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1. Introduction

Missing data is a common problem in virtually all surveys. In cross-sectional surveys,
missing data may mean no responses are obtained for a whole unit being surveyed (unit
nonresponse), or that responses are obtained for some of the items for a unit but not for
other items (item nonresponse). In panel or longitudinal surveys, the data may be missing
in more complex patterns. For example, a unit may respond to one wave of a survey but
not respond to other waves (wave nonresponse).

Unit and item nonresponse cause a variety of problems for survey analysts. Missing data
can contribute to bias in the estimates and make the analyses harder to conduct and results
harder to present. The most commonly used method for compensating for unit
nonresponse in National Center for Education Statistics surveys is to adjust the weights of
the respondents so that survey analysts can use the observed data to make inferences for
the entire target population. The most frequently used method to compensate for item
nonresponse in NCES surveys is imputation. Imputation consists of replacing the missing
data item with a value that is either taken directly from a value reported by another
respondent in the same survey or derived indirectly using a model that relates
nonrespondents to respondents.

In practice, imputed values are often treated as if they were true values. This procedure is
appropriate for developing estimates of totals, means, proportions, and most other
estimates of first-order population quantities like quantiles, if the imputation does not
cause serious systematic bias. However, to estimate the variance of these estimators when
there is imputed data, it is no longer appropriate to use the standard formulae. As early as
the 1950s, Hansen, Hurwitz, and Madow (1953) recognized that treating imputed values
as observed values can lead to underestimating variances of these estimators if standard
formulae are used. This underestimation may become more appreciable as the proportion
of imputed items increases.

Analysts have developed a number of procedures to handle variance estimation of
imputed survey data. In particular, Rubin (1987) proposed a multiple imputation
procedure to estimate the variance due to imputation by replicating the process a number
of times and estimating the between replicate variation. This multiple imputation
procedure, however, may not lead to consistent variance estimators for stratified
multistage surveys in the common situation of imputation cutting across sample clusters
(Fay, 1991). Moreover, multiple imputation requires maintaining multiple complete data
sets, which is operationally difficult, especially in large-scale surveys. More recently,
Särndal (1992) outlined a number of model-assisted estimators of variance, while Rao
and Shao (1992) proposed a technique that adjusts the imputed values to correct the usual
or naive jackknife variance estimator for hot deck imputation.  The Särndal and the Rao
and Shao methods are appealing in that they yield unbiased variance estimators and only
the imputed file (with the imputed fields flagged) is required for variance estimation.
Kaufman (1996) proposed a variance estimation method similar to Särndal’s method that
can be used with a nearest neighbor imputation approach. Shao and Sitter (1996)
proposed to perform an imputation procedure on each bootstrap sub-sample to
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incorporate the imputation variability. This proposed bootstrap procedure is consistent
irrespective of the sampling design, the imputation method, or the type of statistic used in
inference. In fact, it is the only method that works without any restriction on the sampling
design, the imputation method, or the type of statistic.

This research focuses on variance estimation and its consequences for analysts of NCES
survey data. In section 2, Särndal’s method, Kaufman’s method, and Shao and Sitter’s
method are reviewed in more detail. In section 3, Shao and Sitter’s bootstrap method is
applied to the SASS 1993-94 Public School Teacher Survey component to assess the
magnitude of imputation variance.

2. Literature Review

Three types of approaches to variance estimation in the presence of imputation are
reviewed in this section: Särndal’s model-assisted approach (Särndal, 1992). Kaufman’s
method that can be used when a nearest neighbor imputation approach is taken (Kaufman,
1996), and Shao and Sitter’s bootstrap variance estimation method (Shao and Sitter,
1996). Shao and Sitter’s method will also be applied to the SASS Public School Teacher
component in the next section.

2.1 Särndal’s Model-Assisted Method

Särndal (1992) proposed a model-assisted method. The model-assisted approach uses the
fact that most imputation methods have an underlying model which justifies the imputed
values. Let U = { 1, . . ., k, . . ., N} be the index set of a finite population. A probability
sample s is selected from U with a given sampling design. Let r be the set of respondents,
and nr the set of nonrespondents. The variable of interest is denoted by y. We are
interested in the estimation of the population total Y yU kU

= ∑ . The data after imputation

consist of the values denoted y♦k, k∈s, such that

y
y ,     if k r

y ,    if k nrk

k

imp,k
♦ =

∈
∈





where yk  is an actually observed value, and yimp k,  denotes the imputed value for the unit

k. In the case of 100 percent response, $t w yk kk s
= ∈∑ , where wk  is the weight given to the

observation yk . When the data contain imputations, the estimator of t is $t w yk kk s♦ ♦∈= ∑ .

The total error of $t♦  is decomposed as
$ ( $ ) ( $ $)t t t t t t♦ ♦− = − + − .

The mean squared error (MSE) of $t♦ , denoted by V, is

V E E t t V V Vp q SAM IMP MIX= − = + +♦( $ )2 2 .

Here p(⋅) denotes the sampling design, that is, p(s) is the known probability of realizing
the sample s, q(⋅|s) the response mechanism, that is, q(r|s) is the (unknown) conditional
probability that the response set r is realized. It is assumed that q(⋅|s) is an unconfounded
mechanism. That is, it may depend on the covariate values { }x k sk : ∈ , but not on the
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values { }y k sk : ∈  of the variable of interest. VSAM is the sampling variance, VIMP is the

imputation variance, and VMIX is the mixed term which measures the covariance between
the sampling error and the imputation error. The components in the mean squared error
(MSE) of $t♦  are hard to estimate unless a model for the relationship between x and y is
brought in to assist the procedure. An example of such a model is:

y xk k k= +β ε      for k∈U.

