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ABSTRACT

This report presents an investigation by ACT of an alternative design for the National Assessment
of Educational Progress (NAEP). The proposed design greatly simplifies the data collection and analysis
procedures needed to produce assessment results. The design has the potential to provide more timely
results by using procedures that are less complex and that are easier to understand than are current
procedures. The design also produces results that can be readily interpreted and replicated by other
psychometricians and assessment agencies. The recommended procedures are intended to make it possible
to describe NAEP more clearly to the assessment and educational communities, to lawmakers, and to the
general public.

A plan is presented for developing individual NAEP forms, where each individual form represents,
as closely as possible, the assessment questions from the domain of knowledge being measured by a
NAEP construct. If necessary to fully represent the content framework, sets of these individual forms
could be administered, in random order, to students within schools. This assessment design would replace
the balanced incomplete block (BIB) design that is currently used. As is shown in this report, the
assessments constructed under the current BIB design do not, at least for the 1996 NAEP Science
Assessment, closely represent the content framework. In fact, we were able to develop only one individual
form from the entire set of test questions that comprise the 1996 NAEP Science booklets. In addition,
the BIB design requires strong statistical assumptions that likely do not hold well in practice. We suggest
enhanced procedures for developing precise content and statistical specifications for individual forms and
procedures for pretesting items. Although our recommended design constrains the test development
process to a greater extent than it is now, our design can lead to assessments that overcome many of the
difficulties and complexities inherent in the current design.

The basic scores that ACT suggests using for producing group assessment results are calculated
by weighting item scores from multiple-choice and constructed-response items, where the weights are

determined, a priori, by content specialists. These weights should relate more closely to the weighting



intended by content specialists than do the current NAEP weights. Scaling, equating, and score
distribution estimation methods are described that rely on less stringent psychometric and statistical
assumptions than do current procedures. These methods have the potential to produce results that are V
more stable and easier to interpret than those from present methods. The procedures we recommend do
not need to incorporate plausible values, complex estimation procedures, or background variables into the
estimation of the reported score distributions.

ACT firmly believes that all important NAEP results should be independently replicated.
Currently, NAEP scaling and distribution estimation procedures incorporate heuristics that are not
described in sufficient detail for independent replication. ACT recommends that this situation be remedied
by usiﬁg much simpler psychometric and statistical methods that are improvements over current
procedures, and by making public all algorithms that are used in the scaling and distribution estimation
process.

In ACT’s design, issues in sampling that include sample size requirements, sample design, and
estimating standard errors are also examined. We also study procedures for reporting score distributions
that reflect group performance on content domains. The feasibility of using such domain scores to
measure trends and to facilitate setting NAEP standards is explored. We investigate the use of multilevel
models as a means for incorporating background variables in domain score estimation, and whether
alternate sampling designs could be implemented for score reporting at the state level.

ACT strongly recommends focusing on the design of the assessments and the data collection
methods, rather than on complex analysis procedures. The core concept of this design, which
derives from ACT’s many years of developing educational assessments, is that assessment design is
the key to useful and stable assessment results.

ACT welcomes feedback from the National Center on Education Statistics (NCES), and would be

pleased to work closely with NCES to refine and expand upon these ideas.



CHAPTER ONE
INTRODUCTION

This project provides ideas for redesigning the National Assessment of Educational Progress
(NAEP) that simplify statistical and psychometric analyses and make the results of NAEP more useful to
policymakers, educators, and the public. The objectives of the project are the following:

(a) To devise a process for test development that leads to tight test content specifications,
statistical specifications, and tests;

(b) To reduce the reliance on strong psychometric assumptions in scaling;
(c) To simplify scaling and equating analyses;
(d) To simplify the sampling procedures used; and

(e) To develop procedures for enhancing score reporting.

ACT welcomes feedback from the National Center for Education Statistics (NCES). ACT would be
pleased to work closely with NCES to refine and expand upon these ideas, and to focus on those ideas

that are most likely to benefit the NAEP redesign effort.

Overview of ACT’s NAEP Redesign Approach

ACT has designed procedures that rely, much more than does the current NAEDP, on rigorous test
development procedures, including well-defined content and statistical specifications and on more
straightforward data collection designs for scaling and sampling. ACT believes that NAEP results can be
produced using less complicated analysis procedures and with less stringent statistical and psychometric
assumptions than those currently used. These less complex procedures could be more readily interpreted
and replicated by qther psychometricians and testing agencies. The use of less complex procedures should
also make it possible to describe NAEP more clearly to the measurement, assessment, and educational

communities.



