCE and pM , respectively can be used for computation of new DSEs in (2) 
and coverage corrections factors. That is, for each block b and post-stratum k : 

p ,CE bk DSE = census × DDRATE × (2)bk bk bk p ,M bk 

The model was applied to selected states by including each A.C.E. sample block with between 3 and 79 housing 
units. Traditionally, to approximate meaningful variances of the CE and match rates, it has been necessary to move 
up the geographical hierarchy. That is, variance estimates were computed on larger geographies where sufficient 
data was present to calculate a design-based variance of the respective rates. By developing the model, the goal was 
to generate variances with corresponding statements of precision for smaller levels of geography.  

Methodology 

The model development was geared towards CE rates. In the future, an analogous process will be followed to 
develop a model for match rates. 

Data Development 
For the E sample, each census record was assigned a CE probability based on A.C.E. processing (U.S. Census 
Bureau 2004). To create the data, the CE probability was compared to a uniform number between 0 and 1, U (0,1) . 
Based on that comparison, the record received a binary CE value. For each block in the A.C.E. sample with 
between 3 and 79 housing units, the number of correctly enumerated person records and total person records were 
aggregated and a CE rate was generated. 

Model Development 
This initial model development incorporated between block variability using random effects. Initially, the model 
used a single fixed effect. Let p b( ,  w) represent the owner CE rate in a given block b . Similarly, let p b( ,  r) 
represent the renter CE rate in a given block b . Since the p b( ,  •) are sample proportions between 0 and 1, logistic 

1 In 2000, the census required two characteristics for a record to be data defined.  Relationship, sex, race, Hispanic 
origin, and either age or year of birth counted as characteristics. A valid name also counted as one characteristic. 
To be considered valid by the census, a name had to have at least three characters in the first and last name together. 
These data defined census records were eligible for A.C.E. processing. 



 

  

        
     

   

   

 
  

      
  

 
    

    

        

     
 

     

  

      

   

 
    

      

 

 
 

 

  

 
 

 

regression was used for the model. Because home ownership has traditionally been a good predictor of correct 
enumeration, that was included in the logistic model as a fixed effect. Also, since each block has unique 
characteristics, a random block effect was included in the model.  As a result, the owner and renter CE rates were 

µ α  b+ s +ε ( )  

p bwritten as ( ,  )  • =  
e i 

µ α i b+ s +ε ( )1 + e 
µ : Intercept term 
α : Ownership effect 
si : Binary variable indicating whether the record i was designated as an owner ( si = 1) or a renter ( si = 0 ) 

( )  :  Block effect ε b 

Recall that each person had a binary CE value. Let δ , ,  = 1 refer to each correctly enumerated owner record in an i b w  

arbitrary block b with nbw  total owner enumerations.  Consequently, δ , ,  = 0  refers to each erroneously i b w  

enumerated owner record. Analogously, let δ , ,  = 1 refer to each correctly enumerated renter record in an arbitrary i b r  

block b with nbr  total renter enumerations and δ , ,  = 0  refer to each erroneously enumerated renter record. i b r  

Assuming owner correct enumerations follow a binomial model with a CE rate ( ,p b w) , the likelihood function was 
nbw 

δ 1−δ i b w  i b w  , ,  , ,written as ( (  ,  ))  =∏ p b w  ( ,  )  (1  − p b w  ))  L  p b w  (  ,  . Similarly, assuming renter correct enumerations follow a 
i =1 

binomial model with a CE rate ( ,  )p b r  , the likelihood function was written as 
n +n 

δ 1−δ 
bw br 

i b, ,r  i b  , ,rL p b r  ∏ p b r  (1  ( ( ,  ))  = ( ,  )  − p b r  (  ,  ))  . Combining these likelihoods together, 
i nbw +1= 

n n +nbw bw br 
δ 1−δ δ 1−δi b, ,w  i b, ,w  i b  , ,r  i b, ,rL p b w  (  ( , ))  ∏ p b w  ( ,  ∏ − p b r  .(  ( ,  ))  × L p b r  = ( , )  (1  − p b w  ))  × p b r  ( ,  )  (1  ( ,  ))  (3) 

i =1 i =nbw +1 

The CE rates were modeled to involve the parameters of interest: , ,  b . Also, substituting the logistic µ α ε ( )
expression for the respective CE rates into the likelihood function resulted in the following modification to (3): 

n µ α s +ε b + b n +n + ( )  + b+ ( )  µ α s +ε ( )  µ α s +ε b µ α s +ε ( )i i i ibw bw bre e e eδ 1−δ δ 1−δ , ,  i b w  ,  , ,  i b r  i b w  , i b r  , ,( ,  , ( ))  b =∏ (  ) (1  − ) × ∏ (  ) (1  − )L µ α ε  
µ α s +ε b + b + ( )  + b+ ( )  µ α s +ε ( )  µ α s +ε b µ α  s +ε ( )i i i i 

