
 
 

 
  

  

 
 

 

 
 

 
 

 
  

  
   

 
  

  
   

 

 
 

 

 
 

  
  

 

 

 

 
     

   
  

 

  

  

 

Linearization Variance Estimators for Longitudinal Survey Data 
A. Demnati and J. N. K. Rao 

A. Demnati, Social Survey Methods Division, 
Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6 

Abdellatif.Demnati@statcan.ca 

J. N. K. Rao, School of Mathematics and Statistics, 
Carleton University, Ottawa, Ontario, Canada, K1S 5B6 

JRao@math.carleton.ca 

Summary 

In survey sampling, Taylor linearization is often used to obtain variance estimators for nonlinear finite population 
parameters, such as ratios, regression and correlation coefficients, which can be expressed as smooth functions of totals. 
Taylor linearization is generally applicable to any sampling design, but it can lead to multiple variance estimators that are 
asymptotically design unbiased under repeated sampling. The choice among the variance estimators requires other 
considerations such as (i) approximate unbiasedness for the model variance of the estimator under an assumed model, (ii) 
validity under a conditional repeated sampling framework. Demnati and Rao (2001) proposed a new approach to deriving 
Taylor linearization variance estimators that leads directly to a unique variance estimator that satisfies the above 
considerations.  In this paper, we extended the work of Demnati and Rao (2001) to deal with longitudinal surveys which 
lead to dependent observations and to multiple weights on the same unit. We consider a variety of longitudinal sampling 
designs, covering panel surveys, household panel surveys as well as rotating surveys.  

Key Words: Multiple weights; Repeated surveys; Taylor linearization. 

1. Introduction 

Taylor linearization is a popular method of variance estimation for complex statistics such as ratio and regression 
estimators and logistic regression coefficient estimators. It is generally applicable to any sampling design that permits 
unbiased variance estimation for linear estimators, and it is computationally simpler than a resampling method such as the 
jackknife. However, it can lead to multiple variance estimators that are asymptotically design unbiased under repeated 
sampling. The choice among the variance estimators, therefore, requires other considerations such as (i) approximate 
unbiasedness for the model variance of the estimator under an assumed model, (ii) validity under a conditional repeated 
sampling framework. For example, in the context of simple random sampling and the ratio estimator, Ŷ = ( y / x)X , of theR 

population total Y , Royall  and Cumberland (1981) showed that a commonly used linearization variance estimator 
2ϑ = N 2 (n−1 − N −1 )s  does not track the conditional variance of Ŷ  given x , unlike the jackknife variance estimator L z R

2ϑJ . Here y  and x  are the sample means, X  is the known population total of an auxiliary variable x , s  is the sample z

variance of the residuals zi = yi − ( y / x)xi  and (n, N )  denote the sample and population sizes. By linearizing the 
2jackknife variance estimator,ϑJ , we obtain a different linearization variance estimator, ϑ = (X / x) ϑL , which alsoJL 

tracks the conditional variance as well as the unconditional variance, where X = X / N  is the mean of x . As a result, ϑJL 

or ϑJ  may be preferred over ϑL . Valliant (1993) obtained ϑJL  for the post-stratified estimator and conducted a simulation 
study to demonstrate that both ϑJ  and ϑJL  possess good conditional properties given the estimated post-strata counts. 
Särndal, Swensson and Wretman (1989) showed that ϑJL  is both asymptotically design unbiased and asymptotically model 

unbiased in the sense of Em (ϑJL ) = Varm (ŶR ) , where Em  denotes model expectation and Varm (ŶR ) is the model variance 

of Ŷ  under a Αratio model≅: Em ( yi ) = β xi ; i = 1,..., N  and the yi ’s are independent with model variance R
2Varm ( yi ) =σ xi , σ 2 > 0 . Thus, ϑJL  is a good choice from either the design-based or the model-based perspective. 

Demnati and Rao (2001) proposed a new approach to variance estimation that is theoretically justifiable and at the same 
time leads directly to a ϑJL -type variance estimator for general designs. Afterward, Demnati and Rao (2002) extended their 
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method to the case of missing responses when adjustment for complete nonresponse and imputation based on smooth 
functions of observed values, in particular ratio imputation, are used. 

