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Abstract
In large multipurpose surveys, it is common to select the sample systematically proportional to some measure of size
(PPS) which is correlated with an important variable of interest. Assuming the frame is sorted in a useful
deterministic manner, systematic sample methodologies provide an additional control on the sample alocation,
beyond the control provided from the stratification. This makes it less likely to select a ‘bad sample’. This should
reduce the variability of the estimates as compared to a comparable nonsystematic selection procedure. The problem
with systematic samples is that variance estimators are biased. This paper presents a bootstrap variance estimator,
which can have less bias than standard methodologies, such as half-sample replication. The results will be
demonstrated with a simulation study based on an important National Center for Education Statistics’ survey—The

Schools and Staffing Survey.

Key Words: Simulation, Half-Sample Replication
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1.0 Introduction
Systematic probability proportionate to size sampling (PPS) is a common selection method for establishment surveys.

One way of selecting a PPS sample, given a frame and measure of size, is to do the following within each sampling
gratum (h): Partition the Primary Sampling Units (PSUs) on the frame into N,, groups, so that the sum of the measures

of size in each group is equal. For the sum of the measures of size to be equa within each group, some PSUs may be

split into two adjacent groups, with some positive measure of size in each group. The sampling interval is the total

measure of size in each group. Within each group, the first PSU is assigned a cumulative measure of size equal to the

PSU’s measure of size. The second PSU’s cumulative measure of size is the sum of the previous PSU’s (first PSU)
cumulative size plus the current PSU’s (second PSU) measure of size. This process continues until each PSU in a group

is assigned a cumulative measure of size. The cumulative measure of size for the last PSU in each group is equal to the

sampling interval. A random distancdr() is chosen between 0 and the length of the sampling interval. The first PSU

with a cumulative measure of size larger or equa]lil;o within the first group, is the first PSU selected in the sample.
The rest of the sample is selected by making the same cumulative measure of size comparison for each group. A total of

N, PSUs are selected within each stratum. (See Wolter 1985, pp. 283-286 for more details).

The measure of size for some PSUs may be larger than the sampling interval. There are two ways of handling this. All
such PSUs can be excluded from the selection process and place in sample with certainty. The stratum sample sizes can
be adjusted and new sampling intervals computed. The alternative is to select the sample without modification and
adjust the weighting or second stage sample sizes to accommodate PSUs selected multiple times. The former is
generally considered more efficient because the number of distinct selected PSUs will equal the original sample size,

while the latter will be somewhat less.

Systematic sampling procedures are efficient in terms of ease of selection and lowering sampling error. For this reason

they are used extensively in large-scale surveys. Since each stratum systematic sample is selected using a single random

start (dh ), the sample can be viewed as a sample of size one, where each sample consists of a single sample cluster of



N, PSUs. Therefore, it is impossible to produce an unbiased variance estimator. However, a number of biased

methodologies are used for variance estimation.

These methodologies generally take one of two forms: 1) assume the systematic sample can be approximated by a
smpler sample design with a known variance estimator or 2) assume the response varigble follows some super-
population model and a variance estimator is produced appropriate for that model. Both these approaches alow for
grouping of PSUs, so variances can be computed within groups. Wolter (1985, chapter 7) provides a good discussion of
anumber of systematic sample variance estimators that can be classified into one of these two forms. An example, using

balanced half-sample replication (BHR) is provided below.

BHR is awidely used variance replication methodology for complex survey designs. It is designed for samples where
two primary sampling units (PSUs) within each stratum are selected with replacement. With BHR, choosing one PSU
within each stratum generates a half-sample. A number of haf-samples are generated by alternating which PSU, within
stratum, go into the half-samples. The BHR variance is the smple variance of the half-sample estimates. Through a
balancing process of the half-samples, the BHR variance estimate, for linear estimates, equals the direct sample variance

estimate.

BHR can be adapted to designs where more than two PSUs are selected in a stratum by consecutively pairing selected
PSUs, after placing them in the original order of selection; and assuming each pair is a stratum for variance estimation
(variance stratum). If without-replacement sampling is used then a finite population adjustment can be applied. See

Wolter (1985, pp. 110-152) for a more complete description of BHR.

In order to use BHR with systematic PPS sampling, it must be assumed that a PPS selection can be approximated by the
deep dratification induced by the pairing described above. This assumption is reasonable, considering that the first sort
variable, ignoring the lack of independence between breaks in the variable, can be considered an implicit stratification.
However, BHR also assumes that the variance estimate is proportional to the inverse of the sample size. In section 2.0, it

will be demongtrated, through a simulation study, that systematic sampling variances are not necessarily inversely



proportional to the sample size. Two possible reasons for this are: 1) there is a finite population adjustment effect and 2)

the variance decreases by some function other than 1/ n,, . From the simulation study, the anount of deviation from the

1/ N,, model! is afunction of the response variable, as well as, the sample size. Hence, it is unlikely that the error can be

corrected using asimple finite population correction. Therefore, BHR is not expected to perform well in this situation.

One methodology that does not necessarily assume the variance is inversely proportiona to the sample size is the

bootstrap (Efron, 1982). Given an estimate C:)(Xl, Xy ey X)), with X, X, ..., X, i.i.d. and distributed according
to a distribution functionF (X;), the bootstrap variance estimate for Ois based on the observation that
V(é) = Gz(C:), n, F) (i.e, the variance of Ois afunction of ©, the sample size N, and F ). Given @ and N,

V(é) = 0?(F) . By analogy, the bootstrap variance, VD(C:)) , equals Gz(lf) ,where F isthe empirical probability
~ B —
diribution of X. If g*([Jis unknown then V (®)can be estimated byl/ BZ (©7-0%?, for
1=
©/,i =1toB. C:),D is computed like © is computed, except X, X3y, X isused instead of X, X,,..., X,

with the XJ-D'S being independent realizations frohcﬁ(x). This process is repeated B times to obtain B (:)iD’s.

Xlu, XE,..., XnD is called a bootstrap sample with a bootstrap sample BiZef .

The bootstrap procedure can be applied to stratified simple random sampling by applying the above bootstrap procedure

L
within each sampling stratum. In this cad&,(X) equals Zl/ n.[(n, —1)/n,]s’, S being the usual stratum

population variance. Comparing this to the usual variance estimator, this methodology has two problems: 1) the finite

population adjustment is missing and 2) there is a scaling biag{aym1) / n, ] . If the sample rates are high then the

missing finite population correction adjustment can be significann, is small, which is quite common in finite

population sampling, thef(n,, —1)/n, ] can be large. With the basic BHR sample design, whgegjuals 2, the bias

is -50%. Many adjustments have been suggested to correct these deficiencies.



In the BHR type sample design, where N, equals 2 for all hand the estimate of interest is linear, setting nE =1

corrects for the [(N, —1)/n,] bias. Since BHR type designs are with-replacement designs, there is no finite

population adjustment. The bootstrap variance estimator, therefore, becomes unbiased and consistent (see Efron 1982).
This bootstrap variance estimator is similar to the BHR variance estimator. The difference is that PSU’s selected for the
BHR replicates are specified to produce the exact sample variance estimate, while PSUs are randomly selected for the

bootstrap replicates and may not equal the exact sample variance.