=1 1 e i nbw +1 1 + e 1 + ei + e 1 + = 

By applying what is known about si  for owners and renters and applying exponential properties, the model was 
further simplified.  Therefore, 

n µ α ε  ( )b n µ ε  ( )+ +  n + + b 
bw bw bre δ 1 1−δ e δ 1 1−δ , ,w , ,w  i b  , ,r , ,i b  i b  i b r  ( ,  , ( ))  b =∏ ( ) ( ) × ∏ ( ) ( )L µ α ε  

µ α ε  ( )b µ α ε  ( )  µ ε b µ ε ( )+ +  + +  b + ( )  + b 
i =1 1 + e 1 + e i =n +1 1 + e 1 + e 

bw 

n +n n +n 
bw bw 

µ α ε  + + ( )b (1−δ ) µ+ε ( )  ∑ i b r  δ , , ) 
n n bw br bw br 

δ b δ , ,  ∑ (1− i b r  ∑ ∑, ,w , ,  wi b  i b  e 1 e 1 
i n  +1 i=n +1= i=1 i=1 bw bw= ( ) ( ) ( ) ( )

+ +  + +  b µ ε bµ α ε  ( )b µ α ε  ( )  µ ε+ ( )b + ( )1 + e 1 + e 1 + e 1 + e 

By definition of δ , ,• ,i b  

n n n +n n +nbw bw bw br bw br 

∑δ = nce , (1  ∑ −δ ) = nee , ∑ δ = nce , ∑ (1  −δ ) = nee , ,  bw , ,  bw i b r  br , ,i b w  i b w  , ,  i b r  br 
i =1 i=1 i=n +1 i =n +1bw bw 

where: 



 

  

   

   

   

     
 

    

 

 
    

   

 

         
  

     
 

      

       
    

 
 

 
      

 
      

     

     

       

    
       

 

ncebw : Number of correctly enumerated owner records in an arbitrary block b 

neebw : Number of erroneously enumerated owner records in an arbitrary block b 

ncebr : Number of correctly enumerated renter records in an arbitrary block b 

neebr : Number of erroneously enumerated renter records in an arbitrary block b 

As a result, the likelihood function for block b was finally written as: 
µ α ε  ( )b µ ε  ( )+ +  +  b e nce 1 nee e nce 1 nee bw bw br br( ,  , ( ))  b = ( ) ( ) ( ) ( )L µ α ε  

µ α ε  ( )b µ α ε  ( )  µ ε  b µ ε  ( )+ +  + +  b + ( )  + b1 + e 1 + e 1 + e 1 + e 

The final likelihood was: L( ,  ,  (  ))  . In addition, it was initially assumed that the block effects were ∏ µ α ε b 
b S∈ 

1 ε 2 (  )  
, ( )) × exp(− ) . (4) normally distributed.  This led to an augmented likelihood model, ∏ L(µ α ε  , b

b 

∈ 2πσ  2σ 2 
b S  

Markov Chain Monte Carlo 
In general, let θ be a vector of unobservable population parameters and y denote observed data. Markov chain 
Monte Carlo (MCMC) methods iteratively generate dependent samples in the parameter space that converge to a 
target distribution, p( |  ) .θ y 

Bayesian techniques allow inference about θ  conditional on the observed data y . Using Bayes’ rule, the posterior 
( ,  )  y  p y  ( | θ )  ( )  p θ p θ

distribution is p( |  y) = = ∝ ( | θ )  ( )  θ p y  p  θ . The likelihood function from above is another 
p y( )  ( )  p y  

way of writing p y( |  θ ) since it is proportional to the probability given unknown parameters. The p( )θ term is 
called the prior distribution. 

Metropolis-Hastings Algorithm 
The Metropolis-Hastings Algorithm generates samples from a posterior distribution.  The Metropolis-Hastings 
Algorithm uses an acceptance-rejection scheme to draw samples from a candidate distribution. The algorithm works 
as follows: 

1. Start with an initial value θ (t = 0)  where the posterior density is greater than 0. 

2. For subsequent iterations t = 1, 2, ..., T −1,T ; sample a candidate value θ t *( )   from a candidate distribution, 

C( (  ) |  θ t * θ (t −1))  . This candidate distribution may not be symmetric.   