While several methods have been proposed to correctly estimate the variance of an estimator under cross-
sectional data, methods of variance estimation from longitudinal data are limited, despite an increase in recent years in the 
number of longitudinal surveys. The dynamic nature of longitudinal populations such as births and deaths, the limitation of 
longitudinal samples to take into account such features of longitudinal populations, and multiple weights are one of the 
difficulties inherent to longitudinal data in addition to the customary cross-sectional difficulties such as complex designs, 
missing data and so on. This paper is a first attempt to extend the Demnati and Rao (2001,2002) method to the case of 
longitudinal survey data. Section 2 gives a brief account of the method for the case of cross-sectional data, and section 3 
presents the extension to longitudinal survey data. 

2. Cross-Sectional Data 

We give a brief account of the Demnati and Rao (2001) method under full response. Suppose an estimator θ̂  of a 
parameter θ  can be expressed as a differentiable function g(Ŷ )  of estimated totals Ŷ = (Ŷ1,...,Ŷ 

m )
T , where 

Ŷ j = ∑ i∈U di (s) yij  is an estimator of the population Y j , j = 1,.., m , where di (s) = 0  if the unit i  is not in the sample s , 

U  is the set of population units, and θ = g(Y )  with Y = (Y ,...,Y )T . We may write θ̂  as θ̂  = f (d (s), Ay ) and1 m 

j th Tθ = f (1, Ay ) , where Ay  is an m × N  matrix with column y j = (y1 j ,..., ymj ) , j = 1,..., N , d (s) = (d1(s),..., d N (s))T 

and 1  is the N -vector of 1's. For example, if θ̂  denotes the ratio estimator Ŷ = X (∑ i∈U di (s) yi ) /(∑ i∈U di (s)xi ) , thenR 

m = 2 , y1i = yi , y2i = xi  and f (1, Ay )  reduces to the total Y , noting that X (Y / X ) = Y . Note that ŶR  is a function of 

d (s) , y , x  and the known total X , but we dropped X  for simplicity and write Ŷ = f (d (s), y , x) . If the Horvitz-R 

Thompson weights are used, then di (s) = 1/π i for i ∈ s , where π i  is the probability of selecting unit i  in the sample s . 

Let f (b, Ay ) = f (b) for arbitrary real numbers b = (b ,...,bN )
T . Demnati and Rao (2001) showed that the Taylor 1 

linearization of θ̂  −θ , namely 
T (Ŷ − Y ),θ̂  −θ = g(Ŷ ) − g(Y ) ≈ (∂g(a) / ∂a) 

a=Y 

is equivalent to 
θ̂  −θ ≈ ∑ N 

=1 (∂f (b) / ∂bk ) (dk (s) − 1)k b=1 (2.1) 
~ = z T (d (s) − 1), 

)T ~ ~ ~ ~where ∂g(a) / ∂a = (∂g(a) / ∂a ,..., ∂g(a) / ∂a and z = (z1,..., z N )
T  with zk = ∂f (b) / ∂bk b 1 .  It follows from (2.1) th at1 m = 

~ ˆ ~a variance estimator of θ̂   is approximately given by the variance estimator of the estimated total ∑ di (s)zi = Y (z , d (s)) ; 
~θ̂  ≈ϑ 

~ 
that is, var( ) (z , d (s)) , where ϑ( y, d (s))  denotes the variance estimator of Ŷ = Ŷ ( y, d (s))  in operator notation usin g 

~the vector of design weights d (s) . Now we replace zk  by zk = ∂f (b) / ∂bk , since zk =s are unknown, to get ab=d(s) 

linearization variance estimator 
ˆϑL (θ ) =ϑ(z, d (s)) . (2.2) 

Note that ϑL (θ̂ )  given by (2.2) is simply obtained from the formula ϑ( y, d (s))  for Ŷ = Ŷ ( y, d (s))  by replacing yi  by zi 
~for i ∈ s . Note that we do not first evaluate the partial derivatives ∂f (b) / ∂bk  at b = 1  to get zk  and then substitute 

~estimates for the unknown components of z . Our method, therefore, is similar in spirit to Binder(1996)’s approach. The 
~variance estimator ϑ (θ̂ )  is valid because zk  is a consistent estimator of zk .L 
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Suppose θ̂  is the ratio estimator Ŷ = X (∑ di (s) yi ) /(∑ di (s)xi ) , where ∑  denotes summation over i ∈U . Then R 

f (b) = X (∑ bi yi ) /(∑ b x i ) = XY ̂(y, b) / Ŷ (x, b)  andi 

X ˆzk = ∂f (b) / ∂b = 
X̂ (yk − Rxk ) .k =b d(s) 

For simple random sampling, ϑL (ŶR ) =ϑ(z, d (s))  agrees with ϑJL = (X / x) 2ϑL . 