The ε k  are random variables with E kξ ε( ) ,= 0  E xk kξ ε σ( )2 2=  and E k lξ ε ε( ) = 0  for all k

≠ 1 where Eξ denotes expectation with respect to the model. The anticipated MSE (that is,
the model expectation of the MSE) can be written as

{ }[ ] { }[ ]E V E V E E E t t s r E E E t t t t s rSAM p q p qξ ξ ξ ξ( ) ( ) ( $ $) | , ( $ )( $ $)| ,= + − + − −♦ ♦
2 2 .

The ξ-expectations appearing in the true variance components can be evaluated without
difficulty, leading to expressions which depend on known xk  - values and on the

unknown model parameters β  and σ2. The unconfoundedness of the nonresponse
mechanism ensures that the order of expectation operators Eξ  and E Ep q  can be reversed.

Construct $VSAM , $VIMP , $VMIX  such that

{ }E E E V Vp q SAM SAMξ ( $ ) − = 0 ,

{ }E E E V Vp q IMP IMPξ ( $ ) − = 0 ,

{ }E E E V Vp q MIX MIXξ ( $ ) − = 0 ,

then
$ $ $ $V V V VSAM IMP MIX= + + 2

is anticipated to be unbiased for V. That is,

{ }E E E V Vp qξ ( $) − = 0 .

Särndal (1992), Lee, Rancourt, and Särndal (1995), and Rancourt, Särndal, and Lee
(1994) applied this approach to four different imputation methods: respondent mean
imputation, hot-deck imputation, ratio imputation, and nearest neighbor imputation.

With Särndal’s method, the total variance can be estimated without multiple imputation
but an explicit model for the relationship between auxiliary variable x and y is needed to
assist the procedure. Therefore, if the imputation method is hard to model or if there is
not enough evidence to assume a model for the relationship between y and x, this
procedure is hard to implement. Also the unconfoundedness is satisfied often by
assuming the response mechanism does not depend on the y-values, which is not always
true.
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2.2 Kaufman’s Method

In practice, nearest neighbor imputation is often conducted in such a way that, within
each imputation cell, sampling units are sorted so that two nearest neighbors can be
identified for each missing case: one in ascending order and another in descending order,
for example. Let r be the set of responding units and nr be the set of nonresponding units.
Kaufman (1996) considered the following imputation set-up: for each k nr∈ , one of the
two nearest neighbors (donors) is randomly selected and assigned to the missing item.
That is,

( )
~y

y k r

y I y I k nrk
k

k k k k

=
∈

+ − ∈




                                if 

      if 1 2 1
.

Here I k  is a random variable with ( ) ( )P I P Ik k= = = =1 0 0 5. , yk1  is the value of the first

donor, yk 2  is the value of the second donor, and yk  is the observed value for k r∈ . Let
t yy kU

= ∑  be the population total of variable y. If all sampled units are observed, an

unbiased estimator of t y  is

$y w yk kk s
= ∈∑ .

Here wk  is the design weight (inverse of inclusion probability). If the data are imputed
and if we can assume the imputation does not cause very much systematic bias, then it is
appropriate to use the customary estimator of t y

$ ~y w yk kk s• ∈= ∑ .

In this section, we first derive the mean squared error of the underlying estimator $y• ,

denoted by ( )MSE y$• , then we derive the variance of $y• , denoted by ( )V y$• , both under

Kaufman’s imputation set-up. We also discuss Kaufman’s approach of deriving ( )V y$• .

For the mean square error of $y• , notice

( ) ( )MSE y E y t y$ $• •= −
2

              ( )= − + −•E y y y t y$ $ $
2

              ( ) ( ) ( )( )[ ]= − + − + − −• •E y y E y t E y y y ty y$ $ $ $ $ $
2 2

2 ,

and ( ) ( )E y t V yy$ $− =
2

, ( )[ ] ( ) ( )[ ] ( )( )[ ]COV y y y COV y y y t E y y y ty y$ $ , $ $ $ , $ $ $ $• • •− = − − = − − ,

hence

( ) ( ) ( ) ( )[ ]MSE y E y y V y COV y y y$ $ $ $ $ $ , $• • •= − + + −2
2 . (1)

Here ( )E y y$ $• − 2  is the imputation variance, ( )V y$  is the sampling variance, and

( )[ ]COV y y y$ $ , $• −  is the covariance between the sampling error and the imputation error.

However, to estimate the components on the right-hand side of ( )MSE y$• , we need an

explicit model for the relationship between y and some auxiliary variables. Under
Kaufman’s imputation set-up, ( )[ ]COV y y y$ $ , $• −  can be written in a slightly different form.

Notice

( ) ( )[ ] ( )[ ]COV y y y COV E y y y E COV y y yI I$ $, $ $ $ , $ $ $, $• • •− = − + −1 1 .
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Here subscript 1 is with respect to sampling design and nonresponse mechanism,
subscript I is with respect to donor selection. Also notice

( ) ( )E y y E y yI I$ $ $ $• •− = −

     = + + −∈ ∈ ∈∑ ∑ ∑w y w y w y yk kk r k kk nr k kk nr
1 2 1 21 2 $

     ( )= + −1 2 1 2$ $ $y y y

     = −•y y$ ,
here $y w y w yk kk r k kk nr1 1= +∈ ∈∑ ∑ , $y w y w yk kk r k kk nr2 2= +∈ ∈∑ ∑ , and

( ) ( )[ ] ( ) ( )COV y y y E y y y E y y E yI I I I$ $, $ $ $ $ $ $ $• • •− = − − −

 ( )[ ] ( )[ ]= − − −• •E y y y E y y yI I$ $ $ $ $ $

 = 0 ,
so ( ) [ ]COV y y y COV y y y$ $, $ $, $• •− = −1 . Therefore

( ) ( ) ( ) ( )[ ]MSE y E y y V y COV y y y$ $ $ $ $ , $• • •= − + + −2
12 . (2)

( )MSE y$•  can also be decomposed in the following way:

( ) ( )MSE y E y t y$ $• •= −
2

  ( ) ( )( )= − + −• • •E y E y E y t y$ $ $
2

  ( ) ( )[ ]= + −• •V y E y t y$ $
2
.