θ t * ( (  θ (  ))  t * p( (  ) |  y) ×C θ t −1) |  
3. Calculate the Metropolis-Hastings ratio, Ratio = . If the candidate 

p( (t −1)  |  y) × ( (  )  θ t * | θ (t −1))  θ C 
distribution is symmetric, then the Metropolis-Hastings ratio above is simplified to a ratio of the posterior 
densities. 

4. If Ratio >U (0,1) , then ( )  is accepted and θ t = θ (  )  . If not, θ t = θ (t −1)  .θ t * ( )  t * ( )  After the candidates 
are determined to converge to the target distribution, inference is completed. 



 

  

      
 

      
                

 

      
 

       
 

    
  

     
     

      
    

  
 

  
    

   
    

 
 

       
      

  
 

   
     

       
 

 
    

  

 

 

  

   

Gibbs Sampler 
For multi-parameter Markov chain applications, the Gibbs sampler is used to cycle through all the parameters. If θ 
is composed of multiple parameters, then for each iteration, a single parameter θ  is drawn from a conditional g 

distribution given all other parameters of θ . The Gibbs sampler is a special case of the more general Metropolis-
Hastings Algorithm where all candidates are accepted and the target distribution is known. 

Model Specifics 
This analysis used the Metropolis-Hastings algorithm within the Gibbs sampler. It used the Gibbs sampler to draw a 
single parameter from a conditional distribution given all other parameters.  However, since the target distribution 
was unknown, the Metropolis-Hastings Algorithm was used to accept and reject candidates. 

For each iteration t , B + 3  parameters were processed, where B  was the number of random block effects in the 
model.  The remaining three parameters corresponded to the mean ( µ ), ownership effect (α ), and variance 

between the block effects (σ 2 ). The process cycled through each parameter conditional on the values of the other 
B + 2  parameters and the data by evaluating their Metropolis-Hastings ratios. The σ 2 parameter was the only 
parameter where a non-constant prior distribution was assumed. Its prior distribution was assumed to be half-
Cauchy.  To properly check for convergence multiple sequences (chains) were run.  With respect to following 
notation, z  refers to a chain. 

Block Effects.  For the block effect, the candidate value was sampled by drawing from a normal distribution, 
* 2 *( , ,  ) ~  N ( ( ,  ,  −1),  σ z t  −1))  . The normal distribution is symmetric in ( ,  ,  and ( ,  ,  − . As a ε b z t  ε b z t  ( ,  ε b z t ) ε b z t  1)  

result, the Metropolis-Hastings ratio with respect to the block effects was simplified to the ratio of posterior 
densities and the decision to accept was based solely on the ratio of the posterior densities. 

Intercept. For the intercept term, the candidate value was sampled by drawing from a normal distribution, 
µ( ,  * ) = µ z t −1)  + e where e N  . The normal distribution is symmetric in µ z t * ) and µ( ,z t −1)  . As a z t  ( ,  ~ (0,1) ( ,  
result, the Metropolis-Hastings ratio with respect to the intercept was simplified to the ratio of posterior densities 
and the decision to accept was based solely on the ratio of the posterior densities. 

Ownership Effect. For the ownership effect, the candidate value was sampled by drawing from a normal 
distribution, α ( ,  * ) = α z t −1)  + e where e N  . The normal distribution is symmetric in ( ,  * andz t  (  ,  ~ (0,1) α z t ) 
α ( ,z t −1)  . As a result, the Metropolis-Hastings ratio with respect to the ownership effect was simplified to the 
ratio of posterior densities and the decision to accept was based solely on the ratio of the posterior densities. 