When N, is greater than 2, other more complicated adjustments have been proposed. The simplest of these is to, adjust
N, to eliminate the finite population correction dfeh, —1)/n, ] bias problems (see McCarthy and Snowden 1985).
However, nE is not unique. Rao and Wu (1988) propose a rescaling bootstrap, which dete’nﬁmmematch the third

order moments betwee® — EQ and O — EQ after rescaling v D(éD) to be unbiased for any N, Sitter (1992a)

proposed a bootstrap designed for the case where PSUs are selected without replacement. In this bootstrap,

XlD, XZD,..., XnDD are generated from a series of without replacement samples from X, X,,..., X,,. By selecting
h

XlD , X ZD yeees XnDD without replacement, the original sample design is followed more closdly. All these methodologies
h

directly select XlD, XZD,..., XnDD from the origina X, X,,..., X,,and adjust nE to correct for any biases and
h

inconsistenciesintroduced in the bootstrap process.

To further mimic the actual sample design (see Gross 1980; Chao and Lo 1985), a bootstrap-frame can be generated to
select the bootstrap samples. If N, =K, n, (N, being number of PSUs in the frame for stratum h), the bootstrap-
frame is generated by replicating each of the N, sampled PSUs K, times. Bootstrap samples are then selected using the

original sampling methodology (i.e., smple random sampling without replacement). The bootstrap variance estimates

based on these bootstrap samples no longer have a finite population correction bias, but have a scaling bias term
k. (n, =1) /(k, N, —1) (see Shao and Tu 1995, p. 250). By adjusting K, and N,/ according to Sitter (1992b), this bias

can be eliminated.



All the bootstrap procedures described above assume smple random sampling (with or without replacement) within
each stratum. Sitter (1992b) proposed a bootstrap variance estimator for the Rao-Hartley-Cochran sampling scheme
(Cochran 1977, pp. 266-267). This is a ‘PPS type’ sampling scheme because it is similar to a PPS systematic selection

where the stratum frame is placed in a random order before sample selection. The Rao-Hartley-Cochran sampling
scheme independently selects one PSU, within eath) @roups, proportional to some measure of size. The groups are
generated by randomly assigning a specified number of PSUs into eachpfdneups. Since the sum of the measures

of size within a group are not equal the procedure is not strictly PPS either. The bootstrap methodology is similar to the

bootstrap-frame procedures described above. First, a bootstrap frame is generate‘ﬁ. islekipsen to eliminate any
biases. The bootstrap-PSUs are then randomly placed into m’ﬁegccﬁups. Next, one bootstrap-PSU is independently

selected within each of the,? groups, generating a bootstrap sample. Before selecting each bootstrap sample, the

bootstrap frame is re-randomized. A number of bootstrap samples are generated, as well as the appropriate bootstrap
estimate. The Monte Carlo variance estimator of the bootstrap estimates is an estimate of the bootstrap variance

estimator.

The bootstrap procedures described above assume the variance is inversely propon'}p(riml.;tcb‘lﬁ and /ork,, are

chosen knowing exactly how the true variance is related, tp If the true variance has a known relationshipnip,

different than proportional td./ n, ., then nE, most likely, can be adjusted to compensated for the biases in the
bootstrap variance. If the relationshipuisknown, as is the case with systematic sampling (PPS or equal probability),
then a simulation study can be done to computa,%mat is approximately unbiased. This is the approach used in this
paper to produce a bootstrap variance estimate for stratified PPS systematic sampling. A bootstrap-frame will be used to

reduce any bias due to sampling without replacem'a;?]mill be computed by means of a simulation study, comparing

the bootstrap variance for a specifinﬁwith an estimate of the true variance, to reduce any additional biases. A super-



population model will be introduced to determine how to randomize the bootstrap-frame before selecting the bootstrap

samples. Given the super-population model, the bootstrap variance estimator will be shown to be consistent.



2.0 Usingthe BHR Model with Systematic Sampling

The BHR model assumes systematic sampling can be approximated by a deep dratification introduced by pairing
consecutive sampling PSUs. For this to work, the stratum variances must be proportional to 1/ n,,, since BHR makes
this assumption. (When al BHR assumptions are true, this follows from Vg z(X) =V ((X;+X,)/2) =

1/ 2V (X,) , where subscript 1 and 2 represents the estimate based on the first and second PSUs respectively selected

in each stratum.) If thisassumption is not true then the BHR modd is unlikely to produce accurate results. There are two
reasons for systematic sampling to violate this assumption. The first reason deals with any implicit finite population

correction in the variance to reflect sampling without replacement. If the sampling rates are high, this could be a
significant contributor to the violation of the 1/ n, assumption. The second reason is the correlation between PSUs
within a systematic sample. As N, increase or decreases, these correlations may change dramatically because of the

origina sort ordering. Unlike the finite population adjustment, this effect can be noticeabl e even when the sampling rates

aresmall.

To investigate the 1/ N, assumption, a simulation study is done, using the National Center for Education Statistics
(NCES) elementary/secondary private school frame. Four thousand systematic samples are selected with sample sizes of
PN, , where p; =1,0.75,0.5and 0.25. By computing the simple variance of the 4,000 simulation estimate, an
estimate of the true variance is computed. This is done for estimates of total students, teachers and schools. If the

variance is proportiond to 1/ n, , then the ratio \7(Xlk) P, /\7(X,j )P; —1 should be close to 0; where | represents
the estimate type (total students, teachers or schools) and K, | represents the sample size ( n,,.75n,,.5n, or.2sn,).
When the ratio is less than 0, the systematic sample variance decreases faster than the 1/ N, assumption would imply;

and when it is greater than 0, the systematic sample variance decreases dower than the 1/ N, assumption would imply.
A negative ratio means that BHR should overestimate the variance, while a positive ratio means that BHR should
underestimate the variance. This relationship is not necesserily true, since Y (X |k ) includes an unknown implicit finite

population correction whose impact on the variance as the sample changes is unknown.



The results in table 1 demongtrate that sometimes the ratio is close to 0. Other times, it is a great deal different than O.
The systematic sampling variance does not necessarily decrease faster than the 1/ N, assumption would imply;

sometimes its decrease is dower. This is an indication that BHR will not necessarily produce an overestimate of the
variance, which is a common assumption among sampling statisticians. When there is a large difference from 0, the

magnitude is dependent on the variable. This seems to imply, since the sampling rates are not high, (especialy with the
.5/.25 comparison), that the violation of the 1/ N, assumption is due to the initial sort ordering (i.e., the within sample

correlation).

It should be noted that the table 1 results exaggerate the true impact of the 1/n, assumption. Using the

1/ N, assumption, the ratio, used in the table, adjusts the variance with the smaller sample size to approximate the

variance with the larger sample size. This approximation uses the smaller sample estimate’s unknpepuiaiten

correction. Since the true finite population correction is likely larger than the one used in the approximation, the absolute

value of the true impact of tH n, assumption should be expected to be smaller than what table 1 indicates.

The important conclusion from this example is that variance estimates, based on designs using systematic sampling, will
not necessarily be proportional 1d N, , as N, increases or decreases. When this occurs, an important BHR assumption

is violated, and the BHR variance estimator should not be expected to perform well when the magnitude of the violation

is large.

