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Abstract

In large multipurpose surveys, it is common to select the sample systematically proportional to some measure of size

(PPS) which is correlated with an important variable of interest. Assuming the frame is sorted in a useful

deterministic manner, systematic sample methodologies provide an additional control on the sample allocation,

beyond the control provided from the stratification. This makes it less likely to select a ‘bad sample’. This should

reduce the variability of the estimates as compared to a comparable nonsystematic selection procedure. The problem

with systematic samples is that variance estimators are biased. This paper presents a bootstrap variance estimator,

which can have less bias than standard methodologies, such as half-sample replication. The results will be

demonstrated with a simulation study based on an important National Center for Education Statistics’ survey–The

Schools and Staffing Survey.

Key Words: Simulation, Half-Sample Replication

The author would like to acknowledge Michael Cohen for his helpful comments on the draft manuscript.
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1.0  Introduction

Systematic probability proportionate to size sampling (PPS) is a common selection method for establishment surveys.

One way of selecting a PPS sample, given a frame and measure of size, is to do the following within each sampling

stratum ( h ): Partition the Primary Sampling Units (PSUs) on the frame into hn groups, so that the sum of the measures

of size in each group is equal. For the sum of the measures of size to be equal within each group, some PSUs may be

split into two adjacent groups, with some positive measure of size in each group. The sampling interval is the total

measure of size in each group. Within each group, the first PSU is assigned a cumulative measure of size equal to the

PSU’s measure of size. The second PSU’s cumulative measure of size is the sum of the previous PSU’s (first PSU)

cumulative size plus the current PSU’s (second PSU) measure of size. This process continues until each PSU in a group

is assigned a cumulative measure of size. The cumulative measure of size for the last PSU in each group is equal to the

sampling interval. A random distance (hd ) is chosen between 0 and the length of the sampling interval. The first PSU

with a cumulative measure of size larger or equal to hd , within the first group, is the first PSU selected in the sample.

The rest of the sample is selected by making the same cumulative measure of size comparison for each group. A total of

hn  PSUs are selected within each stratum. (See Wolter 1985, pp. 283-286 for more details).

The measure of size for some PSUs may be larger than the sampling interval. There are two ways of handling this. All

such PSUs can be excluded from the selection process and place in sample with certainty. The stratum sample sizes can

be adjusted and new sampling intervals computed. The alternative is to select the sample without modification and

adjust the weighting or second stage sample sizes to accommodate PSUs selected multiple times. The former is

generally considered more efficient because the number of distinct selected PSUs will equal the original sample size,

while the latter will be somewhat less.

Systematic sampling procedures are efficient in terms of ease of selection and lowering sampling error. For this reason

they are used extensively in large-scale surveys. Since each stratum systematic sample is selected using a single random

start ( hd ), the sample can be viewed as a sample of size one, where each sample consists of a single sample cluster of
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hn PSUs. Therefore, it is impossible to produce an unbiased variance estimator. However, a number of biased

methodologies are used for variance estimation.

These methodologies generally take one of two forms: 1) assume the systematic sample can be approximated by a

simpler sample design with a known variance estimator or 2) assume the response variable follows some super-

population model and a variance estimator is produced appropriate for that model. Both these approaches allow for

grouping of PSUs, so variances can be computed within groups. Wolter (1985, chapter 7) provides a good discussion of

a number of systematic sample variance estimators that can be classified into one of these two forms. An example, using

balanced half-sample replication (BHR) is provided below.

BHR is a widely used variance replication methodology for complex survey designs. It is designed for samples where

two primary sampling units (PSUs) within each stratum are selected with replacement. With BHR, choosing one PSU

within each stratum generates a half-sample. A number of half-samples are generated by alternating which PSU, within

stratum, go into the half-samples. The BHR variance is the simple variance of the half-sample estimates. Through a

balancing process of the half-samples, the BHR variance estimate, for linear estimates, equals the direct sample variance

estimate.

BHR can be adapted to designs where more than two PSUs are selected in a stratum by consecutively pairing selected

PSUs, after placing them in the original order of selection; and assuming each pair is a stratum for variance estimation

(variance stratum). If without-replacement sampling is used then a finite population adjustment can be applied. See

Wolter (1985, pp. 110-152) for a more complete description of BHR.

In order to use BHR with systematic PPS sampling, it must be assumed that a PPS selection can be approximated by the

deep stratification induced by the pairing described above. This assumption is reasonable, considering that the first sort

variable, ignoring the lack of independence between breaks in the variable, can be considered an implicit stratification.

However, BHR also assumes that the variance estimate is proportional to the inverse of the sample size. In section 2.0, it

will be demonstrated, through a simulation study, that systematic sampling variances are not necessarily inversely
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proportional to the sample size. Two possible reasons for this are: 1) there is a finite population adjustment effect and 2)

the variance decreases by some function other than hn/1 . From the simulation study, the amount of deviation from the

hn/1  model is a function of the response variable, as well as, the sample size. Hence, it is unlikely that the error can be

corrected using a simple finite population correction. Therefore, BHR is not expected to perform well in this situation.

One methodology that does not necessarily assume the variance is inversely proportional to the sample size is the

bootstrap (Efron, 1982). Given an estimate ),...,,(ˆ
21 nXXXΘ , with nXXX ,...,, 21 i.i.d. and distributed according

to a distribution function )( 1XF , the bootstrap variance estimate for Θ̂ is based on the observation that

),,ˆ()ˆ( 2 FnV Θ=Θ σ (i.e., the variance of Θ̂ is a function of Θ̂ , the sample size n , and F ). Given Θ̂ and n ,

)()ˆ( 2 FV σ=Θ . By analogy, the bootstrap variance, )ˆ(Θ∗V , equals )ˆ(2 Fσ , where F̂ is the empirical probability

distribution of X . If )  (2 ⋅σ is unknown then )ˆ(Θ∗V can be estimated by ∑
=

∗∗ Θ−Θ
B

i
iB

1

2)(/1 , for

Bii   to1 , =Θ∗ . ∗Θ i
ˆ  is computed like Θ̂ is computed, except ∗∗∗

nXXX ,...,, 21  is used instead of nXXX  ,..., , 21 ,

with the ∗
jX ’s being independent realizations from )(ˆ xF . This process is repeated B times to obtain B ∗Θ i

ˆ ’s.

∗∗∗
nXXX ,...,, 21  is called a bootstrap sample with a bootstrap sample size (∗n ) n .

The bootstrap procedure can be applied to stratified simple random sampling by applying the above bootstrap procedure

within each sampling stratum. In this case, )(XV∗ equals ∑
=

−
L

h
hhhh snnn

1

2]/)1[(/1 , 2
hs  being the usual stratum

population variance. Comparing this to the usual variance estimator, this methodology has two problems: 1) the finite

population adjustment is missing and 2) there is a scaling bias term ]/)1[( hh nn − . If the sample rates are high then the

missing finite population correction adjustment can be significant. If hn is small, which is quite common in finite

population sampling, then ]/)1[( hh nn −  can be large. With the basic BHR sample design, where hn equals 2, the bias

is -50%. Many adjustments have been suggested to correct these deficiencies.



4

In the BHR type sample design, where hn equals 2 for all h and the estimate of interest is linear, setting 1=∗
hn

corrects for the ]/)1[( hh nn −  bias. Since BHR type designs are with-replacement designs, there is no finite

population adjustment. The bootstrap variance estimator, therefore, becomes unbiased and consistent (see Efron 1982).