Variance Between Block Effects. For the variance between the block effects, the candidate value was sampled by 
drawing from a gamma distribution, 

~ Gamma[  ,  ( , )]  γ ω ψ  z t 

ω = ⎢⎡(B −1)  /  2  ⎤⎥ 
1 B 

2ψ ( , )  = ∑ε ( ,  , )  z t  b z t  
2 b=1 

2 * 1
σ ( ,z t ) = 

γ 

1The posterior density for the variance between block effects included a half-Cauchy prior term . The 
1 +σ 2 (  ,z t* ) 

conditional posterior density was expressed as: 



 

  

 

 
  

  

   

 

   

        

 

 
  

       
  

   
   

 
     

    
     

    
    

  
 

  
       

 

     
 

     
       

      

B 
2 

B−1 ∑ε ( ,b z t  , )  
− 1

σ z t  * 1,  ,  ), ...,  (  B z t  z t  ( , ),  ]  z t  * 2 − b=1 ]×p[  ( ,  ) |  ε (b = z t  ε b = ,  , ),  µ( , ),  α z t  y  ∝ σ ( ,  )  exp[  
2 * 2 *2  ( , )  1  +σ ( , )  z tσ z t  

Since the gamma distribution is not symmetric, then the Metropolis-Hastings ratio with respect to the variance 
between block effects included the candidate distribution. The candidate distribution was: 

B 

B−1 ε 2 ( ,  , )  ∑ b z t  
* * 2 b=1C( ( ,  ) |  σ ( ,  z t  − 1))  ∝ σ ( ,  )  

− 

exp[  −σ z t  z t  ]
2 ( ,  σ 2 z t  * ) 

B 
2 

B−1 ∑ε ( ,b z t  , )  
2 b=1The logistic terms had no effect because they had no σ  dependence.  The σ

− 

exp[ − ] terms cancelled 
σ 2 * )2 (z t, 

because they were on opposite sides of the quotient. The simplified Metropolis-Hastings ratio was expressed as: 
1 

* * 2 * p( ( ,  ) |  others) × C( ( ,  −1)  |  σ z t  ))  ( ,  σ z t  σ z t  ( ,  1 +σ z t )
Ratio = = 

( (  z t  , −1) |  o he s) C σ z t  * ) |  σ z t  1))  1p σ t r × (  ( ,  ( ,  − 
1 +σ 2 (  ,  z t −1)  

Convergence Analysis 
This analysis employed the Gelman and Rubin Method (Gelman et al. 2000) as its convergence diagnostic. To 
monitor convergence, a potential scale reduction factor was calculated for every parameter. For this analysis, the 
parameter vector subject to convergence monitoring was comprised of the random block effects of each block, the 
intercept term, the ownership term, and the variance between the block effects. That is, 

( ( b = 1), ε (b = 2), ..., ε (b = B −1), ( b = B), , , 2 ) .θ = ε  ε  µ α σ  

To begin, Z = 10 starting values for each parameter were chosen as initial values. For those initial values, dispersed 
starting points were used. This was done to determine if problems existed with the model’s convergence and to 
ensure that the parameter space was thoroughly searched to uncover possible modes. To complete inference, the 
potential scale reduction factor was calculated at intervals of one hundred iterations. When all parameters had a 
potential scale reduction factor close to 1, the MCMC method was thought to have converged at that iteration, 
t = τ . 

Inference 
After τ  was determined, the parameter values were used to calculate modeled owner and renter correct enumeration 
totals for every iteration between τ + 1 and 2τ for each block within each chain. That is, 

µ ( , )  +α (  , )  +ε ( b z t  , , )z t  z t  e
CEmdl ( ,  , )  = ( ) × nb z t 

(  , )  +α (  , )  +ε (b z t  ,  , )  bwowners µ z t  z t1 + e (5) 
µ ( , )  +ε (  , , )  z t  b z t  e

CEmdl ( ,b z t , )  = ( ) × n renters µ ( , )  +ε (  , , )  brz t  b z t  1 + e 
were used as draws from the joint posterior distribution. 

Model Checking 
Binomial trials were run to produce new samples. Simple means and standard error estimates from the new samples 
were compared to corresponding statistics from the observed sample to assess model fit. To do this, for each 
chain/block/iteration grouping between τ + 1 and 2τ , nbw trials were run to get a sample of the number of correctly 



 

  

   
      

 
 

 
  

       

 

  
  

         

 

  

   
      

    
     

  

 
            

   
         

   
  

enumerated owners in that block.  Similarly, nbr trials were run to get a sample of the number of correctly 
enumerated renters in that block. The inputted Binomial probabilities were based off the modeled correct 
enumeration totals for owners and renters in (5).  The correct enumeration totals for the binomial trials were 
computed as follows: 

CEmdl ( ,  , )  b z t owners( ,  , ) ~  Bin n ( , p = )CEbin b z t owners bw nbw 

CEmdl ( ,  , )  b z t renters CEbin b z t ( ,  , ) ~  Bin n ( , p = ) .renters br nbr 