The statements concerning the proportionality of the variance estimate are qualified Wijin@gases or decreases’.
The importance of this qualification can be seen with equal probability systematic sampling. Here, the variance can be

expressed proportional td/n, (e.g., V(V,) =[(N, —n,)/ N, ][S% /n,][1+(n, -1 p,.]. see (Cochran
1977, p. 209). IfS\f,St and g, are constant for an arbitrafy, thenV()_/h) would be approximately proportional to

1/ N, , as N, increases or decreases. However, beg and g, are within systematic sample population estimates.



This implies that as N, changes, the systematic samples change; hence szvst and 0,4 @so change by some unknown
function of N, . Therefore, even though V () is proportiona to1/ n, for fixed N, , as N, increases or decreases, the

variance may not be proportional or even closely proportional to 1/ N, . In section 3.5, asimilar result will be presented

for unegual probability systematic sampling.

In terms of BHR where Vg z(X) =1/ 2V(X,), theSZ,and 4 used in V(X,) may be different than the
Sl and O, from V(X). So, Vgr(X) may over or under estimate the true variance (V (X)) based on the
relationship between thetwo sets of S>, and 0, -

Table 1.-Measurement of degree the true systematic sampling variance is proportional id n,, with respect
to different sample size

Stratum n, /N, Number of Teachers Number of Students Number of Schools
(h) (%) R100/50° | R50/252 | R75/25° | R100/502 | R60/257 | R75/25° | R100/507 | R50/25% | R75/257
(%) (%) (%) (%) (%) (%) (%) (%) (%)
01911 2.0 -31.2 195 55.2 14.1 -13.5 0.3 -28.0 -8.5 100.8
01912 2.8 -27.0 24.5 8.2 -2.5 6.6 6.0 -14.3 12.5 22.3
01913 6.1 -14.3 -11.9 3.8 20.9 19.2 -3.6 -3.0 3.2 10.2
01914 34 -23.8 -26.6 2.5 -5.3 8.8 2.8 -19.3 -3.7 -1.4
01921 19.6 235 25.3 18.0 56.5 1419 | 1101 19.6 34.7 10.8
01922 25.7 -32.7 14.9 132.1 -34.0 185 15.2 -16.4 354 27.1
01923 13.7 -4.3 -51.7 -31.2 6.0 12.0 175.5 -8.4 10.1 -10.1
01924 12.2 -46.3 38.2 -45.2 -37.6 -26.5 -7.9 -37.6 28.9 -13.9
01931 4.5 23.7 -7.5 -21.3 18.0 -4.5 -17.7 4.6 -6.3 -11.0
01932 4.9 2.4 11 -29.6 -25.8 4.0 -37.5 3.9 -94 -0.9
01933 6.2 18.5 43.5 51.7 -21.4 -24.0 -52.0 14.4 47.9 100.6
01934 4.3 -20.4 -9.6 -34.4 -26.3 -16.9 -18.9 -7.0 1.5 -3.8

! Negative numbers represent how much more efficient the variances are than the 1/ N, assumption.
Positive numbers represent how much less efficient the variances are than the 1/ N, assumption.
2 Ra/bisthe comparison for a% of original sample sizeto b % of original sample size.
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3.0 Bootstrap Variance M odel

To address the situation when the systematic variance in not proportional to 1/ N, , a bootstrap variance estimator is

proposed in this paper, which is less dependent on the 1/ N, assumption than the BHR estimator. This section first

describes the necessary super-population model; next, a consistency theorem for the bootstrap estimator is presented; by
example, the super-population model, used in the proposed bootstrap procedure, is demonstrated; next, the mechanics of
the bootstrap procedure is presented; and finally, the consistency of the bootstrap procedure is established. We begin by

describing the super-population model.

3.1 The General Super-Population M odel

Ch
Let S, , the i"™ possible sample from stratum h, be a systematic PPS sample such that Sh = U S » Where the
c=1

Sy, ’s are a partitioning of the samp8, and C,, is the number of partitions within stratum

Each sampled PSPLIs,, is assigned a known weight\(; ) based on the selection probability:

w; =T, /(n.e;).
Ny

whereT, = Zehj : 1)
]:

e, is the measure of size for PSJin stratumh, 2

N, is the number of sampled PSUs in stratim

and N, is the number of PSUs in stratum



1
Let p, =n,/n, ©)]
Wheren:Znh.

We will assumethat the p,,'s are constant aB increases.

For a random variableX ; evaluated for each PSJ, assume the joint distribution of; = (T, /(p,&;)) X

Ninc

givens,, is |_| Fie(Y;), where F (Y;) is a distribution function, andh,,. is the number of sampled PSUs in
j=

partition Cwithin stratumh .

Assume the distribution o " is independent ol," ,c # C', given s,,, whereY," = Yy Yo )" ON S

and Y, = Yoo Yy ) ONSye

Ch

The joint distribution ofY, = LJYihc ,givens,, , is I_! (F)™ .
clisiy c=

The distribution of Y, given S,, can be summarized in the following way: Within a partitionSpf the YJ- 's are

ii.d. TheY;'s s, andtheY;’s Us., C# C, are independent, but not identically distributed.

Theorem 1

Given the above assumptions and definitions, the bootstrap variance estimaXor:oZ ;Whjxj given the
]

super-population model is consistent, as N — o, provided Ifhc(y) - F.(y) ad IUShc - Uy, 88N - .

The proof is provided in the appendix.
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This result can be generalized by noting that implementing the bootstrap methodol ogy does not require knowledge of
the conditional distributions, F, .. The only thing required is the knowledge that the PSUs within S, are i.i.d. and
PSUs between S, and S, C# C', areindependent. Thisimplies PSUs within S, must be randomized together

as agroup.
The following theorem states this generalization.

Theorem 2
The required assumptions are:

Cin
1) asystematic sample (S;,) hasaknown partition (i.e., S;, = Us'mc );

c=1

2) X-= Z ;Whjxj :1/nZ ; y, isthe estimate of interest;
I J

3) as N increases the sample alocation between stratum remains constant (i.e., the p,,’'s are constant a$
increases);

4) for PSUs inS,, the Y, s are conditionally i.i.d. giverg,, and are generated from an otherwise unspecified

distribution functionF,.(y) 0, ,. [,, being defined in the appendix abdy;) = 4/,,. ;
and

5) Y is conditionally independent of " ,c # C', givens, .
It then follows that the bootstrap variance estimator)%fgiven S, generated from the bootstrap estimates

X2 =1/ nZ;y?, where the y;’s are generated fromF, (), is consistent, a N — oo, provided
]

Ifhc(y) - F.(y) and :uShc - Uy @8N - 00, :UShc is the bootstrap expectation of Y within a partition.
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3.2 Bootstrap Model Example
Cp
In practice, the stetistician never knows the required partitioning (S, = U S )- However, the statistician usually
c=1
orders the frame before sample selection. With this ordering, the statistician is implicitly assuming that nearby PSUs
are similar, at least in terms of the most important response variables. This implicit assumption can be used to
develop a partitioning that approximately meets the required assumptions. This approach is similar to the BHR

approach, so that the starting point of the bootstrap and the BHR are the same. Any differences in results reflect the

divergence of assumptions at this point.

An example is provided below. However, it is first necessary to redefine the meaning of the term sampling interval.
In the introduction, the sampling interval was the total measure of size within a sampling group. From now on, a
sampling interval will refer to the PSUs within a sampling group. Consecutive sampling intervals are consecutive

sampling groups.