This bootstrap variance estimator is similar to the BHR variance estimator. The difference is that PSU’s selected for the

BHR replicates are specified to produce the exact sample variance estimate, while PSUs are randomly selected for the

bootstrap replicates and may not equal the exact sample variance.

When hn is greater than 2, other more complicated adjustments have been proposed. The simplest of these is to, adjust

∗
hn  to eliminate the finite population correction and ]/)1[( hh nn −  bias problems (see McCarthy and Snowden 1985).

However, ∗
hn  is not unique. Rao and Wu (1988) propose a rescaling bootstrap, which determines ∗

hn  to match the third

order moments between Θ−Θ ˆˆ E  and ∗∗ Θ−Θ ˆˆ E after rescaling )ˆ(ˆ ∗∗ ΘV  to be unbiased for any ∗
hn . Sitter (1992a)

proposed a bootstrap designed for the case where PSUs are selected without replacement. In this bootstrap,

∗∗∗
∗
hn

XXX ,...,, 21  are generated from a series of without replacement samples from nXXX ,...,, 21 . By selecting

∗∗∗
∗
hn

XXX ,...,, 21  without replacement, the original sample design is followed more closely. All these methodologies

directly select ∗∗∗
∗
hn

XXX ,...,, 21  from the original nXXX ,...,, 21 and adjust ∗
hn  to correct for any biases and

inconsistencies introduced in the bootstrap process.

To further mimic the actual sample design (see Gross 1980; Chao and Lo 1985), a bootstrap-frame can be generated to

select the bootstrap samples. If hhh nkN = ( hN  being number of PSUs in the frame for stratum h ), the bootstrap-

frame is generated by replicating each of the hn sampled PSUs hk times. Bootstrap samples are then selected using the

original sampling methodology (i.e., simple random sampling without replacement). The bootstrap variance estimates

based on these bootstrap samples no longer have a finite population correction bias, but have a scaling bias term

)1/()1( −− hhhh nknk (see Shao and Tu 1995, p. 250). By adjusting hk and ∗
hn according to Sitter (1992b), this bias

can be eliminated.
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All the bootstrap procedures described above assume simple random sampling (with or without replacement) within

each stratum. Sitter (1992b) proposed a bootstrap variance estimator for the Rao-Hartley-Cochran sampling scheme

(Cochran 1977, pp. 266-267). This is a ‘PPS type’ sampling scheme because it is similar to a PPS systematic selection

where the stratum frame is placed in a random order before sample selection. The Rao-Hartley-Cochran sampling

scheme independently selects one PSU, within each of hn  groups, proportional to some measure of size. The groups are

generated by randomly assigning a specified number of PSUs into each of the hn  groups. Since the sum of the measures

of size within a group are not equal the procedure is not strictly PPS either. The bootstrap methodology is similar to the

bootstrap-frame procedures described above. First, a bootstrap frame is generated. Next, ∗
hn  is chosen to eliminate any

biases. The bootstrap-PSUs are then randomly placed into one of ∗
hn  groups. Next, one bootstrap-PSU is independently

selected within each of the ∗hn  groups, generating a bootstrap sample. Before selecting each bootstrap sample, the

bootstrap frame is re-randomized. A number of bootstrap samples are generated, as well as the appropriate bootstrap

estimate. The Monte Carlo variance estimator of the bootstrap estimates is an estimate of the bootstrap variance

estimator.

The bootstrap procedures described above assume the variance is inversely proportional to hn (i.e., ∗
hn  and /or hk  are

chosen knowing exactly how the true variance is related to hn ). If the true variance has a known relationship to hn ,

different than proportional to hn/1 , then ∗
hn , most likely, can be adjusted to compensated for the biases in the

bootstrap variance. If the relationship is unknown, as is the case with systematic sampling (PPS or equal probability),

then a simulation study can be done to compute an ∗
hn that is approximately unbiased. This is the approach used in this

paper to produce a bootstrap variance estimate for stratified PPS systematic sampling. A bootstrap-frame will be used to

reduce any bias due to sampling without replacement. ∗
hn  will be computed by means of a simulation study, comparing

the bootstrap variance for a specified ∗
hn with an estimate of the true variance, to reduce any additional biases. A super-
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population model will be introduced to determine how to randomize the bootstrap-frame before selecting the bootstrap

samples. Given the super-population model, the bootstrap variance estimator will be shown to be consistent.
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2.0  Using the BHR Model with Systematic Sampling

The BHR model assumes systematic sampling can be approximated by a deep stratification introduced by pairing

consecutive sampling PSUs. For this to work, the stratum variances must be proportional to hn/1 , since BHR makes

this assumption. (When all BHR assumptions are true, this follows from )(XVBHR  =+= )2/)(( 21 XXV

)(2/1 1XV , where subscript 1 and 2 represents the estimate based on the first and second PSUs respectively selected

in each stratum.) If this assumption is not true then the BHR model is unlikely to produce accurate results. There are two

reasons for systematic sampling to violate this assumption. The first reason deals with any implicit finite population

correction in the variance to reflect sampling without replacement. If the sampling rates are high, this could be a

significant contributor to the violation of the hn/1 assumption. The second reason is the correlation between PSUs

within a systematic sample. As hn increase or decreases, these correlations may change dramatically because of the

original sort ordering. Unlike the finite population adjustment, this effect can be noticeable even when the sampling rates

are small.

To investigate the hn/1  assumption, a simulation study is done, using the National Center for Education Statistics

(NCES) elementary/secondary private school frame. Four thousand systematic samples are selected with sample sizes of

hinp , where 0.25 and 0.5 ,75.0 ,1=ip . By computing the simple variance of the 4,000 simulation estimate, an

estimate of the true variance is computed. This is done for estimates of total students, teachers and schools. If the

variance is proportional to hn/1 , then the ratio 1)(ˆ/)(ˆ −j
j

lk
k
l pXVpXV  should be close to 0; where l represents

the estimate type (total students, teachers or schools) and jk , represents the sample size ( hn , .75 hn , .5 hn  or .25 hn ).

When the ratio is less than 0, the systematic sample variance decreases faster than the hn/1  assumption would imply;

and when it is greater than 0, the systematic sample variance decreases slower than the hn/1  assumption would imply.

A negative ratio means that BHR should overestimate the variance, while a positive ratio means that BHR should

underestimate the variance. This relationship is not necessarily true, since )(ˆ k
lXV  includes an unknown implicit finite

population correction whose impact on the variance as the sample changes is unknown.
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The results in table 1 demonstrate that sometimes the ratio is close to 0. Other times, it is a great deal different than 0.

The systematic sampling variance does not necessarily decrease faster than the hn/1  assumption would imply;

sometimes its decrease is slower. This is an indication that BHR will not necessarily produce an overestimate of the

variance, which is a common assumption among sampling statisticians. When there is a large difference from 0, the

magnitude is dependent on the variable. This seems to imply, since the sampling rates are not high, (especially with the

.5/.25 comparison), that the violation of the hn/1 assumption is due to the initial sort ordering (i.e., the within sample

correlation).

It should be noted that the table 1 results exaggerate the true impact of the hn/1 assumption. Using the

hn/1 assumption, the ratio, used in the table, adjusts the variance with the smaller sample size to approximate the

variance with the larger sample size. This approximation uses the smaller sample estimate’s unknown finite population

correction. Since the true finite population correction is likely larger than the one used in the approximation, the absolute

value of the true impact of the hn/1 assumption should be expected to be smaller than what table 1 indicates.