Here ( )V y$•  is the variance of the underlying estimator $y• , and ( )E y t y$• −  is the bias of

$y• . And ( ) ( )E y t E y yy$ $ $• •− = −  can be estimated by an assisting model ξ  in the following

way. First evaluate the conditional expectation for given sample s and respondents r:
( )E y y s r dξ ξ$ $| ,• − = .

Then for the given s and r, find a model unbiased estimator $dξ  for dξ . Here again we

need a model and the assumption of unconfoundedness. The other component, ( )V y$• , the

variance of $y• , is obtained as following

( ) ( ) ( ) ( ) ( )[ ]V y V y y y V y y V y COV y y y$ $ $ $ $ $ $ $ $ , $• • • •= − + = − + + −2 . (3)

Since ( ) [ ]COV y y y COV y y y$ $, $ $, $• •− = −1 , ( )V y$•  can be written in a slightly different form

( ) ( ) ( ) ( )[ ]V y V y y V y COV y y y$ $ $ $ $ , $• • •= − + + −2 1 . (4)

The right-hand side can be written in a form only with respect to the sampling design and
response mechanism. Notice

( ) ( )V y V y$ $= 1 ,

( ) ( ) ( )[ ]V y y V y y E w y yk k kk nr
$ $ $• • ∈− = − + +∑1 1

2
1

2
2

21 4 .

Therefore,

( ) ( ) ( ) ( )[ ] ( )V y V y V y y E w y y COV y y yk k kk nr
$ $ $ $, $• • ∈ •= + − + + + −∑1 1 1

2
1

2
2

2
11 4 2 . (5)

To estimate the variance components on the right side, however, we have to resort to an
explicit model for the relationship between y and some auxiliary variables like Särndal’s
approach.
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Another decomposition of ( )V y$•  is simpler and probably more interesting. We

decompose ( )V y$•  into two parts: the sampling variance of the expected imputation value

and the sampling expectation of the donor selection variance:
( ) ( ) ( )V y V E y E V yI I$ $ $• • •= +1 1

         ( )[ ] ( )( )[ ]= + + + −∈∑V y y E V w y I y II k k k k kk nr1 1 2 1 1 1 21 2 1$ $

         ( ) ( )[ ]= + +• ∈∑V y E w y yk k kk nr1 1
2

1
2

2
21 4 . (6)

Again, however, we need a model to estimate ( )V y1 • .

Kaufman (1996) took another approach to estimate ( )V y$• . In Kaufman’s method, a

residual is defined for each k s∈ :

( )( )~
d

k r

I y y k nrk
R

k j jk k

=
∈

− − ∈






0

2 1 2 1

                                    if 

     if 

where jk  is a missing item within missing item k’s imputation cell and ( )y yj jk k2 1−  is the

difference between the two nearest neighbors (donors) of jk . Missing item jk  is selected
independently from k’s imputation cell with known selection probability, for example,
with selection probability proportional to design weights wk . Then the residual is

attached to ~yk  to form another quantity $Y , which is used for the purpose of variance
estimation:

( )$ $ $ ~ ~
Y y d w y dR

k k k
R

k s
= + = +• ∈∑ .

The variance of $Y  contains variability from both $y•  and $d R . It can be shown that
(Theorem 1 of the appendix)

( ) ( ) ( ) ( ) ( )V Y V y V y y COV y y y E V d R$ $ $ $ $, $ $= + − + − +• •2 1 1 2 .

Here ( ) ( ) ( )V d E V d V E dR
I R

R
I R

R
2

$ $ $= + . According to formula (4) above or theorem 3 of the

appendix, we have

( ) ( ) ( )V y V Y E V d R$ $ $
• = − 1 2 . (7)

Therefore, the variance of $y•  is the difference between ( )V Y$  and ( )E V d R
1 2

$ . Although the

estimator of ( )E V d R
1 2

$  is often easy to find, the variance of $Y  is often hard to estimate,

unless it can be shown that the same variance estimator for $y  can be used or an explicit
model can help. Like Särndal’s method, Kaufman’s method does not require multiple

imputation but the estimator for ( )V Y$  may be hard to find and may need a model to assist

the variance estimation. In addition, Kaufman’s imputation method introduces a donor
selection variance component into the total variance, which in turn inflates the total
variance. Therefore, it is less efficient than Särndal’s method. Nevertheless, this method
leads to the same decomposition as formulae (4) and (3) (theorem 3 of the appendix).
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2.3 Shao and Sitter’s Method

Shao and Sitter (1996) proposed a bootstrap method for variance estimation of imputed
data. Although they only proved that this method produces consistent bootstrap
estimators for mean, ratio, or regression (deterministic or random) imputations under
stratified multistage sampling, they believe that in fact the proposed bootstrap is the only
method proposed thus far that works irrespective of the sampling design (single stage or
multistage, simple random sampling or stratified sampling), the imputation method
(random or nonrandom, proper or improper), or the type of estimator (smooth or
nonsmooth). The method is paraphrased as following:

1) Draw a simple random sample { }y i ni
∗ =: , ... ,1  with replacement from the original

imputed data set { }YI k R k My k A respondents k A nonrespondents= ∈ ∈: ( ), : ( )η .