Example
For afixed even numbered sample size (N, ), the elements of the partition (S, ) can be determined by consecutively
pairing sampling intervals, after the frame has been placed in its original sort ordering. All samples have the same

partitioning (i.e., the partitioning is only a function of stratum, --S,,, C =1to C, ) and each S, (Sy,) has exactly
two PSUs. The margina distribution of Y“is (F,.)?. Ifyis distributed as n(,,0,) with distribution

function® , . () then the distribution of Y is (P, . (y))?. In terms of consistency, it is assumed that the

partitioning remains fixed as the sample size increases and more PSUs are selected within a partition.

This “type” of partitioning is used in the bootstrap procedures proposed in this paper. Implementing the partitioning
in the bootstrap processes is similar to the BHR model, in that, for both methodologies, all the replicate variability is
introduced through the variability within consecutive pairs of selected PSUs. The BHR replicates reflect variability

by alternating PSUs within pairs in and out of the replicates, while the bootstrap replicates reflect variability by
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randomizing bootstrap-PSUs generated from consecutively paired PSUs (see section 3.3 for a description of the
bootstrap-PSU process). The bias in the bootstrap procedure gets smaller as the number of PSUs per partition (S, )
gets larger (see theorem 2). Since the proposed partitioning has only two PSUs per partition, the bias may be large;

hence, setting the bootstrap sample size, nE, equal to N, should underestimates the bootstrap variance (see the
bootstrap discussion in the introduction). Using nE =n, / 2, asin BHR, may have less bias. The bootstrap, unlike
BHR, does not haveto use N, =N, /2. Any N, between 1 and N, can be used and may have less bias than either

N, /2 or n, . Inthis sense, the bootstrap model is more flexible than the BHR model.

The actua bootstrap sample size must be computed through a series of trial and error simulations, comparing and
estimate of the true variance with the bootstrap variance for a specific bootstrap sample size. The bootstrap sample

size that minimizes the bias in the bootstrap variance is used in the final implementation. The trial and error process

is necessary because there is no direct formula that expresses the systematic variance as a function of N, , as n,

increase or decreases, such as being proportional to 1/ n,.

Determining nE through a simulation provides a robust variance estimate because V D()2 h) , by construction, will
be amost unbiased, even if the model assumptions are false. The disadvantage of the smulation isthat it can only be
implemented with frame variables. However, if nE is relatively flat for non-frame variables, the bootstrap replicate

weights should be applicable for those variables, too.

An additional observation about this partitioning is:

If the partitioning methodology described above correctly models the distribution of X ; the n,’s are even and
increase by multiples o€, then the I% (X : |S L 'S) = K, aconstant; where IZE refers to the expectation

with respect to the super-population model. Therefore,

V()Zi) = IlE\é()zi|Sh'S) +\{ IZE()2i|Sh'S) = IlE\é()zi|Sh’S) , where 1 refers to the selection of the S,’S. In this
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situation, since the bootstrap variance estimator is consistent for V (X, |Sh 'S) , the bootstrap variance is consistent to
2

an estimator that is unbiased for the unconditional variance.

3.3 Bootstrap Implementation

The object of this section is to produce a set of bootstrap replicate weights, similar to BHR or Jackknife replicate
weights. To do this, one must make an important distinction between finite population sampling and i.i.d. sampling.

With i.i.d. sampling the variable of interest, X , is consider random. Therefore, it's logical to repeat the bootstrap

sampling independently for every random variable. In finite population sampling, the response vaiabie,

considered known for all PSUs in the frame. What is random is the sample selection %}rjahm'ach specifies which

PSUs are in the sample (i.éj =1 means PSUj is in sample, WhiIeSj =0 means PSUj is not in sample). Since

there is only one random variable, only one set of bootstrap samples need be generated. This can be seen in Sitter's Rao-
Hartley-Cochran bootstrap variance estimator. In it, the bootstrap sampling is done independent of the variable of
interest. Therefore, once the bootstrap samples are selected, they are appropriate for any variable of interest. Likewise,
for random sampling schemes described in the introduction. A PSU can be selected in the bootstrap selection process
instead of a response variable without changing the procedure. Once selected, the bootstrap samples are appropriate for
any response variable. Therefore, one set of selections can be used for all response variables. This does assume that the

bootstrap sample size is not a function of the response variable.

Therefore, given a bootstrap sample, an appropriate bootstrap replicate weight fpfd@%dy response variablX
is the sum of the bootstrap weights from selected bootstrap-PSUs, which have been generated fianfF&3be

bootstrap procedure proposed here, it may be very difficult and time consuming to produce a set of bootstrap replicated
weights, but that process only has to be done once. Given availability of high-speed computers, their cheap run times,
and the usual long time period from sample selection and the production of final weights, producing a single set of

bootstrap replicate weights is certainly practical.
One potential difficulty with a single set of replicate weights for the proposed procedure is the process of ﬂﬁoosing

to be more unbiased. With systematic sampling, this process is likely dependent on the response variable. Hence, each
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variable may have a dightly different set of replicate weights. It is assumed here that one set of replicate weights that

works well for the frame variables will also work well for other correlated variables.

Since IfhC () is based on only 2 PSUs, it is not likely to be closeto F,_ () and therefore, V "(®) may not be close

to V(©). Hence, the bootstrap variance estimator requires the computation of a bootstrap sample size, nE, to make
the variance estimator more unbiased. Since there is no exact expression that relates the true systematic sampling
variance withn,, as N, increases or decreases, determining an appropriate nE will be accomplished by a

simulation study. To perform the ssimulation study frame variables are used, so estimates can be computed for any
selected sample. The statistician always has three estimates available for this purpose. One is the measure of size or
some function of the measure of size. The second is the estimate of the total number of PSUs (sum of the sample
weights). The third is the average measure of size per PSU or the average per PSU of some function of the measure
of size. If the measure of size is used in the simulation, it will be necessary to use a different year’'s data to produce

estimates; otherwise, the variances will be zero.

To determine the appropriatBE’s, the simulations must first be applied to individual stratum estim@lgs.

Therefore, the simulation process for estimating the bootstrap vari‘dr?c(@h) for an estimator®, , works as

follows:

3.3.1 Bootstrap Procedures

1. Select a sample§)) from the original frame, using the methodology of the original sample design.
2. For the initial bootstrap sample size valu@ﬁ,, use eithern,, /2 or n,. n, / 2 would be appropriate if it is

believed that the BHR deep stratification model is appropriaté,, Ifis large then setting"lE =n, may be

appropriate, if one believes that the deep stratification model is an oversimplification. After the initial simulation,
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nE will likely reguire adjustment for at least some of the strata. If such isthe case, it will be required to repeat the

simulation with the new N’s.

Generate a bootstrap frame based on the selected sample. The idea behind the bootstrap frame is to use the sample
weights (\NJ- ) from the selected PSUSg () in S to estimate the PSU frame distribution. The bootstrap frame is
generated in the following manner:

For each selected PS{J, W; bootstrap PSUslyj ) are generated by replicating tjd" PSuU W, times. If W,

has a noninteger component then a full bootstrap-PSU is generated with a reduced selection probahji?‘y. The

bootstrap-PSU has the following measure of sz (:

m, =1y 47w, (4)
where:

(1, if bj isaninteger component of w;

O
ly = Epi ,if bj isanoninteger component of w; (5)

0  C, being the noninteger component

w; :isthefull - ssmpleweight for PSU |

Randomize the bootstrap frame according to super-population model specification. This is accomplished by placing
the bj bootstrap-PSUs generated from PBWiithin stratumh and sampleS, in their original order of selection.