Currently, there is delay in reporting scores from NAEP. Part of the reason for this delay is the
extensive statistical and scaling analyses that are required before score data are reported. ACT believes
that through careful test design, design of data collection and sampling procedures, and reliance on
straightforward scaling analyses, some very useful results could be reported to NCES within one month
following test scoring. These less complex procedures could also reduce the time needed to review
procedures, and could help avoid the time-consuming delays that can result when problems are
encountered with more complex procedures. Results that require more analysis could then be reported
later.

The procedures that we envision are based on the development of individual NAEP forms, where
each form can be considered to represent, as closely as possible, the domain of knowledge being measured
by a NAEP construct. For content areas that cannot be adequately assesSed by an individual form, sets
of forms would be administered, in random order, to students within schools.

The construction of individual forms requires development of precise content and statistical
specifications. The individual form structure that we propose differs considerably from the balanced
incomplete block (BIB) assessment structure currently used by NAEP. In our demonstration in Chapter
Two with the 1996 NAEP Science Assessment, we found that it was possible to develop only one
individual form from all of the items used in the BIB blocks in the 1996 NAEP Science Assessment. In
addition, we found that the set of items in all of the BIB blocks actually used do not reflect the assessment
content as described in the Science Framework. Considering these shortcomings of present NAEP test
development procedures, the proposed development procedures can be expected to result in assessments
that much more closely represent the assessment content as described by the Frameworks.

In our experience, the development of individual forms will be most successful if the items are
pretested on a reasonably representative sample, prior to construction of final forms. Therefore, we
recommend enhanced procedures for pretesting that facilitate construction of individual forms that meet

the more stringent criteria that we believe are required for NAEP. Although the test development



procedures that we recommend constrain the test development process to a greater extent than it is now,
we believe that our design can overcome many of the shortcomings inherent in the current design.

We also recommend using standard test administration and sampling procedures. Specifically, we
suggest that the individual forms be randomly assigned within schools. If individual forms are developed
and administered in this way, then it should be possible to use standard equating and scaling procedures.
Such procedures can likely be accomplished without the need to incorporate plausible values, complex
estimation procedures, or background variables into the estimation of the score distributions that are
reported.

One of ACT’s concerns with current NAEP administration procedures is that BIB spiraling requires
item blocks to be administered in different physical positions in the test booklets. To the extent that the
position of the item block affects item difficulty, error is introduced into the scaling and linking. The use
of individual forms will result in constant item position, thus e;liminating one potential source of systematic
error in scaling. Eliminating this source of error would be expected to lead to more stable modeling and
more precise measurement

In addition, in the current BIB spiraling, the booklet an examinee is administered consists of a set
of blocks. The content and statistical characteristics of the booklets are not controlled as tightly as they
would be for the individual forms we are recommending. To the extent that psychometric model
assumptions, such as unidimensionality, are violated, systematic error could be expected to affect the
scaling results and, ultimately, the norms that are produced. Because the proposed individual forms are
precisely defined in content and statistical characteristics, the psychometric analyses would be expected
to be less affected by violations of assumptions than would analyses conducted under the BIB spiraling
design.

We investigate psychometric model alternatives to the item-level psychometric modeling currently
used with NAEP. Modeling the assessment data at the form level as we recommend, rather than at the

item level, also can lead to more robust psychometric analyses.



The relative weighting of multiple-choice and constructed-response item scores in the current
NAEDP design is based largely on psychometric considerations that result from application of item response
models. One potential concern with the current procedures is that the relative weights given to multiple-
choice and constructed response items might differ from the weights intended by policymakers and item
format matter specialists. We believe that specifications for weighting should be embedded in the
development of frameworks and specifications. We report on an investigation of procedures that consider
both psychometric and content-matter information in deriving the weights. The main conclusion of this
investigation is that because the psychometric properties are similar for different weightings, the weighting
used that should be the most readily interpretable.

The psychometric procedures used for scaling the current NAEP are extremely complex. These
scaling procedures incorporate complex heuristics that are not described in sufficient detail in technical
documentation for independent psychometricians to replicate NAEP scaling results. In addition, much of
the scaling software, and the associated computer code, used in the NAEP program is proprietary. These
complexities make it impossible for psychometricians elsewhere to fully judge the adequacy of the scaling
that is done or the norms that are estimated. This combination of complexity and the inability of external
researchers to replicate results creates an extremely unhealthy situation for NAEP. Even if all of the
analyses are done flawlessly, lack of independent replicability could lead some individuals to question the
accuracy and usefulness of NAEP results. To help avoid these potential problems, ACT proposes to use
much simpler analyses that can be replicated by external researchers. ACT strongly recommends that all
important NAEP results be independently replicated.