The above derivation is simple and natural. On the other hand, in the standard linearization method, θ̂  is first 
expressed in terms of elementary components Ŷ1,...,Ŷ as g(Ŷ )  and the partial derivatives ∂g(a) / ∂a j  are then evaluated m

at a = Y . It is interesting to note that all the components Ŷ j  use the same weights di (s)  and our approach always takes 

partial derivatives of f (b)  with respect to bk  at b = d (s) . It is not necessary to first express θ̂  in terms of elementary 
components. Demnati and Rao (2001) applied the method to a variety of problems, covering regression calibration 
estimators of a total Y  and other estimators defined either explicitly or implicitly as solutions of estimating equations. 
They obtained a new variance estimator for a general class of calibration estimators that includes generalized raking ratio 
and generalized regression estimators.  They also extended the method to two-phase sampling and obtained a variance 
estimator that makes fuller use of the first phase sample data compared to traditional linearization variance estimators. 

3. Longitudinal Data 

As in the usual finite population situation, we identify a population of size N  during a fixed period of time by a 
set of indices P = {1,..., N} . Let P (t)  denote the cross-sectional population at time t  and let J (t)  denote the cross-sectional i

J (t ) (t ) (t ) (t )population membership indicator for unit i , i = 1,..., N , i.e. i = 1  if i ∈ P  and J i = 0  if i ∉ P  with 

J (t) ) P (t) 
+ = ∑ i J i

(t ) = N (t the size of the cross-sectional population , where ∑ i  denotes summation over the population 
units i . In this section, we consider variance estimation of a differentiable function of estimated cross-sectional totals 
under a series of longitudinal sampling designs assuming full response and no post-stratification. It is shown that a variance 
estimator can be obtained through variance estimation of a design-weighted estimator of total of a synthetic population. 
The case of estimators obtained as solution of estimating equations can be obtained along the lines of Demnati and Rao 
(2001), and the case of estimators obtained from survey data with missing responses can be obtained along the lines of 
Demnati and Rao (2002). In this version, details of these extensions are omitted for space reason. 

To discuss multiple weights inherent in repeated surveys, suppose an estimator θ̂  of a parameter θ  can be 
= (Ŷ (1) expressed as a differentiable function θ̂  = g(Ŷ )  of estimated cross-sectional totals Ŷ ,..., Ŷ (T ) )T , where Ŷ (t )  is an 

J (t ) (t ) = (Y (1) estimator of the population total Y (t ) = ∑ i y at time t , t = 1,...,T , and θ = g(Y )  with Y ,...,Y (T ) )T . We may i i 
(t ) ~ 

Ŷ (t ) ˆ (t) (t) (t) (t ) T (t) (t) (t)write as Y = ∑G
g ∑ i d gi (sg ) yi = 1G (t ) A~ y with specified constants G , where 

d 
~ ~ (t) ~ A (

~ 
t) = (d (t) (s (t) ),..., d (t) (s ))T , d (t) (sg 

(t) ) are vectors of cross-sectional weights at time t , 1  is the G (t) -vector  of 1 1 (t ) (t ) g G (t )d G G 
(t) (t) (t)1’s and y = ( y ,..., y )T . In this section we show that the estimator θ̂  can be written as θ̂  = f (d (s))  under a wi de1 N 

class of longitudinal survey designs. Therefore, it follows from Demnati and Rao (2001) that a linearization varian ce 
estimator of θ̂  is given by 

ϑL (θ̂ ) =ϑ(z, d (s)) , (3.1) 
where 

d (s) = vech(Ad
T ) , (3.2) 

= (A(1)T T (t) (t) (t) (t) (t) (Ad d ,..., Ad 
(T )T ) , Ad = (d1 (s1 ),..., d (t ) (s (t ) ))T , d g

t) (s) are vectors of design weights,  vech(A)  denotes the 
G G 

vector obtained by stacking distinct column of A underneath each other, in order from left to right, and 
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/ ) ∂ I zk = ∂f (b bk . (3.3)b=d (s) 

3.1 Independent Samples 

(t) (t) d (t) (s (t)Under independent samples we have G (t) = 1 , Ŷ (t) = Ŷ ( y , d (t) (s (t) )) = ∑ i y ) , and i i 

d (s) = vech(d (1) (s (1) ),..., d (T ) (s (T ) )) , (3.4) 

d (t) (s (t) ) = (d (t) (t)where (s (t) ),..., d (t) (s ))T  is the vector design weights at time t . If the Horvitz-Thompson weights are 1 N 

