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Abstract 

Since the 1991 the population estimates have used the Census counts adjusted for the net Census undercoverage.  The 
population estimates require the net missed persons by single year of age for each sex for all provinces and territories are 
required.  While the coverage studies can provide reliable estimates of missed persons for each province and territory, the 
sample size is not large enough to provide reliable estimates at the detail needed.  A mixture of procedures is used to 
produce the estimates.  Direct survey estimates for each province and territory are used to create one margin.  A spline 
smoothing method is used to produce the national estimates of age and sex needed for the other margin.  An Empirical 
Bayes regression model creates the estimates for broad age groups within a province.  A synthetic model then generates the 
detailed single year of age estimates.  Finally, a calibration procedure is used to ensure the detailed estimates are consistent 
with the fixed marginal totals.  Of some concern is the measure of the quality of these estimates.  A Mean Square Error 
(MSE) is produced for the Empirical Bayes regression model but this does not take into account all the adjustments made to 
the model.  This paper will review and compare procedures for estimating the MSE for this small domain estimation 
problem. 

KEY WORDS: Benchmarking, Calibration, Census undercoverage, Empirical Bayes, Hierarchical Bayes, Sampling 
variance, Synthetic estimation, Population estimation. 

1. Introduction 

The Census of Canada was conducted on May 15, 2001.  One objective is to provide the Population Estimates Program with 
accurate baseline counts of the number of persons by age and sex for specified geographic areas.  The count of persons 
includes usual residents, immigrants and non-permanent residents; excluded are all foreign visitors and non Canadian 
residents without a permit. Unfortunately, not all persons are correctly enumerated by the Census.  Two errors that occur are 
undercoverage - exclusion of eligible persons - and overcoverage - erroneous inclusion of persons. 

The main coverage vehicle used by Statistics Canada is the Reverse Record Check (RRC).  This sample survey, with a 
sample size of 60,000 persons, estimates the net number of persons missed by the Census. This estimate is the combined 
total of the two types of coverage errors, the gross number of persons missed by the Census and the gross number of persons 
erroneously included in the final Census count. Once these estimates are adjusted for the coverage errors of persons living 
in collective dwellings, the final net number of people missed by the Census can be produced. The RRC sample size 
produces reliable direct estimates for large areas, such as provinces, and for large domains, such as broad age - sex 
combinations at the national level. However, the Population Estimates Program requires estimates of missed persons for 
single year of age for both sexes for each province and territory - over 2,000 estimates.  Clearly the direct survey estimate 
would result in estimates having either unacceptably high standard errors due to insufficient sample in the small domain or 
having no estimate at all due to no sample in the domain. In addition, estimates have to be produced for the 288 Census 
Divisions and 4 different types of marital status.  Altogether over 2.5 million estimates have to be created.  

The current methodology used to generate these estimates has essentially been in place since 1991.  One component of the 
procedure is to use the basic area model, as in Fay – Herriot (1979).  However some modifications have been made to this 
basic model that needs to be evaluated.  Specifically, the usual basic area model assumes that the sampling variances are 
known.  The Census undercoverage model has to smooth the observed sampling variances before they can be used in the 
model.  The final MSE does not take into account this estimation so clearly this approach has underestimated the 
uncertainty.  Another drawback to the current methodology concerns the constraints that are imposed on the final estimates. 
Again the impact of this approach is to underestimate the MSE.  The proper evaluation and impact of these two approaches 
is addressed in this paper.  The chosen method is to adjust the model fit it into a Hierarchical Bayes framework. With this 
approach we can use the machinery developed over the last 10 years for evaluating this Hierarchical Bayes (HB) model and 
observe if the measures of uncertainty are comparable. 
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An advantage of the Hierarchical Bayes approach is that it is relatively straightforward and the inferences about the level 
parameters are “exact” unlike the Empirical Best Linear Unbiased Prediction (EBLUP) approach.  The HB approach will 
automatically take into account the uncertainties associated with unknown parameters.  However, it does require the 
specification of prior distributions.   Fortunately the Census provides a case in which specifying the model is, again, 
relatively straightforward.  The main purpose of this paper is to see how well the established method (EBLUP) compares 
with the more comprehensive HB approach. 

Section 2 presents an overview of the methods that have been used to produce these estimates over the last 3 Census 
periods.  This section gives a brief overview of the entire methodology but concentrates on the Empirical Best Linear 
Unbiased Prediction component.  Section 3 presents the hierarchical Bayes models including a basic area level model and 
the modifications to the basic model for unknown sampling variances and constraining the final estimates. 

