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1. Introduction

Capture-recapture methods are used for estimating the unknown size of a closed population from overlapping lists of cases 
[1, 2, 3].  After the cases on each list are enumerated and cases recorded on both lists are identified, an estimate is obtained 
for the number of cases that are not on either list.  This estimate of the number of unknown cases is combined with the 
number of matched and unmatched cases to yield an estimate of the size of the population.  To estimate the number of 
unknown cases, Lincoln and Petersen developed the maximum likelihood estimator [4, 5].  Chapman later adjusted the 
estimator for use with small samples [6, 7]. 

To obtain a valid population estimate using capture-recapture methods with two lists, three conditions are assumed:  for 
each list, the probability a case is recorded on the list is equal for all cases; the probability of being recorded on a list is 
independent of the probability of being recorded on the other list; and there is no immigration or emigration to the 
population during the study period.  Even if these assumptions are violated, Hook and Regal suggest the estimates may still 
be valid [1]. Regardless of the validity of these assumptions, current methods require cases appearing on each list to be 
uniquely identifiable such that unique matches between lists can be determined. 

Epidemiological applications of capture-recapture methods utilize surveillance data or administrative lists.  Administrative 
lists often do not have a sufficient amount of specific information on individual characteristics to insure cases are uniquely 
identifiable. In this paper we modify commonly used capture-recapture methods to overcome this problem. In our methods 
we create profiles, or a collection of characteristics, that describe one or more individuals on a list. For example, if profiles 
were defined by gender, birth month and birth year then a possible profile is males born in May of 1976.  For profiles 
appearing on both lists, we account for potential matches of cases between the two lists.  Two methods are developed to 
account for potential matches: (1) a weighted estimator, which considers all potential matches and  (2) a bootstrap 
estimator, which considers potential matches by resampling  profiles with replacement. We illustrate the use of the 
bootstrap estimator by estimating the number of pertussis hospitalizations reported during 1996 in New York State using 
two data lists without unique identifiers. 

2. Methods
2.1 The Chapman Estimator: Unique Matches
When two lists, A and B, the observed counts are: the number of uniquely matched cases on both list A and list B, X AB , the
number of cases on list A but not on list B, AB , and the number of cases on list B but not on list A, X . The unknown X AB 

number of cases on neither list A nor list B  is estimated by 
X̂ = (X X (X +1)) .AB AB AB AB 

The modified Chapman Lincoln-Petersen estimate of the population total is 
N̂ = X AB + X AB + X AB + X̂ 

AB (1) 
and its estimated variance is approximately 

1 

(X + X +1)(X AB + X AB ) X AB XAB AB ABˆV N   2 .( )
(X AB +1) (  X AB + 2) 



 

 
   

    

    
  

 
    
    

  

 

   

     

 

 

 
  

 

 

 
   

     
 

 

2.2 The Weighted Estimator: Non-unique Matches 
When the identifiers on the two administrative lists do not allow individuals to be matched uniquely, potential matches can 
be identified by merging two or more characteristics to create a  “profile” (e.g. males born in May of 1976). When more 
than one person on a list has the same profile, there are many ways to match cases between the two lists with respect to the 
profile. Further, when there are many profiles, each of which may be associated with more than one person, there are many 
different ways that individuals in list A could match individuals in list B. We refer to each of the possible ways in which 
individuals on list A could match individuals on list B as a “profile match configuration.” 

Letting Ai  denote the number of individuals on list A with profile i, Bi denote the number of individuals on list B with 
profile i, S = min { Ai , Bi }, P denote the number of unique profiles, and ji the number of ways profile match i

configuration can occur for profile i, i= 1, …, P is 
 i BiA    qji =      ,   (2) 

ji ji   
i 0,..., S . Letting j j  , ..., j  matches on j = i , j  denote a combination of profile match configurations in which there are1 2 p 1

profile 1, j matches on profile 2, …, and j matches on profile P, the number of ways j j,  ,  ...,  j  can occur is2 P 1 2 p 

P 

q j1 , j2 ,..., jp 
=∏q ji 

i=1 

and the probability of j j, , ..., j is1 2 p 

qj j, , ... j1 2 p 
, , j =   (3) π j j  ..., .1 2 p Sj Sj Sj1 2 P 

∑∑ ... ∑ q , ,j j  ... j1 2 p 

j1 =0 j2 =0 jP =0 

The modified Chapman Lincoln-Petersen estimator corresponding to j j, , ..., j  is1 2 p 