Next, bootstrap-PSUs generated from the first PSU are paired with the next set of bootstrap-PSUs generated from
the second PSU. The third set of bootstrap-PSUs is paired with the fourth set. This process continues until all

bootstrap-PSUs are paired. If there are an odd number of PSUs then the last set of groupings of bootstrap-PSUs

contains the bootstrap-PSUs generated from the last three PSUs in $trafiinis is repeated for every stratum in
S . Now, the bootstrap-PSUs are randomized within their respective pair.
Select B bootstrap samples from the bootstrap frame, re-randomizing the bootstrap frame before each selection.

The bootstrap frame, bootstrap frame ordering, measure ofmig;e),(and bootstrap sample sizBE() have been
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specified. Using these quantities select the bootstrap samples using the same procedures used to select the original
systematic PPS sample. The one exception to this is that a bootstrap-PSU generated from noncertainy PSUs that
become certainty in the bootstrap selection should not be eliminated from the selection process and taken in sample
with probability 1. Their selection probability should remain unchanged and if the bootstrap-PSU is selected

multiple times that should be reflected in the bootstrap weight (see 6 below).

6. Compute bootstrap estimates Oﬁ)h for each of the B bootstrap samples in an analogous manner as is done to
compute the full sample estimate ©,;, from S, . Thisis accomplished by computing a bootstrap weight, WJ-D, and
then computing @, the sameway ©,, is computed, except using WjD instead of W; .

The bootstrap-PSU weight, WJ-D, is

0— p
Wi =y wy
biOS?

SjB - istheset of all bj generated from j that areselectedin the B™ bootstrap sample.
and

th =1, IMy; / p,
where:

|, : isaspreviously defined

M, : isthe number of times the bj ™ bootstrap- PSU is selected, (6)

Py, : isthe bootstrap sefection probability for the bj ™ bootstrap-PSU.

Py :rnojlsh'

where:
m,; :ispreviously defined

S,: moj/nE.

bjUs;,

7. Computethe simple variance of the @, from b =1t0 B, asthe Monte Carlo estimate of V (@, ) from S .
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11.

12,
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B B
vie,)=1/(B —1);(9?bh -0.))?, where @] =1/ Bg O

Repeat steps 1-7, for alarge number of samples, S, say T times.
Compute the smple variance of ©,, from i =1to T, Vv (©,,), as ameasure of the true variance; and compute

the average bootstrap variance V (@, ) , averaged over the T, V(O ) estimates.

~ T - - T
V() =1(T —1)Z(G>ih -0,)% where®, :1/TZG>ih .

V%an:UTiV%an.

Compare V "(9,) with \7(G)h) and adjut N to reduce the bias between V "(©,)and \7(G)h) If
V'Y(©, )is smaler than V(©, )then N should be reduced. If V %(®, )is larger thanV(©,) then n°
should be increased. Since V "(©,,) and \7(G)h) may not be proportional to 1/ 1,’, it may be difficult to predict
how much nE should be increased or decreased. If that is the case then trial and error may be necessary.

Repeat steps 1-10, until the bias between V (0, ) and \7(@h) has been reduced to a satisfactory level.

Using the nE from step 11, repeat steps 3-6 for the actual collected sample, generating a set of bootstrap
replicate weights, Wthhat can be used to compute variances of other, more complex statistics that are not

necessarily computed within h.

3.4 Consigtency of the Proposed Bootstrap Estimator

To apply theorem 1or 2 for the consistency of the bootstrap estimator, it must be established that IfhC (y) - F.(y)

O
and :Uth - ,uth,asn—>00.

To do this, observe that for an arbitrary domain D :

E*E Wy X, EZ Iy Xy = ;Wj X ,since M ; has expectation py; .
by b J
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where:
E. isexpectation over the bootstrap samples,
X, X ; isan arbitrary response variable defined for the bootstrap-PSUs and PSUs, respectively.

And

Xy = 3 WX =1 S Y =V 0 Ef(R5) = E.(Y)
b b

where:

ijDx =(I bi M bjThD) I( pErnoj )XS
ThD =)y my
by
Py =Ny /n”
l;» My and m, aredefinedin (5), (4) and (6), respectively from section 3.3.1step 3or step 6.

If D, is the domain defined as the observations in a stratum partition, S, then
v O — Oy — —
ED(YDlx) = ED(b Wij)ij) = ; w; X —1/n; Yix = Hpey s8N — 0.
)LDy JUD, JUDy

Where:

ij = (T, [( P&y ))xj
T,, p, ande; aredefinedin (1), (3) and (2), respectively from section 3.1.

[aif y, <
Definefor each in S, ,chh(yo) = otr{érwife'
if y. <
and for each bj in S, , Zchh(yO) = g)otr)grwi:;

then
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Fre (Vo) =@ Y WHEL(Y, e () =W S WDEL(Y Wi Zyen(Yo))
bjUsien bjUsich bjUD,

=@ Y WiZigy (Yo ) ) WiZicn (Yo) =(0/ Y Yz )AINDY Yz ()
1;1 i = jech 1;1 j=jeh\Jo 1;1 1Zicn (Ymax) 1;1 1Zjen (Yo)

=@/ _;szjmwmax))(.;Yizjch(y())) ~ Fie(Yo), 88Ny — o
JUDy JUDy

where: Y, ., isthemaximumvalue of the Y ’sin S, .

9 converging to the population total inD, , and

The convergence above follows from;sz_h(y
) jeh {Ym
JUD;

;Yizjch(yo) converging to population total wity < Yy, in D, .

JUDy

3.5 TheVariance of )th vV D()th))fromthe Bootstrap Frame

In this section, an approximate expression for VD()ZhD) is derived to help explain: 1) the type of finite population

implied by the proposed bootstrap variance estimator; and 2) how the original sample size affects the variance estimator.

To do this, the following assumptions are made: 1) al weights are whole integers; 2) within a stratum partition the
weights are equa and 3) nE =n,,. Given these assumptions, the proposed bootstrap is closely related to the Rao,
Hartley Cochran sampling method (Cochran 1977, pp. 266-267). The Rao, Hartley, Cochran sampling method randomly
places the frame PSUs into N, groups. One PSU is independently selected within each group proportional to a measure

of size Z; . In the bootstrap procedures described above, within each partition, referenced by g, bootstrap-PSUs are

randomly placed into 2 groups, referenced by ng. Given the above assumptions, the bootstrap procedures can be

viewed as similar to as the Rao, Hartley, Cochran procedure, except that the sampling is done systematically instead of

independently. By additionally assuming there are enough bootstrap-PSUs in g, so that the correlation of PSUs within

gis small enough to be assumed equal to zero; and that PSUs in different g's have correlationg, .., it becomes

possible to derive an expression ¥r’(X,) . The n, in P, gy TEPEsENts the fact that the correlations are average

(across all possible orderings) within sample correlations; as such, they will change based on the response variable, the

origina ordering and the original samplesize, N, .
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VEXD) =3 S cov(X X ),
g9 g
where g and g’ represent the original frame partitioning within h,
X g and X, aretheestimateswithin g and g', respectively
=Y var(X)) + cov’(X ., X)),
S Va5 oV X)X

g#g’