2. Overview of Established Method 

Mixtures of procedures are used to produce the required estimates of net missed persons.  Direct survey estimates for each 
province and territory are used to create one margin.  A cubic spline method is used to produce the national estimates of age 
and sex needed for the other margin.  An Empirical Bayes regression model creates the estimates for broad age groups 
within a province.  A synthetic model then generates the detailed single year of age estimates.  Finally, a raking ratio 
procedure is used to ensure the detailed estimates are consistent with the fixed marginal totals.  Dick (2001) gives a 
complete description of the approach used in 1996.  Overall a summary  giving with the background information of these 
methods can be found in Rao (2003). 

(a) Marginal Totals 

Two marginal totals are required: the provincial estimate of net missed persons and the national total of net missed persons 
by single year of age for each sex.  The provincial and territorial estimates of net missed persons can be found in the official 
population release on coverage studies.  These are assumed to be correct and all further estimates will respect these totals.  

The direct estimates for national age and sex cannot be used without some smoothing.  From the data, it appears that from 
age 0 to about age 15 there is very little pattern.  Starting in the late teens until about age 30, there is a sharp increase in 
undercoverage.  After age 30, there is gradual decline until about age 60 at which point the variability of the data becomes 
quite large. There are a large variety of methods that can be used to smooth the direct estimates.  In the next section a 
smoothing method based on a generalized linear model is introduced but in this case it was felt that describing the model in 
a few parameters would be very difficult. Instead a nonparametric small domain model was introduced.  This approach 
implicitly assumes that consecutive age groups have relatively similar undercoverage rates and change between ages 
follows a smooth function. 

The model assumes that the true undercoverage rates - defined as the ratio of net missed persons over the total population -
are described by a smooth function of age f (a) . Suppose we write the observed rate as equal to the smooth function at an 
age a plus a random error, or r = f (a) + ε . For this model we will assume that the function f (a) is continuous - meaning a a 

that undercoverage rates move smoothly between consecutive ages.  For reasons that will be shown, the model also assumes 
that the function has first and second derivatives and the error is assumed to be independent for different ages.  More details 
on this model can be found in Ramsey (2000). 

The RRC publishes the undercoverage rates by selected broad age groups: 0 to 19, 20 to 29, 30 to 44, 45 to 69 and 70 and 
over.  The smoothing spline will produce different estimates for these groups.  A common procedure is to ensure those 
small domain estimates are in agreement with higher level aggregated data is to calibrate the estimates to these totals.  The 
spline estimates can be calibrated for bench marking quarterly or monthly time series to annual totals. 

(b) Small Domain Estimation 

The detailed estimates of missed persons by single of age and sex within each province is handled in a two step procedure. 
First, an Empirical Bayes regression model is used with broad age groups, and then a synthetic estimate is created for the 
single years of age within the broad age groups. 
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The objective of modelling the small domain estimates is to produce a series of estimates with a smaller Mean Square Error 
than the direct estimate.  However, as opposed to the direct survey estimate which is design unbiased, the modelling 
approach will introduce a bias for each estimate.  Thus modelling the small domain estimates implies that a trade off is 
required between reducing the variance of each estimate and the bias introduced through the modelling process.  One 
approach to ensuring that the more reliable direct survey estimates are utilized is to introduce an Empirical Bayes model 
similar to Fay and Herriot (1979).  This procedure creates an estimate that is a combination of a model estimate and the 
direct survey estimate weighted by their respective variances.  It is an Empirical Bayes estimate instead of a Bayes estimate 
because underlying parameters are first estimated, then these estimated parameters are considered known in later 
calculations. Note that since the individual sampling variances are used in the estimation, a more precise direct estimate 
would contribute much more to the final Empirical Bayes estimate then a similar estimate with low precision. This ensures 
that the model does not dominate estimates that are already considered reliable.  It is also possible to approach this 
estimation problem through a Hierarchical Bayes methodology.  The approach is discussed in Section 3. 

The Empirical Bayes regression will use the direct survey estimates of adjustment factors.  If we write the Census count for 
age group j in province i as Cij and the net missed persons - the difference between the undercount and the over count in the 

−same domain - by Mij = Uij − Oij  then we can define the net undercoverage rate to be Rij = Mij (Mij + Cij ) 
1  and the 

adjustment factor - the ratio of true population to Census population - as yij = (Mij = Ci j ) / Cij . Adjustment factors are 
used in the modelling since the true population in an area is simply the product of the Census count and the adjustment 
factor.  Later, when synthetic estimates are required this property will be found to be very useful.  Note that adjustment 

−factors are related to the net undercoverage rates through yij = (1 − Rij ) 
1  . 

