THERE AND BACK AGAIN:
DEMOGRAPHIC SURVEY SAMPLING
IN THE 21ST CENTURY

Colm O’Muircheartaigh
NORC, University of Chicago
OVERVIEW

- History of Demographic Survey Sampling
- 20th Century Sample Design
- New Directions
- Evaluation of Lists, GIS, and Maps
- Implications
- New National Sample Designs
- Swiss Cheese
- Tailored Samples vs Master Samples
- Conclusion
HISTORY 1

- A N Kiaer (1895)
 - ISI Berne *Representative Enumerations*
 - Miniature of the population
 - Multi-stage design – *places, towns, streets, HUs*
 - Stratified

- US implementation
 - Cressy L Wilbur (1896-7) – [vital statistics]
 - *small representative areas*
 - Carroll D Wright (1875 et seq) – [labor statistics]
 - *representative statistics*
 - Non-probability samples
HISTORY 2 – DEVELOPMENT

• Bowley (1906)
 – Theory for simple random sampling
• Neyman (1934)
 – Superiority of probability sampling
 – Theory for unequal cluster sampling
• Hansen Hurwitz Madow 1940s
 – PPS at higher stages
 • Adequate “representation” of important units
 • Leads to identification of certainty PSUs
 – Equal workloads at final stage (HUs)
 • Efficiency of field allocation and estimators
• 1950s: national master samples ISR, NORC, et al.
THE BASIC NATIONAL DEMOGRAPHIC DESIGN

- Multi-stage
 - Costs
 - Feasibility
- Some self-representing PSUs
- Stratified
 - Incorporating knowledge of population and structure
20th Century Demographic Survey
Sample Design Elsewhere

• Scandinavia
 – Register-based

• China
 – Register-based
 – Late 1980s, registers deteriorated

• UK
 – Electoral registers, updated annually
 – 1980s, registers deteriorated
 – Postcode address file (PAF), centrally available
 – Periodic redesign
• Decennial update of frame, and
• Absence of a current list of population elements
 – Selection of a MASTER SAMPLE of PSUs and SSUs
 – Listing of the frame for the master sample
 – Use as reservoir for the decade
 – Updating in the field for the sample only
NEW DIRECTIONS IN THE USA

- Availability of current administrative lists
- Matching and pre-classification of geographies
- GIS and GPS
- Tailored samples vs master samples
WHY LISTS WOULD MAKE A DIFFERENCE

• Cost parameters would change
• Nature of PSU might change
• Subsampling fraction might change
• Timing of revisions could change
THE (NON-CENSUS) ADMINISTRATIVE ALTERNATIVE

• USPS delivery sequence file
 – Ordered within ZIP by carrier route
 – Within carrier route by walk sequence

• Available through licensees
 – Primarily purchased by direct-mail organizations

• Usability
 – Basis for MAF in urban areas
 – Addresses in standard format
 – Operational incentives for updating
 – Can be geocoded and mapped
 – Contains PO boxes and rural route boxes (not mappable)
Using/Evaluating the List

1. Direct/non-evaluative use, single city survey, 2001 RTI
2. Evaluation against traditional listing, 2001-2 NORC
3. Inner-city evaluation and use, 2002-3 NORC
4. Direct/non-evaluative use as national frame, 2003 RTI
5. “Rural” evaluation, 2003 NORC
6. Basis for national design template, 2003-4 NORC
7. National comparison with traditional listing, 2004 NORC/ISR
DIRECT USE (RTI-2001)

• Iannachione, Staab, Redden
 – Houston, TX
 – Geocoded > 99% of addresses
 – Selected sample from list
 – 97% of selected addresses yielded HUs
 – Order of magnitude of list and census count same
 – No direct coverage check
Validating the List (NORC 2001-2)

- O’Muircheartaigh, Eckman, and Weiss
- NORC GSS Field Test 2001: 14 segments
 - First, traditional listing (T)
 - Then, geocoded USPS list for the areas (U)
 - Finally, independent enhanced list (E) built from U
- Comparison of coverage
 - T – Traditional
 - U – USPS addresses geocoded inside segment
 - E – U enhanced in the field
 - USPS – full USPS list whether geocoded inside or not
ISSUES ENCOUNTERED IN ENHANCED LISTING

• Issues with USPS list
 – missing apartment numbers
 – addresses removed at request of resident
 – PO boxes, rural route boxes unusable
 – includes hard to find HUs missed by field listers

• Geocoding issues
 – block boundaries
 – side-of-street errors

• Matching geographies
 – ZIPs vs blocks, block groups, tracts
COST COMPARISON T VS E

• Travel costs, etc.
 – Equal

• Listing costs
 – T approximately twice as expensive as E
Comparison of T, U, and E

- U in E 95%
- E in U 93%
- T in U 87%
- E in T 81%
- E in USPS 96%
INNER CITY EVALUATIONS (NORC 2002-3)

• O’Muircheartaigh, Eckman, English, and Haggerty
• The *Making Connections* Project
 – Funded by Annie E. Casey Foundation
• 10 Deprived Inner-City Communities
 – Denver, Des Moines, Indianapolis, San Antonio, Seattle
 – Milwaukee, Hartford, Providence, Oakland, Louisville
INNER CITY EVALUATIONS

• Purchased USPS lists for ZIPs surrounding whole community
 – Geocoded all
 – With U as base:
 • Produced E with in-person listing
 • Compared U and E for coverage
 – Compared U and E coverage during fieldwork
INNER CITY EVALUATIONS

• Two key measures:
 – How much of E is in U (the geocoded part of USPS)?
 – How much of E is in USPS as a whole
INNER CITY EVALUATIONS