2) Let { }YR i Ry i A∗ ∗ ∗= ∈:  and { }YM i My i A∗ ∗ ∗= ∈: , where AR
∗  and AM

∗  denote the set of

respondents and nonrespondents in the bootstrap sample. Apply the same imputation
procedure used in constructing YI  (using YR

∗  to impute YM
∗ ), and denote the

bootstrap analog of YI  by YI
∗ .

3) Obtain the bootstrap analog ( )$ $θ θI I
∗ ∗= Y  of ( )$ $θ θI I= Y , based on the imputed

bootstrap data set YI
∗ .

4) Repeat steps 1) - 3) B times. Apply Monte Carlo approximations to obtain bootstrap
variance estimators for $θ I :

                                               ( ) ( )v
B

I
b

b

B
$ $θ θ θ≈ −∗ ∗

=
∑1 2

1

,

here θ θ∗ − ∗
== ∑B b

b

B1
1
$ .

Shao and Sitter’s method does not require any model or explicit variance formulae. Once
the imputation procedure is programmed appropriately, Shao and Sitter’s method is easy
to implement. However, since B imputations should be performed for each item,
extensive computation is required for large scale surveys. Maintaining the large amount
of imputed data can be operationally difficult.

3. An Empirical Study

We chose Shao and Sitter’s method to assess the magnitude of imputation variance in the
SASS 1993-94 Public School Teacher Survey component based on the following
considerations: 1) bootstrap method is used in SASS 1993-94 for variance estimation; 2)
we do not have any reliable model on hand to allow us to perform Särndal’s or
Kaufman’s method; 3) Kaufman’s method nearest neighbor imputation has donor
selection while the SASS 1993-94 imputation does not.
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SASS 1993-94 Public School Teacher Survey data contains information on the 47,105
public school teachers who responded to the survey.

Four types of imputation methods are used in SASS 1993-94. They are (paraphrasing
from Abramson et al., 1996, page 80):

(1)  using data from other items of the same unit on the questionnaire;
(2)  extracting data from a related component of SASS (for example, using data from a

school record to impute missing values on the questionnaire for the LEA that operates
the school);

(3)  extracting data from the frame file (the information about the sample case from the
sampling frame: the Private School Survey or the Common Core of Data);

(4)  extracting data from the record for a sample case with similar characteristics (“hot
deck ”).

In this study, we investigated imputation method (4)—also called “stage 2 imputation.”
Methods (1), (2), and (3) are deductive imputation methods. In method (1), the imputed
values are from other observed items of the same unit and in method (3) the imputed
values are from the sampling frame file (PSS or CCD). For imputation method (2), the
LEA’s missing item is imputed through information from the sampled school which
belongs to that LEA. According to Abramson et al. (1996), this type of imputation was
performed only to the one-school LEAs. Therefore, the imputed values by methods (1),
(2), or (3) are independent of the sample and the sample design. Assume the simplest
response mechanism: respondents always respond and nonrespondents never respond.
Then if the population is { }y y yN1 2, ,  ...,  , the imputed values can be assumed to be

{ }z z zN1 2, ,  ...,  . Here if yk  is actually observed, then z yk k= , otherwise zk  equals the

value imputed by any method of (1), (2), or (3). Let t yy kk

N= =∑ 1
 be the population total

of y, t zz kk

N= =∑ 1
 be the population total of z, and $t zz k ks

= ∑ π  be the Horvitz-Thompson

estimator of t z  (here π k  is the inclusion probability of unit k). We have the following
decomposition

( ) ( ) ( )MSE t V t t tz z z y
$ $= + −

2
.

The first part, ( )V tz
$ , can be estimated by treating the imputed values as observed values

while the second part is the bias of the imputation and assessing this bias is out of the
scope of this study. If there is reason to believe the imputation bias is small, then treating
the values imputed by any method of (1), (2), or (3) as observed values and using a
standard variance estimation formula will not underestimate the variance. Or, if we can
estimate the systematic bias caused by the imputation, the mean square error of the
underlying estimator can then be estimated.

For method (4), however, the imputed data can not be treated as observed values.
Actually every imputed value is a function of the sample, therefore the imputed values
cannot be represented as a set of fixed values as { }z z zN1 2, ,  ...,  .
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SASS surveys are designed to produce reliable state estimates, and samples are selected
systematically without replacement with large sampling rates within strata. To reflect the
increase in precision due to large sampling rates, a without replacement bootstrap
variance estimator procedure has been implemented for the 1993-94 SASS. Instead of
drawing a simple random sample with replacement from the original sample, the
bootstrap is done systematically without replacement with probability proportional to size
as the original sampling was performed (Abramson et al., 1996).

In SASS 1993-94 components, 48 replicate weights were created to estimate variance
using the bootstrap method. These replicate weights were subjected to various
adjustments, including a sampling adjustment, a noninterview adjustment, and a ratio
adjustment. In order to reflect these adjustments, these replicate weights should be used in
the variance estimation. To this end, we used the Shao and Sitter’s method in the
following manner:

1) For each set of replicate weights { }wik k n=1 2, ,...,
 (i = 1, 2, …, 48), cases with wik = 0  are

dropped. Denote the remaining cases, which make up a bootstrap sub-sample, as
{ }YIi k Ri k Miy k A k A= ∈ ∈: , : )η  (i = 1, 2, …, 48). This corresponds to Shao and Sitter’s

step 1.
2) Apply the same imputation method as was used to create the full sample imputation

values and use { }y k Ak Ri: ∈  to impute { }ηik Mik A∗ ∈:  (i = 1, 2, …, 48). This

corresponds to Shao and Sitter’s step 2. This re-imputed bootstrap sub-sample is
denoted as si . That is

                                    { } { }s y k A k Ai k Ri ik Mi= ∈ ∪ ∈: :η .