 P P  P P  A −
P P P P P ∑  ∑ ∑j  B − ∑ j 
∑ ∑ ∑   ∑ ∑   

i i
ˆ 

i  i


 
N j j1 2  ... jP 

= ji +  Ai − j i  +  Bi − ji   + i=1 i=1 i=1 i=1 
P   (4) 

i=1  i=1 i=1   i=1 i=1 
 

  1+∑ ji 
i=1 

whe ∑
P  P P   P P re, j i  is the number of matches, ∑ Ai −  ∑ j i   is th e number of cases on list A without a match,   ∑Bi − ∑ ji   

i=1  i=1 i=1   i=1 i=1  
 P P  P P  
 ∑ Ai − ∑ ∑ji  B − ∑ j 
 

i i


 
is the number of cases on list B without a match, and  i=1 i=1 i=1 i=1 

P  is the modified Chapman estimator 
1+∑ ji 

i=1 

for the number of cases appearing on neither list. When there is only one profile match configuration, cases are uniquely 
identifiable and equations (4) and  (1) are identical. The weighted estimator  of the population total is 

Sj1 Sj2 SjP
ˆ ˆ= ∑∑ ... ∑π j , j , ..., j Nj  j  ,N , ..., j1 2 P 1 2 P 

j =0 j =0 j =0 . (5) 
1 2 p 

2.3 The Bootstrap Estimator: Non-unique Matches 
The weighted estimator (5) may be useful when the number of profiles (P) is small or when there are relatively few records 
existing in each profile, i.e. Ai and Bi are small.  However, q j1 , j2 ,..., jp 

approaches infinity when there are either a large number 
of profiles (P) or when Ai and/or  Bi are moderate or large for many profiles.  In this case we use a bootstrap procedure to 
obtain a point estimate for the closed population size, N, and to derive percentile confidence intervals for the estimate. 
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I 
I 

In the r-th bootstrap replicate sample, r =1,…, R1,  we obtain a with-replacement sample of size 
P 

∑ Ai from list A and of 
j=1 

P 

size ∑Bi from list B. From these samples we note the number of individuals belonging to each of the P profiles on each 
j=1 

list. For the r-th bootstrap replicate let Ai
′  denote the number of individuals sampled from list A that have profile i, 

   ′Ai 
′ Bi  P 

Bi
′ denote the number of individuals on list B with profile i, S ′i = min { Ai

′ , Bi
′ }, q′ji =     , and q′ j , j2 ,..., j 

=∏q′ ji .
ji ji 1 P

    i=1 

Then, we compute the probability of every profile match configuration j j, , ..., j ,1 2 P 

′ , , jq j j  ...1 2 pπ ′ 1 , 2 , j p ′ ′ ′ .j j  ..., = S j S j S j1 2 P 

∑∑ ...∑ q′j , j , ... j1 2 p 

j1 =0 j2 =0 jP =0 

Next, we obtain R  with-replacement samples from the profile match configurations j j  , ..., -th bootstrap , j  from the r2 1 2 P 

replicate sample. In this step, profile match configuration j j, , ..., j is sampled with probability π , , ..., j . Each of the ′ j j1 2 P 1 2 p 

profile match configurations resampled in this step represent one of the ways in which individuals on list A could correctly 
r smatch individuals on list B. For the s-th, resample from the data in the r-th replicate, X ( ,  ) denote the number of uniquely AA 

( , )r s  ( , )matched cases on both list A and list B, X denote the number of cases on list A but not on list B, X r s  denote the AB AB 

number of cases on list B but not on list A, and 
ˆ ( , )  ( , )  r sr s  r s  ( , )  ( , )  r sX = (X X (X AB +1)) 

denote the estimated number of individuals in the population on neither list A nor list B, and  
AB AB AB 

ˆ ( , )  r s  ˆ ( ,  )  ( , )  r s  ( , )  r s  r s  ( , )  r s  N = X + X + X + XAB AB AB AB 

R 
ˆ ( )  ˆ (r s  ) 

2 
r ,denote the modified Chapman Lincoln-Petersen estimator. The estimator for replicate r  is  N = ∑N R2 and the 

s=1 

mean bootstrap replicate estimator is 
R 

ˆ 
1 

ˆ ( )rNboot = ∑N R1 . 
r=1 

Bootstrap percentile confidence intervals for the close population size can be obtained using quantiles of the replicate 
ˆ ( )estimates, N r , r =1,…, R1 . It can be shown that the mean bootstrap replicate estimator is unbiased for the weighted 

estimator, and that the weighted estimator minimizes squared error loss. 