The empirical Bayes model assumes that a two stage model.  First, a sample model describes the basic relationship between 
the observed adjustment factors and the true adjustment factors. Secondly, a regression model describes how the true 
adjustment factors vary with a set of underlying variables. If we let θ i  be the true adjustment factor in a domain, then the 
model for the first stage or the sample survey model can be written as (dropping the subscript j) 

yi = θi + ε i , 
2where we assume the random error term is ε ≈ N (0,σ ) and the variance is known.  The second stage model relates the i i 

true adjustment factor to a set of underlying explanatory variables.  If we let Xi be the set of variables then we can write the 
second stage model as 

θi = X i β +ξi , 
2where the model term is assumed to be N (0,συ ) . We also assume that the model errors are independent of the sampling 

errors and there is zero covariance between the two errors (i.e. Cov(ε ,ξ ) = 0 ). When we combine the models together we i i 

can estimate the expectation of the adjustment factors given the observed adjustment factors by 
ˆE(θ̂  y ) = γ̂  y + (1 − γ̂ )X βi i i i i i 

2 2 2 −1where the shrinkage factor γ̂ i = σ̂ υ (σ i + σ̂υ ) determines the weights given to the direct estimate and the model 
2estimate.  Note that if the sampling error, σ i , is very small - implying little error associated with the direct estimate and 

consequently γ i ≅ 1 - the Empirical Bayes model will place more weight on the direct estimate.  However, if the sampling 
error is very large - implying the direct estimate has a large amount of uncertainty attached to it and consequently γ i ≅ 0  -
then the Empirical Bayes estimate places more weight on the model estimate.  It is this property that makes this model so 
attractive for small domain estimation. The RRC sample sizes vary, by province, from about 3,000 persons in PEI to over 
11,000 in Ontario.  Consequently we would like to preserve the reliable direct estimates produced in Ontario and, in turn, 
rely more on the model estimate in PEI. This Empirical Bayes model allows for this.  

One requirement for this model is that the sampling errors are assumed known.  This adds a layer of difficulty to using this 
model in this situation.  The sample variances for the direct survey estimates are estimated by a replicate methodology.  The 
5 replicates will produce unbiased but highly variable estimates of the sampling variance.  If the direct estimates for the 
sampling variances are used in the model then the final estimates from the Empirical Bayes model are unstable.  Thus, 

2 2before using the model, the sampling variances must be stabilized.  We will use si =σ for the estimate of the sampling i 

variance. 
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One approach to estimating the sampling variance is to use the sample design of the RRC.  Using the fact, that the sample 
was selected proportional to the population size then it is shown in Dick (1995) that to a reasonable approximation the log 
of the variance of missed persons can be written as log(V (Mi )) =η + ΓCi +ζ i , where V (Mi ) is the variance of the missed 
persons.  Plots of the residuals do not seem to indicate any problems, so the straight line is taken as the estimate of the 
sampling variance.  These estimates are assumed to be without any error and used in the Empirical Bayes regression model. 
See Dick (2001) for more details on evaluating this procedure. 

The regression coefficients are estimated using a Weighted Least Squares method while the model variance is estimated by 
a Restricted Maximum Likelihood approach.  An iterative scheme in used in SAS/IML which first estimates the regression 
parameters and then uses these estimates of the regression parameters to estimate the model variance.  The updated model 
variance is then used in the next cycle for the weighted least squares.  Convergence is fairly rapid with only about 6 or 7 
iterations being needed.  More details can be found in Dick (1995). 

The final requirement of the Empirical Bayes model is produce an estimate of the Mean Square Error (MSE) of the 
estimates.  If all the components were known, then the MSE would simply be the Bayes estimate of the posterior variance or 
MSE(θ̂ ) = g = γ̂  s 2 . Since 0 ≤ γ i ≤ 1  then, when the components are known, we are guaranteed the MSE of the i 1i i i 

Empirical Bayes model will be less - sometimes much less - than the original variance.  However the components are not 
known but need to estimated.   Consequently, this term only gives a first (underestimated) approximation to the true MSE. 