In this report, we also explore alternatives to the current extensive reliance on background
variables in the analyses. One process often used in sampling is to oversample specific target groups (e.g.,
racial/ethnic groups). We explore the extent to which oversampling can be used more than it is presently,
to reduce the reliance on background variables. We also recommend using school as the primary sampling

unit, that schools be selected with equal probability, and that all students within school be tested. We



describe a plan for combining samples from the State and National Assessments. We recommend
procedures that will likely facilitate reporting distributions of scores that represent performance on a
domain, reporting score distributions at the state level, estimating trends, and incorporating background
variables into the domain score analyses using multilevel models. We also recommend how ACT could
further develop these ideas based on our general approach.

We use the current NAEP Science Assessment to demonstrate ACT’s approach. We chose the
NAEP Science Assessment for our demonstration because it contains a mix of multiple choice and
constructed response items, with a large portion being polytomous. Also, ACT has many years of
experience in constructing science tests and considerable expertise in this area. To demonstrate our
approach, we use item parameter estimates and data from the most recent NAEP Science Assessment.

We wish to make it clear that we do not intend to recommend that NAEP scores be reported at
the individual level. Even with the procedures we describe, the individual forms might not support

interpretation of scores from individuals.

Relationship of ACT’s Approach to the Overall NAEP Redesign Effort
ACT’s NAEP Redesign project addresses the following Invitational Priority listed in the
December 13, 1996 Federal Register:

Invitational Priority 4 - Psychometric procedures that maximize test reliability while
minimizing analytic complexity and processing time.

This project also addresses the following two areas presented in the Letter to Prospective Applicants dated

December 20, 1996:

6. Use of innovative psychometric procedures to calibrate, scale, score, link, and
analyze NAEP data.

7. Development of analysis and reporting techniques that provide the public an initial release
of results on a timely and predictable schedule.



ACT’s approach is consistent with and follows from many of the ideas described in the following
three reports:

1. Design/Feasibility Team Report to the National Assessment Governing Board (NAGB)
(Forsyth, Hambleton, Linn, Mislevy, & Yen, 1996);

2. Operational Vision for NAEP - Year 2000 and Beyond (NCES, 1996);
3. The NAGB Policy Statement on Redesigning the National Assessment of Educational
Progress (NAGB, 1996).

To develop this approach, we have combined many of the ideas described in these reports with
our experience in test developinent and analysis. The following statement from NAGB (1996) is one
factor that led us to our approach.

The current National Assessment design is overburdened, inefficient, and redundant. It

is unable to provide the frequent, timely reports on student achievement the American

public needs. The challenge is to supply more information, more quickly, with the funding

available. (p. 2)

Those reports all discuss the concept of marketbaskets. Our ideas are closely related to this
marketbasket concept. Specifically, the concept of an individual form that we define later in this report
is very similar to the concept described by Forsyth et. al (1996): Variation #1: Marketbasket is the Size
of a Typical Assessment Form (pp. 6-28, 6-29). The concept of a super form is very similar to the concept
of Variation 2: Marketbasket Larger than a Typical Assessment Form. The concept we refer to as a
content domain and scores that reflect that domain are closely related to the concept described in Forsyth
et al. (1996) Variation #3: Marketbasket Constitutes Subject Domain. We chose to use our own
terminology in the present approach because of our focus on precise content and statistical specifications
for individual forms and domains. We believe that the general concepts we are discussing are consistent
with the premises described in NAEP (1996). The concepts are also consistent with the objectives stated
in NAGB (1996).

ACT bases its approach on its experience in developing educational achievement tests over the past

38 years. ACT has considerable experience in scaling and equating its own tests, as well as various



certification, licensure, and other tests on contract. One of the hallmarks of ACT’s procedures is the
ability to quickly produce results that are of high quality. For example, each year ACT administers and
equates approximately 8 new forms of the ACT Assessment. The equating process is done without any
delay in score reporting; score reports are mailed to examinees within 3 weeks of test administration.
ACT believes that many of the test development and statistical analysis processes that we use can be
applied to NAEP to allow results to be reported more quickly.

In this project, we present ideas for NAEP redesign in some of the areas that we believe
improvements can be made. ACT is committed to contributing to the NAEP redesign effort, and we offer
to make available our considerable experience and expertise in educational measurement, sampling,
statistical analysis, and reporting. We will work cooperatively with NCES to ensure that our work

contributes significantly to the redesign of NAEP.