The missing values in the full sample are also imputed by using the nonmissing
values in the full sample.  This set of imputed values is denoted as

                                    s0 = { } { }y k A k Ak R k M: :∈ ∪ ∈∗η .

Thus, 48 sets of imputed bootstrap sub-samples and 1 set of imputed full sample are
obtained.

3) Calculate the $θi  of interest from si , weighted by replicate weights { }wik  ( )i = 1 48, ... ,

and the $θ  from full sample s0 , weighted by the full sample weight { }wk . The

variance of $θ  is estimated by

                                                ( ) ( )v i
i

$ $ $θ θ θ= −
=
∑1

48

2

1

48

.

Another difference between the variance estimator we used above and Shao-Sitter’s
estimator is that in our formula the deviation is around the full sample estimate $θ
whereas in Shao-Sitter’s formula the deviation is around the average of the bootstrap
estimates θ ∗ . The balanced repeated replication method (BRR) is implemented in
WesVar PC, but the bootstrap method is not. Abramson et al. (1996) suggests that with
any BRR software package, the BRR option should be specified for 1993-94 SASS data
analysis. The formulae used in WesVar PC for the BRR option is the formula we used
above. In general,
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( )1 2

1B
b

b

B
$θ θ∗ ∗

=
−∑ ≤ ( )1 2

1B
i

i

B
$ $θ θ−

=
∑ = ( )1 2

1B
b

b

B
$θ θ∗ ∗

=
−∑ + ( )θ θ∗ − $ 2

here θ θ∗ − ∗
== ∑B b

b

B1
1
$ . Notice ( )E θ θ∗ − $ 2

= ( )E EP B θ θ∗ − $
2
. Here E P  is with respect to

sample design, E B  is with respect to bootstrap subsampling, and typically ( )EB θ θ∗ = $ .

Therefore ( ) ( )E VarB Bθ θ θ∗ ∗− =$
2

. An unbiased estimator of ( )VarB θ ∗  is

( ) ( )$ $V
B B

B
b

b

Bθ θ θ∗ ∗ ∗
==

−
−∑1 1

1 1

2
. Therefore

( )1 2

1B
i

i

B
$ $θ θ−

=
∑ ≈ 1

1

1
+

−




B ( )1 2

1B
b

b

B
$θ θ∗ ∗

=
−∑ .

When B is large the bias in variance estimation is small and can be easily corrected by
factor ( )B B− 1 . In our study, we compare standard error estimates instead of variance

estimates and B = 48 , so the adjustment factor is 47 48 0 99≈ . . We do not apply this

adjustment because it is close to 1. In addition, we use the same formula to calculate both
the standard error estimates cooperating imputation variance and the standard error
estimates without cooperating imputation variance. And the ratio of these two types of
standard error estimates is used as the measurement of the difference. Therefore, the
adjustment factor has no effect on this ratio.

The variables used for this study include 6 categorical variables and 7 continuous
variables. Their stage 2 imputation—method (4), rates range from 2 percent to 25 percent
(see table 1).

During stage 2 imputation, method (4), a hot deck method, was used to fill items that had
missing values. The procedure started with the specification of imputation classes defined
by certain relevant variables (matching variables). Then the records were sorted by
STGROUP (Groups of states with similar schools) / STATE / TEALEVEL (Instructional
level for teacher) / GRADELEV (Grade levels taught this year) / URB (Type of
community where school located) / TEAFIELD (Teaching assignment field) /
ENROLMNT (Number of students enrolled in the school). The records were then treated
sequentially. A nonmissing y-variable was used as a starting point for the process. If a
record had a response for the y-variable, that value replaced the value previously stored
for its imputation class. If the record had a missing response, it was assigned the value
currently stored for its imputation class. If there was no donor in the class, the class was
collapsed with another class. The matching variables and collapse order are listed in table
7 and table 8.

Most of the variables used for sorting or matching the records are not included in the data
file; they had to be reconstructed by using other variables in the data file. This caused a
discrepancy between the data imputed for this study and the original imputed data in the
file. To prevent confounding the imputation difference with imputation variance, we
imputed the full sample with our sorting and matching variables and denote this imputed
full sample as s0 . This is the sample used in the variance estimation (see imputation
procedure step 3 above).
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From Table 2 to Table 6, we compare standard errors which do not take the imputation

variance into account ( ( )ste $θ ) with the standard errors incorporated with imputation

variance ( ( )steI
$θ ). It is important to emphasize that both ( )steI

$θ  and ( )ste $θ  are estimates

of standard errors instead of true standard errors and therefore both of them are also
subjected to sampling errors.

Table 2 compares standard errors for the total estimator of continuous variables. The
output shows the imputation does not inflate the variance for the total very much. For
variable T0985, the standard error increases only 7 percent even though the imputation
rate is as high as 27 percent.

Table 3 compares standard errors for the average per person estimators of continuous
variables. The underlying estimator is actually a nonlinear estimator. When the
imputation rate is high, inflation to the variance can be very high, too. For example,

variable T0985 now shows ( )steI
$θ  is 41 percent higher than ( )ste $θ . So if the imputed

data are treated as true values, the underestimation can be severe.

Table 4 compares standard errors for the total estimator of categorical variables. Here the
total estimates are estimated total counts in each category. Notice the inflation in variance
is larger than the total estimators of continuous variables. This might be due to the fact
that the sample sizes of the categorical variables are smaller (there is more legitimate
skipping for these items). It also shows that when imputation rates get higher, the increase
in standard errors also gets larger although the increase is not exactly linear. Now variable
T0040 shows the biggest difference: 2.04.

Table 5 compares standard errors for the percentage estimators of discrete variables. Here
the percentage is the estimated percent of units in each category. The underlying
estimators are nonlinear estimators. The results are quite similar to those in table 4.