• Overall results
 – 90% of E in U
 – 94% of E in USPS
 • Difference due to geocoding/map inaccuracies

• Range across cities:
 – 82% - 95% of E in U
 – 83% - 99% of E in USPS

• Characteristics of missed HUs
 – In most severe cases, many vacant HUs

• MHU
 – Only moderately successful
DIRECT USE NATIONAL FRAME (RTI 2003)

• Staab, Iannachione
• Used postal frame exclusively for EuroQol study
• Used postal geographies
• Ignored ZIPs with no residential addresses
• Ignored residents without street addresses
NATIONAL LIST EVALUATION (NORC/ISR 2004)

• O’Muircheartaigh, Lepkowski, Heeringa
 – HRS and NSHAP
 – National listing of 549 segments by ISR
 – Purchase of USPS lists for 100 segments
 – Comparison of T and U
 – Nationally representative
USE FOR NORC NATIONAL SAMPLE DESIGN 2003

- Geographic units
- Preclassification of list quality
- Stratification
- Optimal design
The Population

- 8.2 million census blocks
- 66,275 tracts
- 3219 counties
- 281 (C)MSAs in Census 2000
 - Now 362 MSAs and 565 Micropolitan SAs
- Variable population density
- Variable list quality
PRECLASSIFICATION OF GEOGRAPHIES

• Census classification of blocks [TEA – type of enumeration area]
 – Available for all blocks
 – Indicator of feasibility of using USPS list as frame
 • Whether suitable for mail-out
 • Address type

• Type A tracts
 – 95% of HUs in tract are in blocks classified as TEA=1

• Type B tracts
 – All other tracts
THE DESIGN – 1

Categorize MSAs/counties according to population density and list quality

Large MSAs (likely certainty areas) with high-density population dominated by Type A tracts [category 1]

Small counties with less than 30% of population in type A tracts or less than 15,000 population [category 3]

All other counties/MSAs [category 2]
THE DESIGN – 2

• Category 1
 – 45% of population in 4.5% of the area

• Category 2
 – 40% of population in 25% of the area

• Category 3
 – 15% of population in 70% of the area
The Design – 3

• Different designs are appropriate for the different categories

• A major problem:
 – Even in the high density urban MSAs rural (non-street-style address) areas are interspersed with urban (street-style address) areas
Chicago Category 1 MSA Showing Type A and B Tracts
Category 2 Areas Showing Type A and B Tracts
Type A and B Tracts In Worcester, MA [a category 2 MSA]
THE DESIGN SOLUTION

• The Swiss cheese frame
 – Stratum 1 contains all type A tracts in category 1
 • In this stratum, the tract is the PSU
 – Stratum 2 contains all type A tracts in category 2
 • In this stratum the MSA/county is the PSU
 – All remaining tracts (category 1B, category 2B, and category 3)
 • In this stratum, the MSA/county is the PSU
 • Supplementary tracts from category 1B
Type 1B Segment in Riverside CA, showing TEA Type, Census Count, and USPS Address Locations
Stratum 1

- 42% of population, 2% of area, 24 certainty areas
- Direct selection of tracts as PSUs
- Contemporaneous USPS list with MHU procedures for HU selection
Stratum 2 – All Type A Tracts in Category 2 PSUs
STRATUM 2

- 30% of population, 3% of area, 607 MSAs/counties (or parts thereof)
- 60 MSAs/counties (or parts thereof) as primary selections
- Selection of tracts as SSUs
- Contemporaneous USPS list with MHU procedures for HU selection
STRATUM 3 [composite of categories 3, 2B, and 1B]

- 28% of population, 93% of area, 3074 MSAs/counties (or parts thereof)
- Selected of 28 MSAs/counties (or parts thereof) as PSUs
- **Constructed segments** (blocks or groups of blocks) as SSUs
- **Listed master sample of HUs within segments**
 - Collect geocode during listing (GPS devices)
 - Reservoir for decade
Map Showing Strata 1, 2, and 3
IMPLICATIONS OF LISTS FOR SAMPLE DESIGNS

• *Tailored* samples vs *Master* samples
• Rural – no change from previous designs
 • Definition of rural?
• Non-rural
 – For timeliness, coverage, and cost, E superior to T
 – Is U superior to T?
 – Not desirable to construct very much in advance
• Non-rural can be extended as quality permits
FEATURES OF NEW DESIGNS

• Flexibility for tailored designs
 – Accommodates modified stratification within strata 1 and 2 using ACS and/or other information during decade
 – Permits updates to HU frame using USPS lists
 – Allows different definition and number of PSUs per stratum depending on size of sample and precision requirements

• Timeliness
 – Can take advantage of any list upgrades or updates
There …

- **19th Century**
 - Multi-stage cluster sample of HUs
 - Stratified by urbanicity
 - Use of lists where possible
 - Selection from street addresses or registers
 - Designs tailored to specific projects

- **Mid-20th Century**
 - Area sampling as conceptual framework
 - Decennial listing/master samples
 - Re-design decennially
... AND BACK AGAIN

• 21st Century
 – Lists as frames
 – GIS/location as unique identifier
 – Designs differentiated by cost/feasibility

• The Mechanisms
 – Available (high) quality lists
 – GIS – identification and tracking
 – Pre-classification of geographies
 – Computer power
• The Result
 – Tailored samples
 – Cheaper, better samples
 – Unnecessary uniformity minimized
 – Subject matter can inform sample design
 – Database linkages for analysis
CHALLENGES

• For designers:
 – Matching list geographies and census geographies
 – Better map data bases
 – Unique identifiers for addresses
 – Confidentiality/anonymity concerns

• For users:
 – Taking advantage of the potential

• Overall, most exciting time for sampling since Neyman in 1934 and the subsequent CPS design