The important conclusion from this example is that variance estimates, based on designs using systematic sampling, will

not necessarily be proportional to hn/1 , as hn increases or decreases. When this occurs, an important BHR assumption

is violated, and the BHR variance estimator should not be expected to perform well when the magnitude of the violation

is large.

The statements concerning the proportionality of the variance estimate are qualified with ‘as hn increases or decreases’.

The importance of this qualification can be seen with equal probability systematic sampling. Here, the variance can be

expressed proportional to hn/1 (e.g., ])1(1][/][/)[()( 2
wsthhwsthhhh nnSNnNyV ρ−+−= , see (Cochran

1977, p. 209). If 2
wstS and wstρ  are constant for an arbitrary hn then )( hyV would be approximately proportional to

hn/1 , as hn increases or decreases. However, both 2
wstS and wstρ are within systematic sample population estimates.
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This implies that as hn changes, the systematic samples change; hence 2
wstS and wstρ also change by some unknown

function of hn . Therefore, even though )( hyV is proportional to hn/1 for fixed hn , as hn increases or decreases, the

variance may not be proportional or even closely proportional to hn/1 . In section 3.5, a similar result will be presented

for unequal probability systematic sampling.

In terms of BHR where =)(XVBHR )(2/1 1XV , the 2
wstS and wstρ  used in )( 1XV may be different than the

2
wstS and wstρ  from )(XV . So, )(XVBHR may over or under estimate the true variance ( )(XV ) based on the

relationship between the two sets of 2
wstS and wstρ .

Table 1.–Measurement of degree the true systematic sampling variance is proportional to hn/1  with respect

to different sample sizes1

Number of Teachers Number of Students Number of SchoolsStratum
( )h

hh Nn /
(%)

R100/502

(%)
R50/252

(%)
R75/252

(%)
R100/502

(%)
R50/252

(%)
R75/252

(%)
R100/502

(%)
R50/252

(%)
R75/252

(%)

01911 2.0 -31.2 19.5 55.2 14.1 -13.5 0.3 -28.0 -8.5 100.8
01912 2.8 -27.0 24.5 8.2 -2.5 6.6 6.0 -14.3 12.5 22.3
01913 6.1 -14.3 -11.9 3.8 20.9 19.2 -3.6 -3.0 3.2 10.2
01914 3.4 -23.8 -26.6 2.5 -5.3 8.8 2.8 -19.3 -3.7 -7.4
01921 19.6 23.5 25.3 18.0 56.5 141.9 110.1 19.6 34.7 10.8
01922 25.7 -32.7 14.9 132.1 -34.0 18.5 15.2 -16.4 35.4 27.1
01923 13.7 -4.3 -51.7 -31.2 6.0 12.0 175.5 -8.4 10.1 -10.1
01924 12.2 -46.3 38.2 -45.2 -37.6 -26.5 -7.9 -37.6 28.9 -13.9
01931 4.5 23.7 -7.5 -21.3 18.0 -4.5 -17.7 4.6 -6.3 -11.0
01932 4.9 2.4 1.1 -29.6 -25.8 4.0 -37.5 3.9 -9.4 -0.9
01933 6.2 18.5 43.5 51.7 -21.4 -24.0 -52.0 14.4 47.9 100.6
01934 4.3 -20.4 -9.6 -34.4 -26.3 -16.9 -18.9 -7.0 1.5 -3.8

1 Negative numbers represent how much more efficient the variances are than the hn/1 assumption.

   Positive numbers represent how much less efficient the variances are than the hn/1 assumption.
2 ba /R is the comparison for a % of original sample size to b % of original sample size.
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3.0  Bootstrap Variance Model

To address the situation when the systematic variance in not proportional to hn/1 , a bootstrap variance estimator is

proposed in this paper, which is less dependent on the hn/1 assumption than the BHR estimator. This section first

describes the necessary super-population model; next, a consistency theorem for the bootstrap estimator is presented; by

example, the super-population model, used in the proposed bootstrap procedure, is demonstrated; next, the mechanics of

the bootstrap procedure is presented; and finally, the consistency of the bootstrap procedure is established. We begin by

describing the super-population model.

3.1  The General Super-Population Model

Let ihs , the thi  possible sample from stratum h , be a systematic PPS sample such that U
hC

c
ihcih ss

1=

= , where the

ihcs ’s are a partitioning of the sample ihs and hC  is the number of partitions within stratum h .

Each sampled PSU ihsj ∈  is assigned a known weight (jw ) based on the selection probability:

jw = )/( hjhh enT ,

 where ∑
=

=
hN

j
hjh eT

1

, (1)

 hje  is the measure of size for PSU j  in stratum h , (2)

 hn  is the number of sampled PSUs in stratum h ,

 and hN  is the number of PSUs in stratum h .
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Let nnp hh /= , (3)

where ∑=
h

hnn .

We will assume that the hp ’s are constant as n  increases.

For a random variable jX evaluated for each PSUj , assume the joint distribution of jjhhj XepTY ))/((=

given ihcs  is ∏
=

ihcn

j
jhc YF

1

)( , where )( jhc YF  is a distribution function, and ihcn  is the number of sampled PSUs in

partition c within stratum h .

Assume the distribution of hc
iY  is independent of ch

i
′Y , cc ′≠ , given ihs , where ),...,( 1 ′=

ihcn
hc
i YYY  on ihcs

and ),...,( 1 ′=
′

′
cihn

ch
i YYY on cihs ′ .

The joint distribution of U
ihsc

hc
ih

∈

= YY , given ihs , is ∏
=

h

ihc

C

c

n
hcF

1

)( .

The distribution of hY given ihs  can be summarized in the following way: Within a partition of ihs  the jY ’s are

i.i.d. The jY ’s ihcs∈  and the jY ’s cihs ′∈ , ’cc ≠ , are independent, but not identically distributed.

Theorem 1

Given the above assumptions and definitions, the bootstrap variance estimator of ∑∑
∈

=
h hj

jhj xwX̂ given the

super-population model is consistent, as ∞→n , provided )()(ˆ yFyF hchc →  and yhcyhc µµ →∗ , as ∞→n .

The proof is provided in the appendix.
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This result can be generalized by noting that implementing the bootstrap methodology does not require knowledge of

the conditional distributions, hcF . The only thing required is the knowledge that the PSUs within ichs are i.i.d. and

PSUs between ichs and hcis ′ , cc ′≠ , are independent. This implies PSUs within ichs  must be randomized together

as a group.

The following theorem states this generalization.

Theorem 2

The required assumptions are:

1) a systematic sample ( ihs ) has a known partition (i.e., U
ihC

c
ihcih ss

1=

= );

2) ∑∑∑∑
∈∈

==
h hj

j
h hj

jhj ynxwX /1ˆ is the estimate of interest;

3) as n  increases the sample allocation between stratum remains constant (i.e., the hp ’s are constant as n

increases);

4)  for PSUs in ihcs , the jy ’s are conditionally i.i.d. given ihcs  and are generated from an otherwise unspecified

distribution function 1,2)( ℑ∈yFhc . 1,2ℑ being defined in the appendix and yhcjyE µ=)( ;

and

5) hc
iY  is conditionally independent of ch

i
′Y , cc ′≠ , given ihs .