= Zvarm(xg) + zz pnhgg,\/varD(XgD)varD(xg)

g#g

= 3 {Tng AN (NG -D]5 NI(NY “DIV(X )+

S wig Y Pogy \/[”Sgg NCONY =D /(NG (NG =)V, (X Ing lgg,NF(NE ~D/(Ng(Ng ~D)V, (X))

(7)

D . . .
wleren, is thebootstrasamplesizein g,

NgD is thenumberof bootstrap PSUsn g,

|th

N,”is thenumberof bootstrap PSUsin the
VXD =US 7, (5 72, - XY,

jLg

bootstragamplingnterval,

z, isthem, / 5 m, =1/NJ,
g

by
m, is themeasuref sizefor unitbj,
Xg = Z X5 =X,
b

JLg

The first term in (7) is the variance of the Rao, Hartley, Cochran estimator. If the Prygg 'S equal zero then the
systematic bootstrap variance is the Rao, Hartley, Cochran estimator. SiN;%’smre equal (i.el,\l,D = N; / ng)

then the[ngD /(NgD(NgD —1))]; N,’(N,” —1) term above equalk— (ngD -1 /(NgD —1), a close approximation to
g

the simple random sample finite population correction. Therefore, the proposed bootstrap variance estimator includes a

finite population correction that reflects the extra variance reduction due to sampling without replacement. Since the

PSUs in a sampling interval change as the sample sizes and/or ordering change, one would not (pgph)ggctsthm
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the second term, to be condtant, as N, increases or decreases. They are unknown non-congtant functions of n, .

Therefore, one does not expect V D()A( ) to be proportional to 1/, . The 1- (ns -D/( NE —1) finite population
corrections, also makes this unlikely. Since the bootstrap variance is consistent for the original systematic variance, one
would not expect the systematic variance, V()A(h) , to be proportional to 1/ N, , as N, increases or decreases. Thisis
also demonstrated in the simulation of section 2.0. Likewise, since the bootstrap selection is systemeatic, one would not

expect VD()A(hD) to be proportional to 1/, as N, increases or decreasesand N, fixed.
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4.0 Simulation

To demonstrate the advantages of the bootstrap variance estimator, a simulation study is presented comparing BHR

and the bootstrap variance estimator. Two thousand simulations are generated using frame variables. The frame is

the National Center for Education Statistics’ (NCES) Private School Survey (PSS). The PSS is NCES's school frame
for private elementary and secondary schools. Three totals (number of schools, number of teachers, and number of
students), two averages (average students and average teachers per school), and one ratio (ratio of number of
students to number of teachers) are estimated in the simulation. In tables 3-8, estimates are computed by each
stratification variable (affiliation, region and school level), as well as one of the sort variables (Urbanicity). The
School and Staffing Survey (SASS) sample design is used to select the simulation samples. Relative error, relative
mean square error, and coverage rates are generated to evaluate the bootstrap and BHR variance estimator

performance.

4.1 Comparison Statistics

In this section, the statistics used to compare the bootstrap and BHR variances are described.

4.1.1 RelativeError

Rel. Error= (V_(©)"?/V,(©)"? -1) 100

Where:\7e (©) s the average of the variance estima}s(@,) ) from either the bootstrap or BHR procedure,

2,000

(i.e., V,(©)is1/ 2000 ZVe (©,), O,is the s" simulation estimate 0©)

2,000 2,000

V, (@) =1/1999 Z (0, -0)*,0is1/ 2000 Z o,

4.1.2 Relative Mean Square Error
Rel. MSE={[WV, (©) + (V,(0) -V, (©))*]"? IV, (©)} (100,

2,000

Where: VWV, (©) =1/1999 Z (V.(©,)-V,(9))>.
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4.1.3 Coverage Rates

2,000
Coverage Rate of V(@) = %/ 2000 Z RS @100,

1if ©,-196V, (0,)""<0<0, +1.96V, (O,)"?

Where: RS(0©) = _
otherwise

4.2 SASS Sample Design

The sample frame, used in the smulation, is the list frame component of NCES's Private School Survey (PSS). The list
frame is stratified by detailed School Association (19 groups), within Association by Census Region (4 levels), and
within Region by school level (elementary, secondary and combined). The school sample is selected using the
systematic probability proportionate to size sampling procedure, described in the introduction. The measure of size is
sguare root of the number of teachersin the school. Before sample selection, the school frameis ordered by state, school
highest grade, urbanicity, zip code, and school enroliment. To reduce the necessary time to complete 2,000 smulation

only one detailed school association is smulated.

4.3 Determining nE for the Bootstrap Variance

As described in section 3.3, the determination of nE requires a simulation study in itself. For each stratum, a series
of simulations was done for various nE. The nE that produced the best relative error was used in the simulation
presented below. The optimum nE is dependent on the estimate of interest. The optimum nE for estimating numbers
of teachers is usually different than the optimum nE for estimating numbers of students or schools. Likewise, the
optimum nE for estimating averages or ratios can be different than the total optimums. Each different nE imply a
different set of replicate weights. Since we want only one set of replicate weights, a compromise nE is determined
that works reasonably well for all estimates. The results presented below use the compromise set of nE . Table 2

presents the values for N, and nE . Each simulation used in the determination of nE had at least 250 samples.
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Table 2.-Original ( N,) and bootstrap (nE) sample size by stratum

O o O
Stratum n, | n Stratum n, | n Stratum n, | n

01911 14 |12 ]01921 10 |5 01931 48 | 35

01912 16 | 11 | 01922 10 | 8 01932 46 | 33

01913 52 | 28 ] 01923 10 | 10 | 01933 114 | 81

01914 34 | 24 | 01924 10 | 10 J 01934 52 | 40

4.4 BHR Variances

The r™ school half-sample replicate is formed using the usual textbook methodology (Wolter 1985) for establishment
surveys with more than 2 units per stratum. This is described in the introduction. Two BHR variance estimates are
presented. The first (BHR without FPC Adjustment) is the variance estimates described above. This estimate does not
make any type of Finite Population Correction (FPC) adjustments. The second makes a smple FPC adjustment. The

second BHR variance estimate (BHR with FPC Adjustment) adjusts the first variance estimator by 1- B, , where B, is

the average of the selection probabilities for the selected units within stratum h.

4.5 Number of Replicates

An important aspect of this analysis is a comparison of the stability of the two variance estimators. To do this, each
variance estimator will have the same number of replicate estimates. Since producing bootstrap replicate weights is far
more time consuming than producing the BHR replicate weights, it has been decided to use arelatively small number of
replicates. Thirty-two replicates have been used in the BHR variances and thirty have been used in the bootstrap

variances.
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4.6 Results

According to tables 3-8, in terms of extremes, the bootstrap variance estimator is better than either BHR variance

estimator with respect to relative error, relative MSE, or coverage rate. The bootstrap relative errors are large in

absolute value (greater than 20% or less than —20%) 4 times, while the BHR, with and without FPC adjustment,

relative errors are large 17 and 12 times, respectively.

Only 13 of the bootstrap relative MSEs are larger than 50% and only one is greater than 100%. The BHR without
FPC adjustment has 31 relative MSEs larger than 50% and 6 greater than 100%. The FPC adjusted BHR has 26

relative MSEs larger than 50% and 5 larger than 100%.