CEbin b z t b z t ( ,  , )  ( ,  , )  = CEbin ( ,  , )  + CEbin b z t owners renters 

Next, a mean (meanCERATEbin) and standard error (seCERATEbin)  over the blocks were calculated for each 
iteration between τ +1 and 2τ for each chain. They were calculated as follows: 

B 

[∑CEbin b z t ( ,  , )  ] 
b=1( , )  = 

B
meanCERATEbin z t 

[∑ n + n ]bw br 
b=1 

B 

[∑CEbin b z t ( ,  , )]  −CEbin b z t ( ,  , )  
b=1( ,  , )  = 

B
repCERATEbin b z t 

[∑ n + n ] − [n + n ]bw br bw br 
b =1 

B −1 B 
2( , )  = ∑ (repCERATEbin b z t − ( , ))  seCERATEbin z t ( ,  , )  meanCERATEbin z t 

B b=1 

The means and standard errors for all iterations between τ +1 and 2τ for each chain were combined and then 
sorted from smallest to largest. That resulted in two vectors of size 10τ . That is, 

[meanCERATEbin (1, τ +1), ..., meanCERATEbin (10, 2 ) ]meanCERATEvect = τ 

[seCERATEbin (1, τ +1), ..., seCERATEbin (10, 2 ) ]seCERATEvect = τ 
sortedmeanCERATEvect = sort(meanCERATEvect ) 

sortedseCERATEvect = sort(seCERATEvect ) 

Then, the 5% coverage values were created by taking the mean and standard error for the 0.05 ×10τ sorted iteration. 
Similarly, the 95% coverage values were created by taking the mean and standard error for the 0.95 ×10τ sorted 
iteration. That resulted in the following coverage intervals: 
mean _ cvg _ itrvl = [sortedmeanCERATEvect (0.05 ×10 ), sortedmeanCERATEvect (0.95 ×10 )] τ τ 

(6) 
se __ cvg _ itrvl = [sortedseCERATEvect (0.05 ×10 ), sortedseCERATEvect (0.95 ×10 )] τ τ 

As an example, suppose a MCMC model is run for 5000 iterations over 50 blocks with 10 chains. Suppose that, 
from the Gelman and Rubin Method, the model converges at τ = 2000 . For all chains, the means and standard 
errors for iterations between τ 1 2001 and 2 =+ =  τ 4000 are combined and then sorted from smallest to largest. 
That results in vectors of size 20000 for the mean and standard error. The coverage intervals (6) are then formed 
by: 



 

  

 

 
  

  

 

 
    

  
       

  
    

    
   

       
  

mean _ cvg _ itrvl = [sortedmeanCERATEvect (0.05 × 20000), sortedmeanCERATEvect (0.95 × 20000)] 

se __ cvg _ itrvl = [sortedseCERATEvect (0.05 × 20000), sortedseCERATEvect (0.95 × 20000)] 

The coverage intervals were compared to the values observed from the 2000 A.C.E. sample.  They were computed 
as follows: 

B 

[∑ nce bw + nce br ] 
b=1meanCERATEobserved = 

B 

[∑ n + n ]bw br 
b=1 

B 

[∑ nce + nce ] − [nce + nce ]bw br bw br 
b=1repCERATEobserved b ( )  = (7) 

B 

[∑ n + n ] − [n + n ]bw br bw br 
b=1 

2 

1 

1 
(  (  )  )  

B 

b 

B
seCERATEobserved repCERATEobserved b meanCERATEobserved 

B = 

− 
= −∑ 

Results 

The goal of this research was to determine the feasibility of applying MCMC techniques to model correct 
enumeration and (eventually) match rates. To assess this, model-based mean and standard error coverage intervals 
of the CE rate from (6) were compared to the mean and standard error of the observed sample from (7).  One of the 
key aspects in developing the model was determining if the assumption that the random block effects had a normal 
distribution from (4) was accurate. The following table sets compare the model-based mean and standard error 
coverage intervals to the mean and standard error from the observed sample. This section provides results for eight 
states in each of the four census regions.  Recall that, within each state, only a subset of blocks was taken to model 
CE rate variability. As a result, model results may not be illustrative of the whole state. 