It then follows that the bootstrap variance estimator of X̂ given ihs  generated from the bootstrap estimates

∑∑
∈

∗∗ =
h hj

jb ynX /1ˆ , where the ∗
jy ’s are generated from )(ˆ yFhc , is consistent, as ∞→n , provided

)()(ˆ yFyF hchc →  and yhcyhc µµ →∗ , as ∞→n . ∗
yhcµ  is the bootstrap expectation of y within a partition.
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3.2  Bootstrap Model Example

In practice, the statistician never knows the required partitioning ( U
hC

c
ihcih ss

1=

= ). However, the statistician usually

orders the frame before sample selection. With this ordering, the statistician is implicitly assuming that nearby PSUs

are similar, at least in terms of the most important response variables. This implicit assumption can be used to

develop a partitioning that approximately meets the required assumptions. This approach is similar to the BHR

approach, so that the starting point of the bootstrap and the BHR are the same. Any differences in results reflect the

divergence of assumptions at this point.

An example is provided below. However, it is first necessary to redefine the meaning of the term sampling interval.

In the introduction, the sampling interval was the total measure of size within a sampling group. From now on, a

sampling interval will refer to the PSUs within a sampling group. Consecutive sampling intervals are consecutive

sampling groups.

Example

For a fixed even numbered sample size ( hn ), the elements of the partition ( ichs ) can be determined by consecutively

pairing sampling intervals, after the frame has been placed in its original sort ordering. All samples have the same

partitioning (i.e., the partitioning is only a function of stratum, -- chs , 1=c to hC ) and each ichs ( chs ) has exactly

two PSUs. The marginal distribution of hc
iY is 2)( hcF . If y is distributed as ),( ccn σµ with distribution

function )(, y
cc σµΦ then the distribution of hc

iY  is 2
, ))(( y

cc σµΦ . In terms of consistency, it is assumed that the

partitioning remains fixed as the sample size increases and more PSUs are selected within a partition.

This “type” of partitioning is used in the bootstrap procedures proposed in this paper. Implementing the partitioning

in the bootstrap processes is similar to the BHR model, in that, for both methodologies, all the replicate variability is

introduced through the variability within consecutive pairs of selected PSUs. The BHR replicates reflect variability

by alternating PSUs within pairs in and out of the replicates, while the bootstrap replicates reflect variability by
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randomizing bootstrap-PSUs generated from consecutively paired PSUs (see section 3.3 for a description of the

bootstrap-PSU process). The bias in the bootstrap procedure gets smaller as the number of PSUs per partition ( chs )

gets larger (see theorem 2). Since the proposed partitioning has only two PSUs per partition, the bias may be large;

hence, setting the bootstrap sample size, ∗
hn , equal to hn should underestimates the bootstrap variance (see the

bootstrap discussion in the introduction). Using  2/hh nn =∗ , as in BHR, may have less bias. The bootstrap, unlike

BHR, does not have to use 2/hh nn =∗ . Any ∗
hn  between 1 and hn can be used and may have less bias than either

2/hn  or hn . In this sense, the bootstrap model is more flexible than the BHR model.

The actual bootstrap sample size must be computed through a series of trial and error simulations, comparing and

estimate of the true variance with the bootstrap variance for a specific bootstrap sample size. The bootstrap sample

size that minimizes the bias in the bootstrap variance is used in the final implementation. The trial and error process

is necessary because there is no direct formula that expresses the systematic variance as a function of hn , as hn

increase or decreases, such as being proportional to hn/1 .

Determining ∗
hn  through a simulation provides a robust variance estimate because )ˆ( hXV ∗ , by construction, will

be almost unbiased, even if the model assumptions are false. The disadvantage of the simulation is that it can only be

implemented with frame variables. However, if ∗
hn  is relatively flat for non-frame variables, the bootstrap replicate

weights should be applicable for those variables, too.

An additional observation about this partitioning is:

If the partitioning methodology described above correctly models the distribution of X ; the hn ’s are even and

increase by multiples of hC then the KssXE hi =)’ˆ(
2

, a constant; where 
2
E  refers to the expectation

with respect to the super-population model. Therefore,

)’ˆ()'ˆ()'ˆ()ˆ(
212121

ssXVEssXEVssXVEXV hihihii =+= , where 1 refers to the selection of the ssh ’ . In this
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situation, since the bootstrap variance estimator is consistent for )’ˆ(
2

ssXV hi , the bootstrap variance is consistent to

an estimator that is unbiased for the unconditional variance.

3.3  Bootstrap Implementation

The object of this section is to produce a set of bootstrap replicate weights, similar to BHR or Jackknife replicate

weights. To do this, one must make an important distinction between finite population sampling and i.i.d. sampling.

With i.i.d. sampling the variable of interest, X , is consider random. Therefore, it’s logical to repeat the bootstrap

sampling independently for every random variable. In finite population sampling, the response variable, X , is

considered known for all PSUs in the frame. What is random is the sample selection variable,jS , which specifies which

PSUs are in the sample (i.e., jS =1 means PSU j  is in sample, while jS =0 means PSU j  is not in sample). Since

there is only one random variable, only one set of bootstrap samples need be generated. This can be seen in Sitter’s Rao-

Hartley-Cochran bootstrap variance estimator. In it, the bootstrap sampling is done independent of the variable of

interest. Therefore, once the bootstrap samples are selected, they are appropriate for any variable of interest. Likewise,

for random sampling schemes described in the introduction. A PSU can be selected in the bootstrap selection process

instead of a response variable without changing the procedure. Once selected, the bootstrap samples are appropriate for

any response variable. Therefore, one set of selections can be used for all response variables. This does assume that the

bootstrap sample size is not a function of the response variable.

Therefore, given a bootstrap sample, an appropriate bootstrap replicate weight for PSU j for any response variable X ,

is the sum of the bootstrap weights from selected bootstrap-PSUs, which have been generated from PSU j . For the

bootstrap procedure proposed here, it may be very difficult and time consuming to produce a set of bootstrap replicated

weights, but that process only has to be done once. Given availability of high-speed computers, their cheap run times,

and the usual long time period from sample selection and the production of final weights, producing a single set of

bootstrap replicate weights is certainly practical.

One potential difficulty with a single set of replicate weights for the proposed procedure is the process of choosing ∗
hn

to be more unbiased. With systematic sampling, this process is likely dependent on the response variable. Hence, each



16

variable may have a slightly different set of replicate weights. It is assumed here that one set of replicate weights that

works well for the frame variables will also work well for other correlated variables.

Since )(ˆ yFhc is based on only 2 PSUs, it is not likely to be close to )(yFhc and therefore, )(Θ∗V may not be close

to )(ΘV .  Hence, the bootstrap variance estimator requires the computation of a bootstrap sample size, ∗
hn , to make

the variance estimator more unbiased. Since there is no exact expression that relates the true systematic sampling

variance with hn , as hn  increases or decreases, determining an appropriate ∗
hn  will be accomplished by a

simulation study. To perform the simulation study frame variables are used, so estimates can be computed for any

selected sample. The statistician always has three estimates available for this purpose. One is the measure of size or

some function of the measure of size. The second is the estimate of the total number of PSUs (sum of the sample

weights). The third is the average measure of size per PSU or the average per PSU of some function of the measure

of size. If the measure of size is used in the simulation, it will be necessary to use a different year’s data to produce

estimates; otherwise, the variances will be zero.

To determine the appropriate ∗hn ’s, the simulations must first be applied to individual stratum estimates  hΘ .