The bootstrap procedure has only 2 high coverage rates (coverage rate greater than 98%) and 2 low coverage rates
(coverage rate less than 89%). The bootstrap has 1 coverage rate greater than 99%. The BHR without FPC
adjustment has 12 high coverage rates, 1 low coverage rate and 9 larger than 99%. Even with a FPC adjustment, the

BHR has 10 high coverage rates, 2 low coverage rate, and 9 coverage rates greater than 99%.

The difference between the bootstrap and BHR is largest for the Urbanicity estimates. For these estimates the BHR
relative MSE can be almost 4 times larger than the bootstrap relative error (see tables 4 and 7 Urban). One difference
between the Urbanicity and other estimates is the amount of sample size control in the sample design. The Urbanicity
sample size is controlled through the sorting. Urbanicity is the third sort variable, so the control on sample size is
small. The sample size in all other estimates is directly controlled by the stratification. One possible reason for the

big Urbanicity differences is that the bootstrap mimics the sample process better than BHR.

4.7 Conclusion

This paper discussed how BHR can be used to measure the variances from surveys utilizing systematic PPS selection
procedures. Two assumptions are necessary: 1) the extra stratification introduced by the variance stratum is sufficient
to reflect the systematic process and 2) the variance is inversely proportional to the sample size. In table 1, it has
been observed that systematic PPS sampling variances may not be inversely proportional to the sample size. Instead,

a large number of times, they are a great deal more efficient and sometimes they are less efficient then the inverse
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sample size rule would imply. One reason for this is that the clustering induced by systematic sampling changes as
the sample size change, which makes the intercluster correlation an unknown function of the sample size. In this

situation, the variance may not be inversely proportional to the sample size.

To correct this problem, a bootstrap variance estimator has been introduced which does not make the inverse sample
size assumption. Given an appropriate super-population model, the bootstrap procedure produces consistent variance
estimates. It has also been demonstrated that the bootstrap procedure adjusts for without replacement sampling.
Based on the simulation of the SASS survey design (tables 3-8), the bootstrap variance estimator performs better the
BHR with respect to relative error, relative MSE and coverage rates. This is especialy true with the Urbanicity
estimates. This remains true even after a simple finite population adjustment is made to the BHR. One drawback of
the proposed bootstrap procedure is that the determination of an appropriate bootstrap sample size can only be
implemented using frame variables. However, with appropriate frame variables, the bootstrap variances are close to

unbiased, even when the super-population model assumption fails.



Table 3.—% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for students estimates by affiliation,
region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -0.3 | 300 | 932 ] 124 | 441 | 96.1 9.0 353 | 96.1

Northeast | -10.7 | 43.7 | 904 1.9 47.7 94.9 -0.7 454 | 9438

Midwest -19 | 46.0 | 934 112 | 456 | 971 8.1 40.7 | 970

South 157 | 558 | 96.2 | 254 | 664 | 998 | 206 | 55.0 | 99.7

West -20 | 386 | 921 ] 128 | 479 | 94.7 9.9 42.8 | 94.6

Elementary | -12.8 | 380 | 89.9 | -6.3 28.7 | 931 -8.3 296 | 919

Secondary -75 | 487 | 886 ] 57 45.2 94.6 -6.1 349 | 94.2

Combined 133 | 51.2 | 963 ] 260 | 712 | 961 | 219 | 616 | 96.0

Rura 166 | 544 | 971 328 | 8.1 | 973 | 286 | 786 | 971

Suburban 8.0 389 | 949 ] -09 265 | 924 -3.8 260 | 924

Urban 316 | 904 | 982 ] 480 | 132.1 | 100.0 } 43.7 | 119.4 | 100.0

Table 4.—% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for schools estimates by affiliation,
region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -45 | 27.8 | 93.1 | 12.7 40.7 | 97.0 9.7 354 | 97.0

Northeast 4.3 436 | 946 ] 103 | 523 | 949 8.0 49.0 | 94.9

Midwest 42 | 428 | 929 ] 125 | 514 | 983 9.8 469 | 95.7

South -109 | 32.7 | 90.7 ] -6.6 265 | 89.6 ] -103 | 290 | 894

West -24 | 351 | 92.9 7.8 43.7 | 92.2 5.1 40.0 | 92.2

Elementary 13 [ 349|936 161 | 570 | 959 | 140 | 529 | 959

Secondary -29 | 570 ] 905 263 | 1071 | 97.2 | 148 | 81.9 | 959

Combined -6.2 | 295 | 912 -11 282 | 923 ] 4.2 277 | 92.3

Rura 75 36.8 | 957 242 | 712 | 98.7 ] 209 63.8 | 98.7

Suburban 6.5 366 | 950 231 | 675 | 974 ] 199 60.6 | 974

Urban 115 | 432 | 96.1 | 53.7 | 1476 | 975 | 495 | 135.0 | 975




Table 5.—9% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for teachers estimates by affiliation,
region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -6.6 288 | 924 ] -45 25.5 92.3 -7.5 266 | 91.0

Northeast -4.1 345 | 925 ] -86 333 | 944 | -11.0 | 345 | 943

Midwest -6.2 326 | 90.3 ) 155 | 496 | 984 124 | 435 | 971

South -105 | 30.7 | 894 ] -113 | 277 83.7 | -149 | 319 83.5

West 9.6 521 | 96.1 | 164 | 60.7 96.4 13.3 | 54.2 95.1

Elementary 3.9 37.7 | 936 ] 181 63.2 97.1 15.6 58.3 97.1

Secondary | 17.8 | 755 | 954 | 31.0 | 983 | 975 170 | 649 | 93.7

Combined -6.5 20.7 | 919 -7.3 276 | 899 | -10.3 | 29.6 | 89.9

Rura 20.3 605 | 975 295 | 793 | 974 | 254 | 69.0 | 973

Suburban 111 | 417 | 961 ] 458 30.7 | 924 1.6 274 | 924

Urban 49.7 | 139.8 | 99.3 | 81.7 | 244.0 | 100.0 § 76.0 | 222.9 | 100.0

Table 6.—% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for students per school estimates by
affiliation, region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -2.9 283 | 9271 117 41.2 | 974 8.5 35.7 | 96.2

Northeast -2.6 39.7 | 93.0 2.6 42.8 | 93.6 0.1 405 | 924

Midwest 1.6 394 | 940]) 195 | 635 | 96.0] 162 | 564 | 96.0

South 1.6 32.7 | 93.6 94 324 | 96.0] 51 25.8 | 945

West -2.1 379 | 92.8 9.2 39.5 | 96.0 6.4 352 | 95.9

Elementary | -8.7 335 | 910] 43 271 | 945 6.2 275 | 944

Secondary 1.0 53.0 | 922 ] 132 60.7 | 94.8 12 416 | 934

Combined 5.2 36.7 | 95.1] 174 522 | 95.0] 13.6 | 444 | 949

Rura 58 414 | 946 ) 457 | 1312 | 996 | 41.3 | 1182 | 99.6

Suburban | -129 | 357 | 891 ] -83 327 | 921 ] -109 | 339 | 90.8

Urban 103 | 444 | 9591 321 | 917 | 973 | 282 | 816 | 97.2




Table 7.—9% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for teachers per school estimates by
affiliation, region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -5.8 284 | 9241 40 27.3 | 95.9 1.0 246 | 95.8