(t) ) = J (t) (t ) (t) (t) (t)used then d (t) (s a (s) / π (t) , a = 1  if unit i  belongs to the cross-sectional sample s  and a = 0  if not, i i i i i i 

(t) / J (t)and π (t) = Pr(i ∈ s = 1) .i i 

3.2 Panel Sample 

Under panel sample situation, where observations are collected over time on the same sampled units, we have 
G (t) (t) , d (0) (s= 1 , Ŷ (t) = Ŷ ( y (0) ))  and 

d (s) = d (0) (s) , (3.5) 

where d (0) (s (0) ) , i = 1,..., N , are the basic survey weights of the unique sample selected at the initial wave (say at time i 

t = 0 ). 

3.3 Household Panel Sample 

Under household panel sample situation, where observations are collected over time not only on the sampled units 
selected at the initial wave but also on non-sampled units who join households containing at least one sampled unit, we 

(t) (t) (t ~ 
have G (t) = 1 , Ŷ (t) = ∑ y d i (s ) ) , and i 

d (s) = d (0) (s) , (3.6) 
~ 

J (t) I (t) d (0) (s (0) )α (t) α (t) J (t) I (t) (0) (s (0) ) , I (t)where di
(t) (s (t) ) = ∑ j j ji j ji , α (ji

t) = i = 1/ ∑ k k ki ak ji  is an indicator variable indicating 
(0) (0) ) = d (0) (0) )E(a (0) (s (0) )) .if the unit j  lives in the same household as unit i  at time t , and ak (s k (s k   The value for α (ji

t) 

is obtained through the multiplicity approach, Sirken (1970). 

3.4 Multiple Samples 

New entrants who have zero probability to join the initial population units are not covered, unless a supplementary 
sample is taken.  That’s why multiple samples are used at the estimation stage at time t under household panel surveys. 
Under multiple samples situation each sample s (t) , g = 1,..., G (t)  can be viewed as a sample from the same cross-sectional g 

population using a different sampling frame F (t) . The frames are probably incomplete, but the union of the G (t)  frames g

covers the entire cross-sectional population. The G (t)  frames overlap. Let J ~
gi
(t)  be the conditional frame membership 

~ (t) J (t) ~ (t )indicator variable, i.e., J gi = 1 if i ∈ Fg 
(t ) | i = 1  and J gi = 0  otherwise. When combining the G (t )  samples, the 

weights have to be adjusted to account for the multiplicity of the sampling frames: 
~ 
d gi

(t) (s) = d (t ) s α gi
(t , (3.7)gi ( ) ~ ) 

~ α~ (t ) J (t) ~where gi  are constants satisfying the constraints ∑ g gi α gi
(t ) = 1 gi (s)  are the cross-sectional weights resulting and d (t) 

α~ (t ) ~ (t ) ~ ~ (t )from frame Fg 
(t ) . A first choice for gi  is α gi = 1/ J +

(t
i
) , where J +i  is the multiplicity of unit i  at time t , i.e., the total 

α~ (t )number of sampling frames reporting unit i  at time t , (Sirken, 1970). A second choice for gi  is 
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α~ (t ) ~ (t ) (t) / ~ (t ) (t) f (t)
gi = J gi f g ∑ g J gi f g  in which case one wants to take into account the sampling fraction g  of each sampling 

frame (Kalton and Anderson, 1986). Under multiple frames, the estimated total Ŷ (t )  can be expressed as before as 
(t ) (t)1G

T 
(t ) A~ y . Hence, estimation of the variance can be done along the line of sub-section 3.1-3.3. Details are omitted for 

d 

simplicity. 

3.5 Rotating Samples 

Rotating samples are used as a compromise between independent samples and panel surveys. Rotating samples 
control overlap between successive time periods and provide unbiased cross-sectional estimates while taking advantage of 
the correlation between two time periods. For example, in labor-force surveys which are conducted monthly in many 
countries, overlap is controlled by re-interviewing a high fraction of previous selected households (say G −1  rotation 
groups) while new households are selected for a first interview(say one rotation group) for a total of G rotation groups or 
panel samples. Each household remains in the same rotation group for a predetermined number of months. Unlike multiple 
samples, rotating groups do not overlap.  A simple example of a rotating group is given by the following two steps: 

(a) Split the population at random into G  groups U g (g = 1,..., G)  each of size N / G . 