Therefore, the simulation process for estimating the bootstrap variance, )( hV Θ∗ for an estimator  hΘ , works as

follows:

3.3.1  Bootstrap Procedures

1. Select a sample (is ) from the original frame, using the methodology of the original sample design.

2. For the initial bootstrap sample size values, ∗
hn , use either 2/hn  or hn . 2/hn would be appropriate if it is

believed that the BHR deep stratification model is appropriate. If hn  is large then setting hh nn =∗  may be

appropriate, if one believes that the deep stratification model is an oversimplification. After the initial simulation,
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∗
hn  will likely require adjustment for at least some of the strata. If such is the case, it will be required to repeat the

simulation with the new ∗
hn ’s.

3. Generate a bootstrap frame based on the selected sample. The idea behind the bootstrap frame is to use the sample

weights ( jw ) from the selected PSUs (j ) in is  to estimate the PSU frame distribution. The bootstrap frame is

generated in the following manner:

For each selected PSU j , jw  bootstrap PSUs (bj ) are generated by replicating the thj  PSU jw times. If jw

has a noninteger component then a full bootstrap-PSU is generated with a reduced selection probability. The thbj

bootstrap-PSU has the following measure of size (bjm ):

jbjbj wIm /1⋅= , (4)

 where:









=

component  noninteger  thebeing         

 ofcomponent  noninteger a is  if , 

 ofcomponent integer an  is  if  , 1

j

ji

j

bj

C

wbjC

wbj

I (5)

jw j  PSUfor  weight sample-full  theis :

4. Randomize the bootstrap frame according to super-population model specification. This is accomplished by placing

the bj bootstrap-PSUs generated from PSUj  within stratum h and sample is  in their original order of selection.

Next, bootstrap-PSUs generated from the first PSU are paired with the next set of bootstrap-PSUs generated from

the second PSU. The third set of bootstrap-PSUs is paired with the fourth set. This process continues until all

bootstrap-PSUs are paired. If there are an odd number of PSUs then the last set of groupings of bootstrap-PSUs

contains the bootstrap-PSUs generated from the last three PSUs in stratum h . This is repeated for every stratum in

is . Now, the bootstrap-PSUs are randomized within their respective pair.

5. Select B  bootstrap samples from the bootstrap frame, re-randomizing the bootstrap frame before each selection.

The bootstrap frame, bootstrap frame ordering, measure of size (bjm ), and bootstrap sample size (∗hn ) have been
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specified. Using these quantities select the bootstrap samples using the same procedures used to select the original

systematic PPS sample. The one exception to this is that a bootstrap-PSU generated from noncertainy PSUs that

become certainty in the bootstrap selection should not be eliminated from the selection process and taken in sample

with probability 1. Their selection probability should remain unchanged and if the bootstrap-PSU is selected

multiple times that should be reflected in the bootstrap weight (see 6 below).

6. Compute bootstrap estimates ∗Θ ibh  for each of the B  bootstrap samples in an analogous manner as is done to

compute the full sample estimate  ihΘ from is . This is accomplished by computing a bootstrap weight, ∗
jw , and

then computing ∗Θ ibh the same way  ihΘ is computed, except using ∗
jw  instead of jw .

 The bootstrap-PSU weight, ∗
jw , is:

sample. bootstrap  in the selected are that  from generated  all ofset   theis  : thB
j

Sbj

p
bjj

BjbjS

ww
B
j

∑
∈

∗ =

and

bjbjbj
p
bj pMIw /⋅=      

where:

defined previously as is  :bjI

bjM : is the number of times the thbj  bootstrap- PSU is selected, (6)

bjp : is the bootstrap selection probability for the thbj  bootstrap-PSU.

. :

defined previously is :

:where

,/

∗

∈
∑

=

h
sbj

bjh

bj

hbjbj

nmSI

m

SImp

h

7. Compute the simple variance of the ∗Θ ibh  from Bb   to1= , as the Monte Carlo estimate of )( ihV Θ∗ from is .
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∑∑
=

∗∗∗

=

∗∗ Θ=ΘΘ−Θ−=Θ
B

b
ibhihih

B

b
ibhih BBV

1

2

1

./1  where,)()1/(1)(

8. Repeat steps 1-7, for a large number of samples, is , say T times.

9. Compute the simple variance of  ihΘ from Ti   to1= , )(ˆ
hV Θ , as a measure of the true variance; and compute

the average bootstrap variance )( hV Θ∗ , averaged over the T , )( ihV Θ∗ estimates.

∑∑
==

Θ=ΘΘ−Θ−=Θ
T

i
ihh

T

i
hihh TTV

11

2 /1  where,)()1/(1)(ˆ .

∑
=

∗∗ Θ=Θ
T

i
ihih VTV

1

)(/1)( .

10. Compare )( hV Θ∗ with )(ˆ
hV Θ and adjust ∗

hn to reduce the bias between )( hV Θ∗ and )(ˆ
hV Θ . If

)( hV Θ∗ is smaller than )(ˆ
hV Θ then ∗

hn  should be reduced. If )( hV Θ∗ is larger than )(ˆ
hV Θ  then ∗

hn

should be increased. Since )( hV Θ∗  and )(ˆ
hV Θ may not be proportional to 1/ ∗

hn , it may be difficult to predict

how much ∗
hn  should be increased or decreased. If that is the case then trial and error may be necessary.

11. Repeat steps 1-10, until the bias between )( hV Θ∗ and )(ˆ
hV Θ has been reduced to a satisfactory level.

12. Using the ∗
hn  from step 11, repeat steps 3-6 for the actual collected sample, generating a set of bootstrap

replicate weights, ∗
jw that can be used to compute variances of other, more complex statistics that are not

necessarily computed within h .

3.4  Consistency of the Proposed Bootstrap Estimator

To apply theorem 1or 2 for the consistency of the bootstrap estimator, it must be established that )()(ˆ yFyF hchc →

and hcYhcY µµ →∗ , as ∞→n .

To do this, observe that for an arbitrary domain D :

∑∑∑
∈∈∈

==






Dj
jj

Dbj
bjbj

Dbj
bj

p
bj XwXIXwE* , since biM has expectation pbi .
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where:

E*    is expectation over the bootstrap samples,

jbj XX ,  is an arbitrary response variable defined for the bootstrap-PSUs and PSUs, respectively.

And

)()ˆ(/1ˆ * ∗
∗

∗
∗

∗

∈

∗∗

∈

∗ =⇒=== ∑∑ DXDDX
Dbj

bjX
Dbj

bj
p

bjD YEXEYYnXwX

where:

6. stepor  3 step 3.3.1section  fromly respective (6), and (4) (5),in  defined are  and ,

/

)/()(

bjbjbj

hh

hbj
bjh

bjbjhhbjbjbjX

mMI

nnp

mT

XmpTMIY

∗∗∗

∈

∗

∗∗∗∗

=

=

=

∑

If 1D  is the domain defined as the observations in a stratum partition, ichs then

hcYjX
Dj

jj
Dj

bj
p

bj
Dbj

XD YnXwXwEYE µ→=== ∑∑∑
∈∈

∗

∈
∗

∗
∗

111

1
/1)()(  , as ∞→n  .