Northeast 21 42.1 | 93.7 0.6 412 | 909 ] -17 394 | 90.8

Midwest -0.7 377 | 925 182 | 60.7 | 99.7 ] 150 | 540 | 99.7

South -109 | 325 | 894 ] -96 280 | 89411 -132 | 314 | 881

West 5.5 413 | 951 | 121 | 454 | 936 ] 9.2 40.1 | 93.6

Elementary 4.6 387 | 940} 177 572 | 971] 153 524 | 971

Secondary 8.6 542 | 952 294 | 933 | 974 ]| 166 | 63.8 | 93.7

Combined -6.9 299 | 916 ] 4.1 262 | 923 -7.2 271 | 91.0

Rura 11 374 | 932 ) 279 | 836 | 996 | 242 | 746 | 99.6

Suburban | -10.7 | 344 | 89.7 | -29 349 | 918 ] -55 343 | 91.8

Urban 106 | 449 | 955 ] 616 | 1774 | 998 | 56.7 | 161.4 | 99.8

Table 8.—% relative error, % relative mean square error and % coverage rates for the
bootstrap and BHR variance estimator for students/teacher ratio estimates by
affiliation, region, level and urbanicity

Bootstrap BHR without FPC BHR with FPC
Adjustment Adjustment

Rel. Rel. | Cov. Rel. Rel. | Cov. Rel. Rel. Cov.
Estimate Error | MSE | Rate | Error | MSE | Rate | Error | MSE | Rate

Other Affil. | -0.3 319 | 942 ] 123 | 460 | 96.1 9.1 40.6 | 94.7

Northeast -4.3 56.3 | 91.6 9.3 704 | 94.7 6.7 664 | 94.7

Midwest -5.5 67.1 | 91.2 31 439 | 9541 05 416 | 941

South 6.7 452 | 954 ] 32 315 959 ] -08 | 286 | 934

West -1.0 38.3 | 93.9 9.8 46.9 | 97.3 7.1 42.8 | 97.3

Elementary | -2.5 439 | 932 ] 118 | 522 | 99.5 9.5 485 | 995

Secondary | -25.3 | 49.1 | 811 12 3321 941 | -93 | 325 | 914

Combined 9.7 46.2 | 958 | 163 | 53.0 | 959 | 126 | 45.7 | 95.7

Rura 7.0 50.8 | 953 ) 227 | 842 | 999 | 189 | 756 | 99.8

Suburban 11 376 | 935 180 | 616 | 971 ] 148 | 553 | 971

Urban 54 456 | 947 ) 150 | 583 | 938 ]| 116 | 521 | 93.7
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Appendix

In this section, the consistency of the proposed bootstrap estimators is proven.

Theorem

Given the superpopulation model described in section 3.1, the conditional bootstrap variance estimator of

X = Z ;Whjxj , given the model and the sample, is consistent, as N — oo, provided F_(y) — F,.(Yy) and
]

O
Hype = Hypc @8N — .

Before the conditional result is proven, additional terms, definitions and results must be stated.

Definitions

Mallows’ distance

Let

O.. = {aII distributionson DS}
O, = {G 0o, :J’||x||'d(3(x) < oo}
For twodistributionsH and G in [
5.(H,G) =inf (E]x -¥[")"",

their Malow’sdistanceis

r,s?

wherer, . isthecollectionof all possible joint distributionsof the pairs(X,Y) whose marginal
distributionsareH and G, respectively. For random U and V having distributions H U [,
andG OO, , respectively,define p, (U,V) = p, (H,G).

r,s?

Let X,,..., X, be observations from a stochastic mo&land O, = (X,,..., X, P,) be a random variable.

The sampling distribution of ] is given by:

H, (0 =P{0, <xP,}



The bootstrap sampling distribution of L | isgiven by:
Haoor (X) = P*{DE < ><‘|3n}, where If’nis an estimator of P,based on X,,..., X, and P, represents the

probability with respect tdsn. O =0, (X X5) , where{ X',..., X ) is abootstrap sample from Isn.

Define 4y, = ; QenMyen » Where Oy, =Ny, /N5 and pg = py = Z Py My, - The bootstrap mean (u?hh and
Ci

n

] . . 5 . . o _ o _ —
Uy ) are defined in an analogous manner where B, is used instead of F,. Hypn = ;qchﬂ\(ch =Vy,ad
c

:u? :,UE = Z ph,u?hh = Z Ph Y -

Results (all from Bickel and Freedman 1981)

Let U and V berandom vectorsand a be a constant. Then,

p.(au,av) =|ap, (U,V) Al

it EJUJ* <o and EV|F <o, then

[5,0. V) =[5, -EUV -EV)J +|EU - EV|’ A2

Let {Uj} and {\/ j} be two sequences of independent random vectors whose distributions are in [, ( and

EU, =EV, foral j.Then,

m

:Uj'ivi%Si(ﬁz(uwvi))z A3

uy
[P,
=
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In the discussion that follows, we will always assume that the partitioning is known and that the selected sample (S,)

isgiven.

Given the above assumptions, definitions and results, we will investigate the properties of the bootstrap distribution

of the total X = Z;Whjxj (i.e, Hgoor (X), where 07 =/n(X"=X)), as N - oo It will be shown,
1

using Mallow’s distance]@z), that the bootstrap distribution is consistent. It then follows that the bootstrap variance

is consistent (Shao and Tu 1995). The proof closely follows example 3.1 in (Shao and Tu 1995), which was also

used by Bickel and Freedman (1981).

There are many ways of generating a bootstrap sample If?i)rﬁh LetY = UYhD be one such bootstrap, which
also defines a bootstrap for X . The important thing is that Ifhc(y) > F (y) and Uy — My a5 N > 0,

Z]Whj X; can be computed.

Given a method of generating a bootstrap sample, )2 = Z
iV,
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P (Haoor s Hn) = B, (Wn(X "= X),/n(X - )
- = O SO_ o v -
—ng/ﬁgzph(yh yh)g.x/ﬁgzph(yh uyhh)%
s\/Zﬁzlﬁ(phwhﬂ—vh))ﬁ(ph(vh—uyhh))Jz, [by A.3]

,52(H BOOT’Hn)2 < Zﬁz%\/%(nh(yhm_yh))%(nh(yh _,uyhh))g

:%Z@%ﬁ;(yi “3HES 0 —uyhh)% by Al
1 C, n _ 2
SHZ;JZIOZ((yJDhc _yhc)’(yjhc _/'Ithhc)) [by A.3]
= % Z CCZ an:IBZ ((y1Dhc - yhc)!(ylhc - ,uyhc))2 [by eXChangea'bty]
Ch
:%Z CZ ncﬁz ((y:LDhc - yhc)’(ylhc _/'thc))2
Ch
- 1 Z Z ne %2 (y:lic’ ylhc)2 _HEylhc - EDy:lic 25

Z Z Uen % Yine ylhc HEYm: = EYine 25

[by A.2]

2 . -, .
Z Z Uen % ic Fre —‘ MHiey — ,UShc 5 [by definition]
= > > Us0() — o) [by condition of theorem]

This establishes the consistency of both H g7 (X) and the bootstrap variance for X given the partitioning and the
sample S and a redlization of Y, for al hon S . The consistency was established without knowledge of the

distribution function F .
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