 

  

         
            

    
 

   
 

 
  

   
   
   
   
   
   
   
   

 
  

   
  

    
  

 
     

     
 

Model 1: No Random Block Effect 
Initially, the challenge was to justify the inclusion of a random block effect in the model to account for 
heterogeneity between blocks. To do this, it was necessary to empirically show that omitting a random block effect 
would not be sufficient to model the observed sample. The results were as follows: 

Table 1.A – CE Rate Coverage Intervals 
Domain Observed Value Coverage Interval 

Lower Bound 
Coverage Interval 
Upper Bound 

Interval Covers 
Observed Value? 

1 0.9476 0.9357 0.9589 Yes 
2 0.9413 0.9341 0.9481 Yes 
3 0.9722 0.9677 0.9764 Yes 
4 0.9447 0.9389 0.9505 Yes 
5 0.9243 0.9103 0.9383 Yes 
6 0.9449 0.9365 0.9533 Yes 
7 0.9369 0.9316 0.9423 Yes 
8 0.9519 0.9446 0.9588 Yes 

Table 1.B – SE(CE Rate) Coverage Intervals 
Domain Observed Value Coverage Interval 

Lower Bound 
Coverage Interval 
Upper Bound 

Interval Covers 
Observed Value? 

1 0.0128 0.0037 0.0072 No 
2 0.0066 0.0028 0.0043 No 
3 0.0033 0.0017 0.0024 No 
4 0.0061 0.0023 0.0030 No 
5 0.0116 0.0058 0.0108 No 
6 0.0072 0.0031 0.0048 No 
7 0.0067 0.0025 0.0033 No 
8 0.0085 0.0027 0.0039 No 

Table 1.A indicates that the model-based coverage intervals for the CE rate cover the observed CE rate.  However, 
Table 1.B shows that the model-based coverage intervals for the standard error consistently underestimate the 
observed standard error of the CE rate. As a result, it was determined that modeling the random block effect was 
needed to account for heterogeneity between blocks.  



 

  

  
         

   
 

   
 

 
  

   
   
   
   
   
   
   
   

 
  

   
  

   
   
   
   
   
   
   
   

    
   

  
     

         
 

 
 

 
   

        
           

   
 

     
       

             
 

 
 

    
 

  

 

Model 2: Normal Random Block Effect 
When it was clear that a random block effect would need to be included, the initial thought was to model the random 
block effect with a normal distribution.  The results were as follows: 

Table 2.A – CE Rate Coverage Intervals 
Domain Observed Value Coverage Interval 

Lower Bound 
Coverage Interval 
Upper Bound 

Interval Covers 
Observed Value? 

1 0.9476 0.9362 0.9579 Yes 
2 0.9413 0.9344 0.9479 Yes 
3 0.9722 0.9679 0.9763 Yes 
4 0.9447 0.9390 0.9500 Yes 
5 0.9243 0.9103 0.9378 Yes 
6 0.9449 0.9365 0.9530 Yes 
7 0.9369 0.9317 0.9421 Yes 
8 0.9519 0.9450 0.9584 Yes 

Table 2.B – SE(CE Rate) Coverage Intervals 
``Domain Observed Value Coverage Interval 

Lower Bound 
Coverage Interval 
Upper Bound 

Interval Covers 
Observed Value? 

1 0.0128 0.0096 0.0176 Yes 
2 0.0066 0.0058 0.0081 Yes 
3 0.0033 0.0026 0.0041 Yes 
4 0.0061 0.0054 0.0071 Yes 
5 0.0116 0.0084 0.0152 Yes 
6 0.0072 0.0060 0.0092 Yes 
7 0.0067 0.0059 0.0075 Yes 
8 0.0085 0.0067 0.0102 Yes 

Table 2.A indicates that the model-based coverage intervals for the CE rate cover the observed CE rate.  Table 2.B 
shows that the model-based coverage intervals for the standard error now cover the observed standard error of the 
CE rate. Because of the results, it can be inferred that the assumption that the random block effects are normally 
distributed was correct. 

Conclusions and Future Work 

This work represents a beginning in studying the feasibility of applying MCMC methods to estimate variance of 
coverage estimates over smaller geographies. Although the initial results above are promising, this model has only 
been applied to a subset of the 2000 A.C.E blocks sampled within each state. It will need to be determined if the 
inclusion of small blocks with less than three households or large blocks with greater than 79 households will 
necessitate a change to the model. 

As mentioned earlier, future work will include modeling match rates using the same paradigm. Furthermore, since 
CE and match rates are thought to be correlated within a block, the future model will have to incorporate that 
relationship. Additionally, a model for data defined rates will be constructed using similar techniques. 
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