Where:

3.1.section  fromly respective (2), and (3) (1),in  defined are  and ,

))/((

hjhh

jhjhhjX

epT

XepTY =

Define for each j in ichs ,


 ≤

=
otherwise 0

 if 1
)(

0
0

yy
yZ

j

jch ,

and for each bj in ichs , 




 ≤

=
∗

∗

otherwise 0

 if 1
)( 0

0

yy
yZ bj

bjch

then



21

∞→→=

==

==

∑∑

∑∑∑∑

∑∑∑

∈∈

∈∈∈∈

∈

∗
∗

∈

∗
∗

∈
∗

chhc
Dj

yjZ
Dj

yjZ

Dj
yjZ

Dj
yjZ

Dj
jchj

Dj
jchj

Dbj
bjch

p
bj

sbj

p
bjyZD

sbj

p
bjhc

nyFYY

YnYnyZwyZw

yZwEwYEwyF

jchjch

jchjch

ich
bjch

ich

 as ),())(/1(

)/1)(/()())(/1(

))(()/1()()/1()(ˆ

0)()(

)()(0max

0)(0

1

0

1

max

1

0

1

max

11

1
01

                                             where: maxy is the maximum value of the y ’s in ichs .

The convergence above follows from ∑
∈ 1

max
 )(

Dj
yjZ jch

Y converging to the population total in  1D , and

∑
∈ 1

0
 )(

Dj
yjZ jch

Y converging to population total with 0yy ≤  in  1D .

3.5  The Variance of ∗
hX̂  ( )ˆ( ∗∗

hXV ) from the Bootstrap Frame

In this section, an approximate expression for )ˆ( ∗∗
hXV is derived to help explain: 1) the type of finite population

implied by the proposed bootstrap variance estimator; and 2) how the original sample size affects the variance estimator.

To do this, the following assumptions are made: 1) all weights are whole integers; 2) within a stratum partition the

weights are equal and 3) hh nn =∗ . Given these assumptions, the proposed bootstrap is closely related to the Rao,

Hartley Cochran sampling method (Cochran 1977, pp. 266-267). The Rao, Hartley, Cochran sampling method randomly

places the frame PSUs into hn groups. One PSU is independently selected within each group proportional to a measure

of size iz . In the bootstrap procedures described above, within each partition, referenced by g , bootstrap-PSUs are

randomly placed into 2 groups, referenced by gn . Given the above assumptions, the bootstrap procedures can be

viewed as similar to as the Rao, Hartley, Cochran procedure, except that the sampling is done systematically instead of

independently. By additionally assuming there are enough bootstrap-PSUs in g , so that the correlation of PSUs within

g is small enough to be assumed equal to zero; and that PSUs in different g ’s have correlation ggnh ′ρ , it becomes

possible to derive an expression for )ˆ( ∗∗
hXV . The hn in ggnh ′ρ represents the fact that the correlations are average

(across all possible orderings) within sample correlations; as such, they will change based on the response variable, the

original ordering and the original sample size, hn .
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The first term in (7) is the variance of the Rao, Hartley, Cochran estimator. If the ggnh ′ρ ’s equal zero then the

systematic bootstrap variance is the Rao, Hartley, Cochran estimator. Since the∗
lN ’s are equal (i.e., ∗∗ = ggl nNN /* )

then the ∑
∈

∗∗∗∗∗ −−
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llggg NNNNn )1())]1(/([ term above equals )1/()1(1 −−− ∗∗
gg Nn , a close approximation to

the simple random sample finite population correction. Therefore, the proposed bootstrap variance estimator includes a

finite population correction that reflects the extra variance reduction due to sampling without replacement. Since the

PSUs in a sampling interval change as the sample sizes and/or ordering change, one would not expect the ggnh ′ρ ’s, in
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the second term, to be constant, as hn increases or decreases. They are unknown non-constant functions of hn .

Therefore, one does not expect )ˆ( ∗∗
hXV to be proportional to hn/1 .  The )1/()1(1 −−− ∗∗

gg Nn finite population

corrections, also makes this unlikely. Since the bootstrap variance is consistent for the original systematic variance, one

would not expect the systematic variance, )ˆ( hXV , to be proportional to hn/1 , as hn increases or decreases. This is

also demonstrated in the simulation of section 2.0. Likewise, since the bootstrap selection is systematic, one would not

expect )ˆ( ∗∗
hXV to be proportional to ∗

hn/1 , as ∗
hn  increases or decreases and hn  fixed.
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4.0  Simulation

To demonstrate the advantages of the bootstrap variance estimator, a simulation study is presented comparing BHR

and the bootstrap variance estimator. Two thousand simulations are generated using frame variables. The frame is

the National Center for Education Statistics’ (NCES) Private School Survey (PSS). The PSS is NCES’s school frame

for private elementary and secondary schools. Three totals (number of schools, number of teachers, and number of

students), two averages (average students and average teachers per school), and one ratio (ratio of number of

students to number of teachers) are estimated in the simulation. In tables 3-8, estimates are computed by each

stratification variable (affiliation, region and school level), as well as one of the sort variables (Urbanicity). The

School and Staffing Survey (SASS) sample design is used to select the simulation samples. Relative error, relative

mean square error, and coverage rates are generated to evaluate the bootstrap and BHR variance estimator

performance.

4.1  Comparison Statistics

In this section, the statistics used to compare the bootstrap and BHR variances are described.

4.1.1  Relative Error

Rel. Error 100)1)(/)(( 2/12/1 ⋅−ΘΘ= te VV

    Where: )(ΘeV is the average of the variance estimates ( )( seV Θ ) from either the bootstrap or BHR procedure,

                 (i.e.,   )(ΘeV is ∑
=

Θ
000,2

1

)(2000/1
s

seV , sΘ is the ths simulation estimate of Θ )

                 )(ΘtV ∑
=

Θ−Θ=
000,2

1

2)(1999/1
s

s , Θ is ∑
=

Θ
000,2

1

2000/1
s

s

4.1.2  Relative Mean Square Error

Rel. MSE 100)}(/]))()(()({[ 2/12 ⋅ΘΘ−Θ+Θ= ttee VVVVV ,

    Where:  ∑
=

Θ−Θ=Θ
000,2

1

2))()((1999/1)(
s

esee VVVV .
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4.1.3  Coverage Rates

Coverage Rate of )(ΘeV 1002000/1
000,2

1

⋅



= ∑

=s

e
sR ,

   Where: 


 Θ⋅+Θ≤Θ≤Θ⋅−Θ

=Θ
otherwise  0

)(96.1)(96.1 if  1
)(

2/12/1
sessese

s

VV
R

4.2  SASS Sample Design

The sample frame, used in the simulation, is the list frame component of NCES’s Private School Survey (PSS). The list

frame is stratified by detailed School Association (19 groups), within Association by Census Region (4 levels), and

within Region by school level (elementary, secondary and combined). The school sample is selected using the

systematic probability proportionate to size sampling procedure, described in the introduction. The measure of size is

square root of the number of teachers in the school. Before sample selection, the school frame is ordered by state, school

highest grade, urbanicity, zip code, and school enrollment. To reduce the necessary time to complete 2,000 simulation

only one detailed school association is simulated.