Prasad and Rao (1990) provide an approximation to the true MSE of the Fay - Herriot model when the components must be 
2 2 ' ' −1estimated.  The MSE approximation is given as MSE(θ̂  

i ) = g1i + g2i + 2g3i , where g2i = σ̂υ (1 − γ̂ i ) xi (Σγ̂ i xi xi ) xi , 
4 2 2 −3 2which estimates the uncertainty due to estimating the regression parameter β  and g = s (σ̂ + s ) V (σ̂ ) , which 3i i υ i υ 

2estimates the uncertainty due to estimating the model variance σ . Note that the sampling variance is assumed known so v 

any uncertainty concerning this variance is not included in the final MSE.  This is an obvious short coming of this 
approximation. 

Recently, Wang (2000), Wang and Fuller (2003), Rivest and Vandal (2002) and Datta, Rao and Smithh (2002) have 
modified the basic Prasad – Rao estimator of the MSE to include terms that account for the unknown sampling variance and 

2the estimation method of the model variance συ . The impacts of these new approximations are discussed in You and 
Chapman (2003).   They note that when the sample sizes are large the EBLUP methods perform well.   

The requirements of the Population Estimates Program require that the estimate of missed persons by produced for single 
year of age - for each sex - for each province.  The Empirical Bayes estimates, discussed above, can produce estimates for 
broad age groups - usually 4 or 5 ages - but it cannot work effectively with more age groups due to a lack of sample.  Too 
many domains would produce an estimate of zero since no sample was in the domain.  Clearly, to meet the requirements of 
the program, a synthetic estimate must be introduced. 

Suppose, from the Empirical Bayes model, we have an estimated adjustment factor of y pk  for some broad age - sex group k 
within province p.  The adjustment factors allow for an easy synthetic estimate of missed persons for any single year age, a, 
with the k-th age group by using M pka = C pka ( y pk − 1) . Note the assumption that for all the age groups with the k-th 

group, the same adjustment factor y pk applies. This assumption allows for easy use of the adjustment factors but, in fact, is 
in contradiction to the earlier assumption concerning the undercoverage rates for single year of age.  This implies that 
further refinements are needed before the estimate of missed persons can be used. 

(c) Consistency Adjustment 

The small domain estimation will no longer be consistent with the marginal totals discussed in Section 2(a).  Hence a raking 
ratio adjustment is used on the small domain estimates to ensure consistency with both the provincial totals and the national 
age - sex totals. This procedure organizes the estimate of missed persons into a matrix with the single year of age estimates 
as the row and the province estimates as the columns.  The fixed marginal totals are then used for the single year age at the 
national levels and for the provincial totals.  The Empirical Bayes estimate of the adjustment factors are then used to 
generate the synthetic estimates of missed persons for each province.  These estimates are then alternatively adjusted so that 

Page 46 



 
   

  
 

 

 

 
 

   

 
    

 
       

    

 
 

 
 

 

 

 
 

 

 

 

 

   

 

  

 

 
 

 

 

they sum to the row and column totals.  Convergence is usually reached in about 3 iterations.  Complete details can be 
found in Dick (1995). These estimates are then used as the small domain estimate of missed persons.  By adding them to the 
Census counts, the Population Estimates Program can create a baseline population for generating the population estimates. 
Further estimates may be required, such as for Census Divisions or for marital status.  These are produced in a synthetic 
fashion using an appropriate adjustment factor as described in Section 2(b). 

3. Hierarchical Bayes Model-Based Estimation 

3.1 General Area Level Models 

Let yi  denote the direct survey estimator of the i-th small area parameter of interest θ i . Following You and Rao (2002), we 
consider a sampling model for yi : yi = θi + ε i , i = 1,..., m, with E(ε i |θ i = 0) , that is, the direct survey estimator yi is 

2design-unbiased for the small area parameter θ i . The sampling variance of yi is V (ε i |θ ) =σ . The sampling variance is i i 

usually assumed to be known in the model, but it may depend on the unknown parameter θ  (You and Rao, 2002). The i 

unknown parameter θ i  is assumed to be related to area level auxiliary variable xi  through a linking function g with 
random area effects vi as g(θ i ) = xi ′β + vi , i = 1,...,m,  where β  is a vector of unknown regression parameters, and the 

2 2vi 's are uncorrelated with E(vi ) = 0 and V (vi ) = σ , where σ is unknown. Normality of vi  is also assumed. The v v 

sampling model and the linking model are unmatched in the sense that they cannot be combined directly to produce a linear 
mixed effects model for small area estimation if the linking function g is a non-linear function (You and Rao, 2002).  