3. Example: Pertussis Hospitalizations During 1996 in the State of New York  
Reliable estimates of the burden of disease are needed to evaluate disease control policies.  Similar to other nationally 
reportable diseases, evidence suggests the numbers of pertussis cases and hospitalizations in the United States are 
underestimated [9].  The combination of increasing disease and possible underestimation of reporting motivated a study to 
estimate the magnitude of pertussis hospitalizations by state and year in the United States using a two-sources capture-
recapture analysis.  We report here only the results for the state of New York during 1996. 

3.1 Data  Sources 
Two surveillance lists were identified which both captured hospitalizations from the population of interest during 1996. 
The first list comes from the National Electronic Telecommunications System for Surveillance (NETSS); the second list 
was obtained from the Health Care Information Association (HCIA). 

NETSS is a concatenation of weekly reports submitted electronically from state health departments to the Centers for 
Disease Control and Prevention. Included in these reports are cases of diseases determined to be nationally notifiable by the 
Council of State and Territorial Epidemiologists [10].   The data are primarily used to rapidly identify disease epidemics. 
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The HCIA database contains acute-care hospital discharge records form both public and proprietary state data during 1992-
1996.  The database contains reports from more than 2500 non-federal, self-selected, acute-care hospitals in the United 
States. These reports represent approximately 40% of the total US hospital discharges. 

3.2  Application of Bootstrap Estimator 
The attributes common to both surveillance lists were gender, birth month, birth year, year of illness and month of illness 
(hospitalization month from HCIA matched with cough onset month from NETSS).  These common attributes do not 
identify individuals uniquely within a list and thus we cannot be certain that the individuals across lists are unique. 
Therefore, we used this set of attributes to define profiles. Because of the lack of unique identifiers and because the number 
of profiles was large, we implemented the bootstrap estimator to estimate the total number of pertussis hospitalizations in 
New York State during the year 1996. 

The HCIA database listed 200 records of hospitalizations due to pertussis while the NETSS database listed 123 records of 
pertussis hospitalizations in New York State, 1996.  Each record was defined by one of 157 profiles determined by the 
above-mentioned variables. For HCIA there were 88 unique profiles and the average number of cases described by each 
profile was 1.40 (Range: 1-5). For NETSS there were 113 unique profile; the average number of cases described by each 
profile was 1.77 (Range: 1-6).   However, 51 (41%) cases listed in NETSS matched more than one individual in HCIA.  In 
HCIA, 85 (43%) cases matched more than one case in NETSS.  The number of matching configurations exceeds 4 x 1015. 
Thus, we used the bootstrap method with R1 = 500  times and R2 = 250 . Figure 1 shows a histogram of the bootstrap 

ˆ ( )replicate estimates, N r , r = 1,…, R1 . The estimate for the number of pertussis hospitalizations in New York State during 
ˆ ( )ˆ N rthe year 1996 is the mean of the replicate estimates, Nboot = 894 . The 2.5% and 97.5% quantiles of were used to 

give the 95% percentile confidence interval, (737, 1102).   

To examine the impact of profile definition on our results, we implemented two profile definitions for the 1996 New York 
State data.  The first, presented above, defined the profile by gender, year of illness, month of illness, birth month and birth 
year. The second profile definition used only gender, year of illness, birth month, and birth year.  Thus the second profile 
definition can be considered less specific then the first. As expected, with the less specific matching criterion the estimate 
decreased to 468 (95% CI: 421, 523). 

4. Discussion 
A fundamental requirement of capture-recapture methods for estimating population totals is cases can be matched using 
unique identifiers. In our research we account for the uncertainty of uniqueness by developing the weighted estimator, 
which incorporates all possible matching configurations when non-uniqueness exists.  In addition, we developed the 
bootstrap estimator for use when a large number of profiles are present or when large numbers of individuals exist within 
profiles. The bootstrap estimator is approximately unbiased for the closed population size. 

Both the weighted and bootstrap estimators assume individuals within lists are not duplicated.  That is, two or more cases 
defined by the same profile within a list are in fact unique.  It is therefore important to carefully evaluate the administrative 
lists used to ensure that there is, at least theoretically, no duplication of individuals on any one list providing information 
for the capture recapture analysis.  However, if duplicates do exist within one or both of the lists, the resulting estimates 
will be inflated.   

The methods presented here are not recommended as a substitute for use of unique identifiers when they do exist within and 
between lists.  Yet, using the weighted or bootstrap estimator is a feasible alternative when assumptions of uniqueness 
cannot be met and allows for broader applications of capture-recapture methods. Although this work demonstrates that 
capture-recapture estimates can be obtained when cases are not uniquely identifiable, the numerical results suggest that 
estimates can depend sensitively on the specificity of the profile definition. 
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Figure 1:  Distribution of Replicate Estimates 

NY 1996: Distribution of Bootstrap Replicate Estimates(R1=500; R2=250) 
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