4.3 Determining ∗
hn  for the Bootstrap Variance

As described in section 3.3, the determination of ∗
hn  requires a simulation study in itself. For each stratum, a series

of simulations was done for various ∗
hn . The ∗

hn  that produced the best relative error was used in the simulation

presented below. The optimum ∗
hn  is dependent on the estimate of interest. The optimum ∗

hn  for estimating numbers

of teachers is usually different than the optimum ∗
hn  for estimating numbers of students or schools. Likewise, the

optimum ∗
hn  for estimating averages or ratios can be different than the total optimums. Each different ∗

hn  imply a

different set of replicate weights. Since we want only one set of replicate weights, a compromise ∗
hn  is determined

that works reasonably well for all estimates. The results presented below use the compromise set of ∗
hn . Table 2

presents the values for hn  and ∗
hn . Each simulation used in the determination of ∗

hn  had at least 250 samples.
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Table 2.–Original ( hn ) and bootstrap ( ∗
hn ) sample size by stratum

Stratum
hn ∗

hn Stratum
hn ∗

hn Stratum
hn ∗

hn

01911 14 12 01921 10 5 01931 48 35
01912 16 11 01922 10 8 01932 46 33
01913 52 28 01923 10 10 01933 114 81
01914 34 24 01924 10 10 01934 52 40

4.4  BHR Variances

The r th school half-sample replicate is formed using the usual textbook methodology (Wolter 1985) for establishment

surveys with more than 2 units per stratum. This is described in the introduction. Two BHR variance estimates are

presented. The first (BHR without FPC Adjustment) is the variance estimates described above. This estimate does not

make any type of Finite Population Correction (FPC) adjustments. The second makes a simple FPC adjustment. The

second BHR variance estimate (BHR with FPC Adjustment) adjusts the first variance estimator by 1− Ph , where Ph is

the average of the selection probabilities for the selected units within stratum h .

4.5  Number of Replicates

An important aspect of this analysis is a comparison of the stability of the two variance estimators. To do this, each

variance estimator will have the same number of replicate estimates. Since producing bootstrap replicate weights is far

more time consuming than producing the BHR replicate weights, it has been decided to use a relatively small number of

replicates. Thirty-two replicates have been used in the BHR variances and thirty have been used in the bootstrap

variances.
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4.6  Results

According to tables 3-8, in terms of extremes, the bootstrap variance estimator is better than either BHR variance

estimator with respect to relative error, relative MSE, or coverage rate. The bootstrap relative errors are large in

absolute value (greater than 20% or less than –20%) 4 times, while the BHR, with and without FPC adjustment,

relative errors are large 17 and 12 times, respectively.

Only 13 of the bootstrap relative MSEs are larger than 50% and only one is greater than 100%. The BHR without

FPC adjustment has 31 relative MSEs larger than 50% and 6 greater than 100%. The FPC adjusted BHR has 26

relative MSEs larger than 50% and 5 larger than 100%.

The bootstrap procedure has only 2 high coverage rates (coverage rate greater than 98%) and 2 low coverage rates

(coverage rate less than 89%). The bootstrap has 1 coverage rate greater than 99%. The BHR without FPC

adjustment has 12 high coverage rates, 1 low coverage rate and 9 larger than 99%. Even with a FPC adjustment, the

BHR has 10 high coverage rates, 2 low coverage rate, and 9 coverage rates greater than 99%.

The difference between the bootstrap and BHR is largest for the Urbanicity estimates. For these estimates the BHR

relative MSE can be almost 4 times larger than the bootstrap relative error (see tables 4 and 7 Urban). One difference

between the Urbanicity and other estimates is the amount of sample size control in the sample design. The Urbanicity

sample size is controlled through the sorting. Urbanicity is the third sort variable, so the control on sample size is

small. The sample size in all other estimates is directly controlled by the stratification. One possible reason for the

big Urbanicity differences is that the bootstrap mimics the sample process better than BHR.

4.7  Conclusion

This paper discussed how BHR can be used to measure the variances from surveys utilizing systematic PPS selection

procedures. Two assumptions are necessary: 1) the extra stratification introduced by the variance stratum is sufficient

to reflect the systematic process and 2) the variance is inversely proportional to the sample size. In table 1, it has

been observed that systematic PPS sampling variances may not be inversely proportional to the sample size. Instead,

a large number of times, they are a great deal more efficient and sometimes they are less efficient then the inverse
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sample size rule would imply. One reason for this is that the clustering induced by systematic sampling changes as

the sample size change, which makes the intercluster correlation an unknown function of the sample size. In this

situation, the variance may not be inversely proportional to the sample size.

To correct this problem, a bootstrap variance estimator has been introduced which does not make the inverse sample

size assumption. Given an appropriate super-population model, the bootstrap procedure produces consistent variance

estimates. It has also been demonstrated that the bootstrap procedure adjusts for without replacement sampling.

Based on the simulation of the SASS survey design (tables 3-8), the bootstrap variance estimator performs better the

BHR with respect to relative error, relative MSE and coverage rates. This is especially true with the Urbanicity

estimates. This remains true even after a simple finite population adjustment is made to the BHR. One drawback of

the proposed bootstrap procedure is that the determination of an appropriate bootstrap sample size can only be

implemented using frame variables. However, with appropriate frame variables, the bootstrap variances are close to

unbiased, even when the super-population model assumption fails.
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Table 3.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for students estimates by affiliation,
                  region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -0.3 30.0 93.2 12.4 44.1 96.1 9.0 35.3 96.1
Northeast -10.7 43.7 90.4 1.9 47.7 94.9 -0.7 45.4 94.8
Midwest -1.9 46.0 93.4 11.2 45.6 97.1 8.1 40.7 97.0

South 15.7 55.8 96.2 25.4 66.4 99.8 20.6 55.0 99.7
West -2.0 38.6 92.1 12.8 47.9 94.7 9.9 42.8 94.6

Elementary -12.8 38.0 89.9 -6.3 28.7 93.1 -8.3 29.6 91.9
Secondary -7.5 48.7 88.6 5.7 45.2 94.6 -6.1 34.9 94.2
Combined 13.3 51.2 96.3 26.0 71.2 96.1 21.9 61.6 96.0

Rural 16.6 54.4 97.1 32.8 89.1 97.3 28.6 78.6 97.1
Suburban 8.0 38.9 94.9 -0.9 26.5 92.4 -3.8 26.0 92.4

Urban 31.6 90.4 98.2 48.0 132.1 100.0 43.7 119.4 100.0

Table 4.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for schools estimates by affiliation,
                  region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -4.5 27.8 93.1 12.7 40.7 97.0 9.7 35.4 97.0
Northeast 4.3 43.6 94.6 10.3 52.3 94.9 8.0 49.0 94.9
Midwest 4.2 42.8 92.9 12.5 51.4 98.3 9.8 46.9 95.7

South -10.9 32.7 90.7 -6.6 26.5 89.6 -10.3 29.0 89.4
West -2.4 35.1 92.9 7.8 43.7 92.2 5.1 40.0 92.2

Elementary 1.3 34.9 93.6 16.1 57.0 95.9 14.0 52.9 95.9
Secondary -2.9 57.0 90.5 26.3 107.1 97.2 14.8 81.9 95.9
Combined -6.2 29.5 91.2 -1.1 28.2 92.3 -4.2 27.7 92.3

Rural 7.5 36.8 95.7 24.2 71.2 98.7 20.9 63.8 98.7
Suburban 6.5 36.6 95.0 23.1 67.5 97.4 19.9 60.6 97.4

Urban 11.5 43.2 96.1 53.7 147.6 97.5 49.5 135.0 97.5
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Table 5.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for teachers estimates by affiliation,
                  region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -6.6 28.8 92.4 -4.5 25.5 92.3 -7.5 26.6 91.0
Northeast -4.1 34.5 92.5 -8.6 33.3 94.4 -11.0 34.5 94.3
Midwest -6.2 32.6 90.3 15.5 49.6 98.4 12.4 43.5 97.1

South -10.5 30.7 89.4 -11.3 27.7 83.7 -14.9 31.9 83.5
West 9.6 52.1 96.1 16.4 60.7 96.4 13.3 54.2 95.1

