Skip Navigation
small NCES header image

Concurrent Session III Presentations


Wednesday, July 27, 2011
4:30 pm – 5:20 pm


III–A: Privacy Technical Assistance Center (PTAC)–Threats to your Data

Baron Rodriguez, AEM Corporation
Mark Hall, ESS

    This session focuses on best practices around securing your data systems through examples from the healthcare, financial, and defense industries. This presentation will raise awareness of the latest threats to data systems and what you can do to prevent data breaches through policies, processes, and technical measures.

III–B: Longitudinal Date Analysis–Time Travel for Education Data Fans

Tom Ogle, Missouri Department of Elementary and Secondary Education
Lavan Dukes, Florida Department of Education
Jeff Stowe, Arizona Department of Education
David Weinberger, Yonkers Public Schools (New York)
Patrick Sherrill, U.S. Department of Education
Barbara Clements and Glynn Ligon, ESP Solutions Group

    Join us for a longitudinal date analysis of significant events in the history of education data. From the establishment of the U.S. Department of Education in 1867 to the 2011 Summer Data Conference, this session will place in time those happenings that shaped how we manage our data. The panelists will not only discuss their personal experiences, but also predict what past and current trends might predict will happen in the future. The dates of over 50 key events will be provided as context for how we have reached this point in time. Are we accelerating? Improving?

III–C: Partnership Enhancement Program: Teachers and Institutes for Higher Education (IHE) Faculty Using Data to Plan Professional Development

Barbara Shoemaker, Pam McCardle, and Robert Kegebein; University of Kentucky

    This session discusses the evolution of an engaged K–12/Institutes for Higher Education (IHE) partnership program and the ability to adapt the program to accommodate community and industry needs. The foundation of the Partnership Engagement Project, the collaboration between K–12 teachers and IHE faculty, begins with the acknowledgment that both parties have an insight and knowledge of math and science educational needs with different perspectives due to their different expertise. The focus of the collaboration is the improvement of student outcomes for all K–12 students. This goal is reached based on diverse activities based on the local stakeholders.

III–D: If You Build It, Will They Come?

Amy Sargent, Dianne Tracey, Sue Stein, and Helena Mawdsley; Center for Technology in Education, Johns Hopkins University

    The presenters will discuss the challenges encountered in promoting the use of longitudinal data by state-, district- and school-level decisionmakers, as well as strategies for overcoming those challenges. The focus of the strategies will revolve around the use of a practical, needs-based alert protocol incorporating the use of data acquired from Maryland’s Individuals with Disabilities Education Act (IDEA) Scorecard longitudinal data system. The protocol is currently being used in the training of Maryland’s K–12 general and special education administrators. It is designed to assist decisionmakers in identifying students (groups of students and individual students) at risk for school failure and to develop evidence-based intervention plans.

Download PDF Presentation:


III–E: Linking Secondary and Postsecondary Data to Measure College Enrollment and Persistence

Laura Holian and Christine Mokher, CNA Education
Deborah Jonas, Virginia Department of Education

    This session will address the collaboration between a non-profit research company and the Virginia Department of Education to estimate college enrollment rates. Presenters will discuss limitations of postsecondary data. Specifically, the data sets that are used for matching across secondary and postsecondary institutions may not be complete. For example, matching algorithms are not perfect and may miss true matches. Further, not all institutions are included in data collections. We will also describe our methods for estimating the undercount of college enrollment rates and how the data have been used in Virginia.

Download Zipped PowerPoint Presentation:


III–F: Data Standards I: Making Sense of Schools Interoperability Framework (SIF), Common Education Data Standards (CEDS), State Core, and EDFacts

Ross Santy, U.S. Department of Education
Tate Gould, National Center for Education Statistics
Larry Fruth, SIF Association
Alex Jackl, Council of Chief State School Officers

    During this presentation, presenters will review the recent efforts of standard development organizations and their relationships to each other. What these efforts might mean to state and local education agencies will also be discussed.

III–G: How Can NCES Common Core of Data (CCD) Be Used? Live Online Training Session

Stephen Cornman, Patrick Keaton, and Carl Schmitt; National Center for Education Statistics

    Education data provide powerful information for decisionmaking, policymaking, and research within and across education systems. The Common Core of Data (CCD) is the primary annual database on public elementary and secondary education in the United States.

    This session covers the CCD School, Agency and State files; Agency and State Dropout and Completer files, which are datasets at the state and agency level that provide valuable counts of completers and dropouts. This session also presents an overview of CCD Fiscal Surveys including the Local Education Agency Finance Survey (F-33), National Public Education Financial Survey (NPFES), and the Teacher Compensation Survey (TCS).

    Finally, this session offers training on powerful web-based data tools, including the Public School and District locators, the new Elementary/Secondary Information System (ELSI), and Build-a-Table (BAT). They are tools that allow the data user to create user-specific tables of CCD public school data by selecting data elements, years, districts, and schools, among other parameters. This session will also provide an illustration of how to use large volumes of CCD data to conduct research.

Download Microsoft Word Presentation:


III–H: Remembering the Importance of Student Effort in Determining Levels of Efficacy in Education Finance Models

R. Anthony Rolle, University of South Florida – College of Education

    Despite seemingly positive research results, educational production functions may be predisposed to show weak statistical relationships in at least two ways because:
    • There is a casualness that surrounds the construction of statistical models used to estimate student learning outcomes (i.e., multiple statistical models are used), but no universally accepted pedagogical or curricular—and therefore no mathematical—structure exists for the educational production process.
    • There is educational policy research that refers to the significant influences of community, household, and peer characteristics but no universally accepted definitions for the accurate measurement of these characteristics.
    More importantly, there is one assumption that typically is ignored but has profound ramifications for any research involving student learning outcomes and educational productivity: All students are performing optimally (i.e., students give maximum effort in their pursuit of learning), but no universally accepted determination of this optimality—or definition of its measurement—exists. As such, the purpose of this presentation is to reinforce the importance of understanding the influence of student effort in determining educational achievement. Specifically, the statistical evidence suggests different levels of student effort—when incorporating simulated data into educational production functions—are associated with different levels of student outcomes. Moreover, evidence also suggests that student effort can be more important than educational expenditures.

Download Microsoft Word Presentation:


III–I: A Secured, Free Web-Based Portal for Student Data Confidentiality  (Session Cancelled)

Jonathan Hernandez-Agosto, Puerto Rico Department of Education
Orville Disdier and Rodolfo Pagan-Budet, Puerto Rico Institute of Statistics

    The Puerto Rico Department of Education (PRDE) is already engaging with the student’s data privacy and confidentiality assurances. To fulfill the requirements of this challenge, a collaborative agreement was established between the PRDE and the Puerto Rico Institute of Statistics (PRIS). As a result of this agreement, two goals were accomplished: 1) a student data confidentiality policy, and 2) a secured, free web-based portal, provided by PRIS and accessible only for the PRDE statisticians, to put in place better practices for student data privacy. These accomplishments allow the agencies to avoid unauthorized access and distribution of information.

Top


Would you like to help us improve our products and website by taking a short survey?

YES, I would like to take the survey

or

No Thanks

The survey consists of a few short questions and takes less than one minute to complete.