3.2 Fay-Herrit model under HB framework 

The Fay-Herriot model is a special case of the general model. In the Fay-Herriot model, the linking function g(θ i ) =θ i 

~2and the sampling variance σ i 2  is replaced by a smoothed estimator σ i  and then treated as known in the model. Under the 

HB framework, the Fay-Herriot model is given as (1) y θi ~ ind N (θi ,σ~i 
2 ) , i = 1,…,m; (2) θi β ,σ 2 ~ ind N (x′β ,σ 2 ) , i = i v i v 

21,…,m; (3) Priors: π (β ) ∝ 1, π (σ ) ~ IG(a ,b ) . Inference based on the Gibbs sampling approach can be found in You v 0 0 

and Rao (2002).  

3.3 Benchmarked HB Estimators 

HBYou, Rao and Dick (2002) constructed benchmarked HB estimators for small areas. Let θ̂  
i  denote the HB estimator of θi 

BHB BHBand V̂ (θ i ) the posterior variance of θi . Let θ̂  
i  denote the benchmarked HB (BHB) estimator of θi  such that θ̂  

i is a 
HB ˆBHB HB ˆHBfunction of the HB estimators θ̂  
i , i = 1,...,m , i.e., θ = f (θ̂  ,...,θ )  for some function f (⋅) , and satisfies thei 1 m 

m mBHBbenchmark property: ∑θ̂  = ∑ yi . For example, a ratio BHB (RBHB) estimator can be obtained asi 
i =1 i =1 

ˆRBHB ˆHB m m ˆHB ) BHBθ i = θ i (∑k =1 yk ) /(∑k =1θk . To obtain a measure of variability associated with the BHB estimator θ̂  
i , we use 

BHB BHB 2the posterior mean squared error (PMSE), PMSE(θ̂  
i ) = E[(θ̂  −θ ) | y] , which is similar to the posterior variance i i 

ˆHB BHBassociated with the HB estimator θ . It can be shown (You, Rao and Dick, 2002)  that the PMSE of θ̂  
i  is given by i 

BHB ( ˆBHB ˆHB 2 BHBPMSE(θ̂i ) = θ −θi ) + V (θi | y) . Thus the PMSE of θ̂  
i  is simply the sum of the posterior variance V (θi | y)i 

θi
BHB − ˆHBand a bias correction term ( ˆ θi )2 . The PMSE is readily obtained from the posterior variance and the estimators

HB BHBθ̂  
i and θ̂ .i 

3.4 Unknown sampling variances 

2The Fay-Herriot model assumes that the sampling variances σ i  are known in the model.  This is a very strong assumption. 
2Usually a smoothed estimator of σ i  is used in the model and then treated as known.  In practice, the sampling variances 
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2 2 2σ i  are usually unknown and are estimated by unbiased estimators si . The estimators si  are independent of the direct 
survey estimators yi .  Following Wang (2000), Rivest and Vandal (2002) and Wang and Fuller (2003), we also assume that 

2 2 2disi ~σ i χdi , where di = ni −1 and ni is the sample size for the i-th area.  For example, suppose we have ni  observations 

from small area i and these observations are iid N (µi ,σ 2 ) . Let yi  be the sample mean of the ni  observations.  Then
2 2 2 2 2yi ~ N (µ ,σ ) and σ =σ 2 / n . Then we can obtain an estimator of σ as s = s2 / n , where s  is the sample variance i i i i i i i 

2 2 2of the ni  observations.  Also yi and si  are independent and (ni −1)si 
2 ~ σ i χni −1 . We now present the Fay-Herriot model 

2with the estimated sampling variances si  in a HB framework as follows: (1) y θ ,σ 2 ~ ind N (θ i ,σ i 
2 ) , i = 1,…,m; (2) i i i 

2 2d s2 σ ~ ind σ 2 χdi , d = n −1, i = 1,…,m; (3) θ β ,σ 2 ~ ind N (xi ' β ,σ 2 ) , i = 1,…,m; (4) Priors for the parameters: i i i i i i i 

known constants to reflect vague knowledge on σ i and σ IG denotes the inverse gamma distribution. For a complete 

v v 

π (β ) ∝ 1, 2π (σ i ) ~ IG(a ,b ) , i = 1,…,m,i i 
2π (σ ) ~ IG(a ,b0 ),v 0 where ai ,bi (0 ≤ i ≤ m ) are chosen to be very small 

2 2 .v 

HB inference, the Gibbs sampling method will be used. The full conditional distributions for the Gibbs sampler are given in 
You and Chapman (2003). The Rao-Blackwellized estimator of the posterior mean and posterior variances can be easily 
obtained from the full conditional distributions (You and Chapman, 2003). 
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