Elementary 3.9 37.7 93.6 18.1 63.2 97.1 15.6 58.3 97.1
Secondary 17.8 75.5 95.4 31.0 98.3 97.5 17.0 64.9 93.7
Combined -6.5 29.7 91.9 -7.3 27.6 89.9 -10.3 29.6 89.9

Rural 20.3 60.5 97.5 29.5 79.3 97.4 25.4 69.0 97.3
Suburban 11.1 41.7 96.1 4.8 30.7 92.4 1.6 27.4 92.4

Urban 49.7 139.8 99.3 81.7 244.0 100.0 76.0 222.9 100.0

Table 6.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for students per school estimates by
                  affiliation, region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -2.9 28.3 92.7 11.7 41.2 97.4 8.5 35.7 96.2
Northeast -2.6 39.7 93.0 2.6 42.8 93.6 0.1 40.5 92.4
Midwest 1.6 39.4 94.0 19.5 63.5 96.0 16.2 56.4 96.0

South 1.6 32.7 93.6 9.4 32.4 96.0 5.1 25.8 94.5
West -2.1 37.9 92.8 9.2 39.5 96.0 6.4 35.2 95.9

Elementary -8.7 33.5 91.0 -4.3 27.1 94.5 -6.2 27.5 94.4
Secondary 1.0 53.0 92.2 13.2 60.7 94.8 1.2 41.6 93.4
Combined 5.2 36.7 95.1 17.4 52.2 95.0 13.6 44.4 94.9

Rural 5.8 41.4 94.6 45.7 131.2 99.6 41.3 118.2 99.6
Suburban -12.9 35.7 89.1 -8.3 32.7 92.1 -10.9 33.9 90.8

Urban 10.3 44.4 95.9 32.1 91.7 97.3 28.2 81.6 97.2
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Table 7.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for teachers per school estimates by
                  affiliation, region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -5.8 28.4 92.4 4.0 27.3 95.9 1.0 24.6 95.8
Northeast 2.1 42.1 93.7 0.6 41.2 90.9 -1.7 39.4 90.8
Midwest -0.7 37.7 92.5 18.2 60.7 99.7 15.0 54.0 99.7

South -10.9 32.5 89.4 -9.6 28.0 89.4 -13.2 31.4 88.1
West 5.5 41.3 95.1 12.1 45.4 93.6 9.2 40.1 93.6

Elementary 4.6 38.7 94.0 17.7 57.2 97.1 15.3 52.4 97.1
Secondary 8.6 54.2 95.2 29.4 93.3 97.4 16.6 63.8 93.7
Combined -6.9 29.9 91.6 -4.1 26.2 92.3 -7.2 27.1 91.0

Rural 1.1 37.4 93.2 27.9 83.6 99.6 24.2 74.6 99.6
Suburban -10.7 34.4 89.7 -2.9 34.9 91.8 -5.5 34.3 91.8

Urban 10.6 44.9 95.5 61.6 177.4 99.8 56.7 161.4 99.8

Table 8.—% relative error, % relative mean square error and % coverage rates for the
                  bootstrap and BHR variance estimator for students/teacher ratio estimates by
                  affiliation, region, level and urbanicity

Bootstrap BHR without FPC
Adjustment

BHR with FPC
Adjustment

Estimate
 Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Rel.
Error

Rel.
MSE

Cov.
Rate

Other Affil. -0.3 31.9 94.2 12.3 46.0 96.1 9.1 40.6 94.7
Northeast -4.3 56.3 91.6 9.3 70.4 94.7 6.7 66.4 94.7
Midwest -5.5 67.1 91.2 3.1 43.9 95.4 0.5 41.6 94.1

South 6.7 45.2 95.4 3.2 31.5 95.9 -0.8 28.6 93.4
West -1.0 38.3 93.9 9.8 46.9 97.3 7.1 42.8 97.3

Elementary -2.5 43.9 93.2 11.8 52.2 99.5 9.5 48.5 99.5
Secondary -25.3 49.1 81.1 1.2 33.2 94.1 -9.3 32.5 91.4
Combined 9.7 46.2 95.8 16.3 53.0 95.9 12.6 45.7 95.7

Rural 7.0 59.8 95.3 22.7 84.2 99.9 18.9 75.6 99.8
Suburban 1.1 37.6 93.5 18.0 61.6 97.1 14.8 55.3 97.1

Urban 5.4 45.6 94.7 15.0 58.3 93.8 11.6 52.1 93.7
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Appendix

In this section, the consistency of the proposed bootstrap estimators is proven.

Theorem

Given the superpopulation model described in section 3.1, the conditional bootstrap variance estimator of

∑∑
∈

=
h hj

jhj xwX̂ , given the model and the sample, is consistent, as ∞→n , provided )()(ˆ yFyF hchc →  and

yhcyhc µµ →∗ , as ∞→n .

Before the conditional result is proven, additional terms, definitions and results must be stated.

Definitions

Mallows’ distance
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Let 1X ,…, nX be observations from a stochastic model nP  and ),,...,( 1 nnnn PXXℜ=ℜ be a random variable.

The sampling distribution of nℜ is given by:

{ }nnP PxPxH
n

≤ℜ=)(
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The bootstrap sampling distribution of nℜ  is given by:

{ },ˆ)( *BOOT nn PxPxH ≤ℜ= ∗  where nP̂ is an estimator of nP based on 1X ,…, nX  and ∗P  represents the

probability with respect to nP̂ . ),...,( 1
∗∗∗ ℜ=ℜ nnn XX , where ),...,{ 1

∗∗
nXX is a bootstrap sample from nP̂ .

Define ∑
∈

=
hc

Ychchhy q
h

µµ , where hchch nnq /= ; and ∑==
h

yhXy h
p µµµ ˆ . The bootstrap mean ( ∗

hyh
u  and

∗
X

u ˆ ) are defined in an analogous manner where nP̂  is used instead of nP . h
hc

Ychchhy yq
h

== ∑
∈

∗∗ µµ and

∑∑ === ∗∗∗

h
hhhy

h
hXy ypp

h
µµµ ˆ .

Results (all from Bickel and Freedman 1981)

Let U and V  be random vectors and a  be a constant. Then,
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In the discussion that follows, we will always assume that the partitioning is known and that the selected sample ( is )

is given.

Given the above assumptions, definitions and results, we will investigate the properties of the bootstrap distribution

of the total ∑∑
∈

=
h hj

jhj xwX̂ (i.e., )(xH BOOT , where )ˆˆ( XXn −=ℜ ∗∗ ), as ∞→n . It will be shown,

using Mallow’s distance ( 2
~ρ ), that the bootstrap distribution is consistent. It then follows that the bootstrap variance

is consistent (Shao and Tu 1995). The proof closely follows example 3.1 in (Shao and Tu 1995), which was also

used by Bickel and Freedman (1981).

There are many ways of generating a bootstrap sample from ∏ hF̂ . Let U ∗∗ = hYY  be one such bootstrap, which

also defines a bootstrap for X . The important thing is that )()(ˆ yFyF hchc →  and hcYhcY µµ →∗ , as ∞→n .

Given a method of generating a bootstrap sample, ∑ ∑
∗∈

∗ =
h Yj

jhj

h

xwX *ˆ  can be computed.
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This establishes the consistency of both )(xH BOOT  and the bootstrap variance for X̂ given the partitioning and the

sample is  and a realization of hY for all h on is . The consistency was established without knowledge of the

distribution function F .
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