(b) Split each group at random into N / n  samples each of size n / G . 

The following table illustrates a rotation pattern with G = 2 , N = 20 , n = 4 and 50% overlap. 

Table 1 : Example of Rotating Scheme 
Group Sample Time 

1 2 3 … 
U1 s11 √ 

s12 √ √ 
… 
s15 

U 2 s21 √ √ 
s22 √ 
… 
s25 

Cross-sectional sample (1) s = s11 ∪ s21 
(2) s = s12 ∪ s21 

(3) s = s12 ∪ s22 

Each cross-sectional sample is composed of 2 samples. The sample s11  appears in the first cross-sectional sample 
(time t = 1) , the samples s12  and s21  appear in two time periods(time 2 and 3), while the sample s22 appears only in the 
third cross-sectional sample (time t = 3 ). 

The first step consists on selecting G  non-overlap samples from the population with a complete coverage of the union of 
the G  samples. Let ag1i (U g )  be the group U g , g = 1,..., G , membership indicator variables with ∑ i ag1i (U g ) = N g , 

∑ g ∑ i ag1i (U g ) = N , and ag1i (U g )ah1i (U h ) = 1(g = h) . The second step is a repetition of the first step within each 

group. Let ags2i (sgs )  be the conditional sample sgs membership indicator variables with ∑ i ags2i (sgs ) = ngs , 
(t ) ˆ (t) ˆ (t) (t ) (t)∑ s ∑ i ags2i (sgs ) = N g , and ags2i (sgs )agq2i (sgq ) = 1(s = q) .  We have G = G , Y = ∑ g Y ( y , d g (sg )) / G , and 
(T ) T ) (T )d (s) = vech(d (1) (s (1) ),..., d (1) (s (1) ),..., d (T ) (s ),..., d ( (sG )) , (3.8)1 1 G G 1 1 G 

(t) (1) with d (t) (s (t) ) = (d (t ) (s (t) ),..., d (t) (s (t ) ))T , d (t ) (s (t) ) = d (U )d (t ) (s ) , d ) / E(ag1i (U g )) ,g g g1 g gN g gi g g1i g g 2i g g1i (U g ) = J i ag1i (U g 
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d (t ) (s (t ) ) = a (t) (s (t ) (s (t ) (t) 
g 2i g gi g 

(t ) ) / E(agi g 
(t) )) , and agi (sg ) = ags2i (sgs )  if sgs  is the sample used at time t  in group g . 

Under rotating samples, the variance of Ŷ (t )  is given by Var(Ŷ (t ) ) = EVar(Ŷ (t ) ) +VarE(Ŷ (t) ) . Now 

VarE(Ŷ (t ) ) = Var(Y (t) ) = 0 , so an estimator of Var(θ̂ )  is given by 

ϑL (θ̂ ) = ∑ g ϑ2 (z g , d g 2 (sg )) , (3.9) 
where  

( ) (1) ( ) T (T )d g 2 (sg ) = vech(d g 2 (sg 
1 ),..., d g 2 (sg )) , (3.10) 

and ϑ2 (.)  denotes a conditional variance estimator of a total. 

Composite estimation 

Under rotating samples, it is advantageous to use a composite estimator. Suppose the following simple composite 
estimator 

~ (t) = Ŷ (t ) −α̂ (t ) (Ŷ (t ) − Ŷ (t) ) − β̂ (t ) (Ŷ (t −1) − Ŷ (t−1) Y ) . (3.11)u m m 

where Ŷ (t )  is an estimator of the population total using the unmatched sample, Ŷ (t ) and Ŷ (t−1)  are estimators of the u m m

β̂ (t )population totals using matched samples, and α̂ (t )  and  are assumed to be for simplicity regression parameters 
estimators as in the GREG approach. The case of optimal regression is covered in Demnati and Rao (2001).  A variance 

~ ~ estimator of the composite estimator, θ = g(Y ) , can be obtained using (3.9) with 
(T ) ( (T )d g 2 (sg ) = vech(d g 

(0) 
2 (sg 

(0) ),..., d g 2 sg )) . (3.12) 
The composite estimator (3.11) has three components as in the AK composite estimator, but it is not recursive and 
estimates for different domains add up unlike in the case of AK composite estimator. 

Concluding Remarks 

We have presented a new approach to variance estimation under longitudinal survey data. A valid variance 
estimator is given under a variety of longitudinal sampling designs. Extension to estimators defined as solutions to survey 
weighted estimating equations is currently under investigation. 
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