Table 6 compares standard errors for the ratio estimators of continuous variables.
Variable BASIC is the ratio of teacher’s basic salary to teacher’s total income. Variable
INSCH is the ratio of teacher’s total income at school to teacher’s total income.
OUTSCH is the ratio of teacher’s total income from outside of school to teacher’s total
income. ADITION is teacher’s other income from school (total income inside school
minus base salary) to teacher’s total income. IN_OUT is teacher’s total income inside
school to teacher’s total income outside school. Although some variables used for the
ratios have high imputation rates (T1440, for example, has a 21.3% imputation rate) the
increase in standard errors are very small. Again, for continuous variables, we observed
smaller inflation in standard error.
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4. Summary and Suggestion

The techniques developed so far for the variance estimation of imputed data are not yet
easy to implement or operationally convenient. Shao and Sitter’s method is appealing but
requires repeated imputations, so for large scale surveys the data files become too large.

However, our empirical study shows that using the hot deck imputation method in the
1993-94 SASS can seriously affect the standard error.

But notice that the majority of items have very low stage 2 (hot deck) imputation rates.
For the SASS 1993-94 Public School Teacher component, only 11 out of 249 items had
stage 2 imputation rates above 10 percent (see Gruber, Rohr, and Fondelier, 1996, figure
VIII- 24, pp. 231-235). We used six of those items for this study. And, when the
imputation rate is low, the inflation in variance is not severe, especially for continuous
type variables. We believe it is feasible for NCES to compute the imputation inflation for
the total and ratio estimators for the few items that have high imputation rates and
document the problem with next user’s manual. This will alert secondary users to the
possible magnitude of the imputation variance.
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Table 1: Variables used in this study

Name Label
Stage 2 imputation

rate (%) Type

T0030 2 Full/Part-time teacher at this school 11.8 5 Categories

T0035 3A Have other assignment at this sch 9.8 Dichotomous

T0040 3B What is other assignment at this sch 24.0 6 Categories

T0140 11D Consecutive yrs teaching since break 5.2 Continuous

T0435 28A Any mathematics courses taken 5.7 Dichotomous

T0645 32B Programs changed views on teaching 2.0 5 Categories

T0860 40B(4) Number of students in the class 13.6 Continuous

T0985 41C Number of separate classes taught 27.0 Continuous

T1420 53B(1) Academic yr base tchng salary 8.3 Continuous

T1430 53B(2) Additional compensation earned 4.0 Continuous

T1440 53B(3) Earning from job outside sch sys 21.3 Continuous

T1455 53B(5) Income earned from other source 5.9 Continuous

T1520 55 Total income of all HHD family member 25.0 12 Categories

Source: Abramson et al. (1996).

Table 2: Standard error comparison for total estimates of continuous variables

Name

Stage 2
imputation

rate (%) Estimate ( )ste $θ ( )steI
$θ ( )steI

$θ / ( )ste $θ

T0140 5.2 8985367 154697 153875 0.99

T0860 13.6 24958128 411554 417361 1.01

T0985 27.0 2107888 72049 77165 1.07

T1420 8.3 86349560396 805679800 808307241 1.00

T1430 4.0 1865774738 36016613 37220591 1.03

T1440 21.3 2179435663 87253029 89579851 1.03

T1455 5.9 588847739 20784683 20928990 1.01

Table 3: Standard error comparison for average estimates of continuous variables

Name

Stage 2
imputation

rate (%) Estimate* ( )ste $θ ( )steI
$θ ( )steI

$θ / ( )ste $θ

T0140 5.2 11.01 0.085 0.082 0.96

T0860 13.6 22.79 0.077 0.085 1.10

T0985 27.0 12.79 0.157 0.222 1.41

T1420 8.3 33713.26 88.146 89.404 1.01

T1430 4.0 2093.88 28.232 29.667 1.05

T1440 21.3 4384.44 161.861 170.351 1.05

T1455 5.9 1676.05 48.636 50.182 1.03

* These estimates are average per teacher.
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Table 4: Standard error comparison for total estimates of discrete variables

Name

Stage 2
imputation

rate (%) Categories Estimate ( )ste $θ ( )steI
$θ ( )steI

$θ / ( )ste $θ

T0030 11.8

1 12994 1662 1835 1.10

2 31489 2190 2502 1.14

3 97607 3719 4156 1.12

4 52767 2583 2871 1.11

5 36706 1993 2748 1.38

T0035 9.8

1 54006 1969 2130 1.08

2 166845 4162 4161 1.00

T0040 24.0

1 9613 1210 1739 1.44

2 11737 864 1760 2.04

3 5093 803 1015 1.26

4 12311 849 1465 1.73

5 26962 1844 2335 1.27

6 5543 715 1158 1.62

T0435 5.7

1 2001004 17316 17157 0.99

2 560289 8838 8807 1.00

T0645 2.0

1 122310 4354 4298 0.99

2 822249 10566 10638 1.01

3 498908 8204 8187 1.00

4 711355 10300 10452 1.01

5 103472 3174 3105 0.98

T1520 25.0

1 173 57 82 1.45

2 863 185 301 1.63

3 8850 698 723 1.03

4 72952 2592 3045 1.18

5 123771 4036 4804 1.19

6 154036 3771 4152 1.10

7 174850 4497 5301 1.18

8 404821 6425 7594 1.18

9 434259 8408 9091 1.08

10 523142 8156 10362 1.27

11 438739 8604 9664 1.12

12 224836 5327 6480 1.22
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Table 5: Standard error comparison for percentage estimates of discrete variables

Name

Stage 2
imputation

rate (%) Categories
Estimate

(%) ( )ste $θ ( )steI
$θ ( )steI

$θ / ( )ste $θ

T0030 11.8

1 5.61 0.691 0.763 1.10

2 13.60 0.838 0.991 1.18

3 42.15 1.383 1.645 1.19

4 22.79 1.019 1.150 1.13

5 15.85 0.882 1.195 1.35

T0035 9.8

1 24.45 0.775 0.842 1.09

2 75.55 0.775 0.842 1.09

T0040 24.0

1 13.49 1.549 2.392 1.54

2 16.47 1.169 2.443 2.09

3 7.15 1.098 1.411 1.29

4 17.28 1.227 2.038 1.66

5 37.84 1.861 2.835 1.52

6 7.78 0.912 1.562 1.71

T0435 5.7

1 78.12 0.284 0.279 0.98

2 21.88 0.284 0.279 0.98

T0645 2.0

1 5.42 0.191 0.188 0.98

2 36.41 0.359 0.364 1.01

3 22.09 0.283 0.291 1.03

4 31.50 0.339 0.341 1.01

5 4.58 0.136 0.132 0.97

T1520 25.0

1 0.01 0.002 0.003 1.60

2 0.03 0.007 0.012 1.68

3 0.35 0.027 0.028 1.04

4 2.85 0.099 0.114 1.15

5 4.83 0.145 0.176 1.22

6 6.01 0.133 0.149 1.12

7 6.83 0.172 0.199 1.16

8 15.81 0.215 0.280 1.30

9 16.95 0.291 0.332 1.14

10 20.42 0.292 0.368 1.26

11 17.13 0.293 0.349 1.19

12 8.78 0.204 0.248 1.21
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Table 6: Standard error comparison for ratio estimates of continuous variables

Basic = T1420/(T1420 + T1430 + T1440 + T1455)
Insch = (T1420 + T1430)/(T1420 + T1430 + T1440 + T1455)
Outsch=T1440/(T1420 + T1430 + T1440 + T1455)
Addition=T1430/(T1420 + T1430 + T1440 + T1455)
In_out=(T1420 + T1430)/(T1440 + T1455)

Name
Stage 2

Imputation rate (%) Estimate ( )ste $θ ( )steI
$θ ( )steI

$θ / ( )ste $θ

Basic -- 0.94907 0.000966 0.000977 1.01

Insch -- 0.96957 0.000909 0.000938 1.03

Outsch -- 0.02395 0.0008819 0.0009020 1.02

Addition -- 0.02051 0.0003578 0.0003757 1.05

In_out -- 31.87 0.9823 1.010 1.03

Table 7: Public School Teacher (SASS-4A) matching variables

Items Matching variables

T0030, T0035, T0040 STGROUP, STATE, TEALEVEL, URB, ENR

T0140 STGROUP, STATE, TEALEVEL, AGE, HIGHDEG

T0435, T0645 STGROUP, STATE, TEALEVEL, HIGHDEG, TEAEXPER

T0860 STGROUP, TEALEVEL

T0985 STGROUP, STATE, TEALEVEL, FULPTIME, TEAEXPER

T1420, T1430,T1440, T1455 STGROUP, STATE, TEALEVEL, URB, HIGHDEG, TEAEXPER

T1520 STGROUP, STATE, TEALEVEL, URB, HIGHDEG, TEAEXPER

Source: Gruber, Rohr, and Fondelier (1996), figure VIII-28.

Table 8: Public School Teacher (SASS-4A) order of collapse

Items Order of collapse

T0030, T0035, T0040 ENR, URB, STATE

T0140 HIGHDEG, AGE, STATE

T0435, T0645 TEAEXPER, HIGHDEG, STATE

T0860 TEALEVEL

T0985 TEAEXPER, FULPTIME, STATE

T1420, T1430,T1440, T1455 TEAEXPER, HIGHDEG, STATE

T1520 TEAEXPER, HIGHDEG, TEALEVEL

Source: Gruber et al. (1996), figure VIII-28.



17

Appendix

This appendix presents results we derived for Kaufman’s method. In Kaufman’s method,
a residual is defined for each k s∈ :

( )( )
~
d

k r

I y y k nrk
R

k j jk k

=
∈

− − ∈






0

2 1 2 1

                                 if 

     if 

where jk  is a missing item within missing item k’s imputation cell and ( )y yj jk k2 1−  is the

difference between the two nearest neighbors (donors) of jk . Missing item jk  is selected
independently from k’s imputation cell with known selection probability; for example,
with selection probability proportional to design weights wk . Then the residual is

attached to ~yk  to form another quantity $Y  used for the purpose of variance estimation:

( )$ $ $ ~ ~
Y y d w y dR

k k k
R

k s
= + = +• ∈∑ .

The variance of $Y  contains variability from both $y•  and $d R .

Lemma 1.  Let ~ ~y w yk kk s• ∈= ∑  and ( )y y y• = +1 2 1 2$ $ . Here $y w y w yk kk r k kk nr1 1= +∈ ∈∑ ∑ ,

$y w y w yk kk r k kk nr2 2= +∈ ∈∑ ∑ , and E2  is with respect to the imputation selection and the

residual selection. Then ( )E y y2 $• •= .

Proof:  ( ) ( ) ( )[ ]E y E w y w y w E y I y Ik kk s k kk r k k k k kk nr2 2 2 1 2 1$ ~
• ∈ ∈ ∈= = + + −∑ ∑ ∑

( )= + +∈ ∈∑ ∑w y w y yk kk r k k kk nr
05 051 2. . ( )= +1 2 1 2$ $y y

= •y .

Lemma 2.  Let $ $ $Y y d R= +• . Here $ $d w dR
k k

R
k s

= ∈∑  and

( )( )
~

.
d

k r

I y y k nrk
R

k j jk k

=
∈

− − ∈




0

2 1 2 1

                                 if 

     if 

Then ( )E Y y2
$ = • .

Proof:  Since ( ) ( ) ( )E Y E y E d R
2 2 2

$ $ $= +• , we only need to show ( )E d R
2 0$ = .

Actually

( ) ( )( )[ ]E d w E I y yR
k k j jk nr k k2 2 2 12 1 0$ = − − =∈∑ .

Combine Lemma 1 and Lemma 2: we can see ( ) ( )E Y E y2 2
$ $= • .

Lemma 3.  ( ) ( ) ( ) ( )V E Y V y y V y COV y y y1 2 1 1 12$ $ $ $, $= − + + −• • . Here V1  is with respect to the

sample design and the nonresponse mechanism.

Proof: ( ) ( )V E Y V E y1 2 1 2
$ $= • Lemma 2

( )= •V y1 Lemma 1

= ( )V y y y1 • − +$ $
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( ) ( ) ( )= − + + −• •V y y V y COV y y y1 1 12$ $ $, $ .

Lemma 4. $y•  and $d R  are uncorrelated with respect to imputation selection and residual

selection; that is, ( ) ( ) ( )V y d V y V dR R
2 2 2$ $ $ $

• •+ = + .

Proof: Notice that

( ) ( ) ( ) ( ) ( ) ( )[ ]V y d E V y d V E y d E V d V E y E dR
I R

R
I R

R
I R

R
I R R

R
2 $ $ $ $ $ $ $ $ $

• • • •+ = + + + = + +

       ( ) ( )[ ]= + +•E V d V y E dI R
R

I R
R$ $ $

       ( ) ( ) ( ) ( )( )= + + +• •E V d V y V E d COV y E dI R
R

I I R
R

I R
R$ $ $ $ , $2

and

( ) ( ) ( ) ( ) ( ) ( )V y V d E V y V E y E V d V E dR
I R I R I R

R
I R

R
2 2$ $ $ $ $ $

• • •+ = + + +

( ) ( ) ( )= + +•V y E V d V E dI I R
R

I R
R$ $ $ .

Therefore, we only need to show ( )( )2 0COV y E dI R
R$ , $

• = . Notice

( )( ) ( )[ ] ( ) ( )COV y E d E y E d E y E E dI R
R

I R
R

I I R
R$ , $ $ $ $ $

• • •= − ,

and

( ) ( ) ( ) ( ) ( )E d w E d w I E y y w IR
R

k R k
R

k s k k R j jk nr k j k
R

k nrk k

$ ~= = − − = −∈ ∈ ∈∑ ∑ ∑2 1 2 12 1 µ .

Here ( )µk
R

R j jE y y
k k

= −2 1 . Also notice

( )[ ] ( )( )[ ] ( )[ ]{ }E y E d E w y w y I y I w II R
R

I k k kk nrk r k k k k h h h
R

h nr
$ $

• ∈∈ ∈= + + − −∑∑ ∑1 2 1 2 1 µ

( ) ( )( ) ( )[ ]= − + + − −∈∈∈∈ ∑∑∑∑E w y w I w y I y I w II k k h h h
R

k k k k k h h h
R

h nrk nrh nrk r
2 1 1 2 11 2µ µ

( ) ( )( )[ ]= + − + − −∈∈ ∑∑0 2 1 2 11 2w w y E I I I y E I Ik h h
R

k I k h k k I k hh nrk nr
µ

= 0 ,
and

( ) ( )[ ]E E d E w II R
R

I k k k
R

k nr
$ = − =∈∑ 2 1 0µ ;

therefore,

( )( )COV y E dI R
R$ , $

• = 0 .

Lemma 5.  ( ) ( ) ( ) ( ) ( )V y V y y V y V y y E V y$ $ $ $ $ $+ − = + − +• • •1 1 1 2 . Here subscript 1 is with

respect to the sampling design and nonresponse mechanism, subscript 2 is with respect to
the imputation selection and the residual selection. No subscript is with respect to all
variance components.
Proof: ( ) ( ) ( ) ( )V y V E y E V y V y$ $ $ $= + =1 2 1 2 1 ,

( ) ( ) ( )V y y V E y y E V y y$ $ $ $ $ $− = − + −• • •1 2 1 2

   ( ) ( )= − +• •V y y E V y1 1 2$ $ Lemma 1



19

Theorem 1.  ( ) ( ) ( ) ( ) ( )V Y V y V y y COV y y y E V d R$ $ $ $ $, $ $= + − + − +• •2 1 1 2 .

Proof:  ( ) ( ) ( )V Y V E Y E V Y$ $ $= +1 2 1 2

        ( ) ( ) ( ) ( )= − + + − + +• • •V y y V y COV y y y E V y d R
1 1 1 1 22$ $ $, $ $ $ Lemma 3

        ( ) ( ) ( ) ( ) ( )= − + + − + +• • •V y y V y COV y y y E V y E V d R
1 1 1 1 2 1 22$ $ $, $ $ $ Lemma 4

        ( ) ( ) ( ) ( )= − + + − +• •V y y V y COV y y y E V d R$ $ $, $ $2 1 1 2 . Lemma 5

Theorem 2.  ( ) ( ) ( )V Y V y E V d R$ $ $= +• 1 2 .

Proof:  ( ) ( ) ( )V Y V E Y E V Y$ $ $= +1 2 1 2

        ( ) ( ) ( )= + +• •V E y E V y E V d R
1 2 1 2 1 2$ $ $ Lemma 1, 2, and 4

        ( ) ( )= +•V y E V d R$ $
1 2 .

Theorem 3.  ( )V y$• = ( ) ( ) ( )V y V y y COV y y y$ $ $ $, $+ − + −• •2 1

Proof follows directly from theorem 1 and theorem 2.
The result in theorem 3 is actually the same as formula (4) of section 2.2, as it should be.
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