Preview

The remaining chapters of this draft report present ACT’s approach in more detail. Chapter Two
presents ACT’s redesigned test development procedures. We demonstrate these procedures using the 1996
NAEP Science Assessment. Chapter Three presents ACT’s redesigned psychometric procedures. We
focus on issues in weighting, scaling, and estimating score distributions. We also provide a conceptual
framework for comparing ACT’s redesigned development and psychometric procedures to present NAEP
procedures. Chapter Four presents ideas for redesigning sampling procedures. In Chapter Five, we
describe and evaluate a procedure for estimating domain scores for group-level data. We describe how
these domain scores can be used to assess trends over time, and discuss how background variables might
be used to make domain score estimation more precise. Chapter Six provides a summary of ACT’s

redesign approach along with conclusions and recommendations.
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CHAPTER TWO
TEST DEVELOPMENT

This chapter evaluates the extent to which parallel forms could be constructed from existing NAEP
item pools. The use of parallel forms that adequately cover the content and that could be completely
administered to individual examinees in the amount of assessment time deemed feasible would lead to
considerable simplifications in the adnﬁnistréﬁon design and analyses as suggested in Chapter One and
as discussed fully in Chapter Three. The work presented here is provided as an illustrative example and
employs the current NAEP eighth grade science assessment pool. The first step in this process consisted
of consolidating the various types of specifications (content, cognitive, themes, and item formats) presented
in the framework into specifications for an individual form. Then, the pool was evaluated for its
capability to provide sufficient numbers of items to meet the various components of the specifications.
Items were then selected and an initial form was constructed. This form represents a single assessment
that can be used to evaluate the NAEP science domain while remaining consistent with framework
recommendations concerning item formats and time restrictions. This form is not intended to represent
one of the forms used in the current NAEP administration design.

The NAEP rationale and framework for the 1996 NAEP Science Assessment was presented in
considerable detail in NAGB (1996). As is described in the present chapter, the NAEP Science Framework
presents a detailed description of the content structure of the NAEP Assessment. In this chapter, we
provide an overview of the framework, and show how the 1996 NAEP science item pool relates to the
Science Framework for the 1996 NAEP. (As it turns out, the content distribution of items in the pool is
inconsistent with the framework in important ways). In our demonstration, we have assumed that the
Science Framework provides the best representation of the content, as described by the subject matter
experts who designed the framework. F;)r this reason, we have attempted to build a single NAEP form
that best represents the framework. Careful attention was paid to both the content and technical

specifications in the construction of this single form. ACT recognized the importance of the content



specifications set forth in the framework and recommended that the content specifications be the first
priority of this project. However, in addition to content specifications, an iterative development process
was followed that attempted to construct a technically sound assessment on which NAEP achievement

levels could be set.

Content Specifications
The Science Framework for the 1996 NAEP identifies four dimensions over which students shall
be assessed. Several domains are identified within each dimension, and the framework provides guidelines
as to how much of the item pool at each grade shall address each domain. The dimensions, domains, and

guidelines for the construction of the item pool‘ are presented in Table 2.1.

Table 2.1 Guidelines for Construction of the NAEP Science Assessment

Percent of
Dimension Domains Testing Time
Content Physical Science (PS) 30
Earth Science (ES) 30
Life Science (LS) 40
100%
Cognitive Scientific Investigation (SI) 30
Practical Reasoning (PR) 25
Conceptual Understanding (CU) 45
100%
Nature of Science Nature of Science (NS) **
Nature of Technology (NT) *k
15%
Themes Patterns of Change (PC) ok
Models (MOD) *k
Systems (SYS) *x
50%

** The 1996 Science Framework is organized according to content and cognitive areas. In addition, the Nature of Science and Themes are
categories that integrate the three content areas. For example, 15 percent of the content should measure the Nature of Science and 50 percent
should assess understanding of the themes, spread evenly across all three themes.

10



In addition to content specifications, the framework contains guidelines concemning the total
amount of testing time for each item type. For example, multiple-choice items should comprise no more
than 50 percent of the assessment, as measured by student response time. In addition, open-ended items
should make up at least 50 percent of the assessment, as measured by student response time. About one-
third of the open-ended questions should consist of extended response items (NAGB, 1996, pg 43). There
are no guidelines with regard to crossing content and cognitive specifications with nature of science or

themes categories.

Assumptions

Several assumptions concerning testing time were taken as given prior to test construction. First,
it was assumed that the total testing time would be 90 minutes. Second, within the 90-minute framework,
given the guidelines presented in the framework and the Science Assessment and Exercise Specifications
for NAEP document, ACT designated 30 minutes (approximately 30%) to be reserved for a hands-on
exercise, 45 minutes (approximately 50%) multiple choice and dichotomously-scored open-ended items,
and 15 minutes (approximately 20%) short-constructed and extended-constructed items. Finally, testing
times for each item type were assumed as follow: multiple choice and dichotomously-scored open-ended

items (1 minute), short-constructed items (2 minutes) and extended response (5 minutes).

Process
The initial step in forms construction involved assessing the current pool with respect to the
content and cognitive classifications. Attention focused on the marginal counts of items in the two-way,
content-by-cognitive classification table and on stratification of this table by item type. A form was then
constructed to meet the specifications while simultaneously attempting to meet guidelines with respect to
testing time by item type.  Finally, in constructing the forms, it was recognized that certain blocks

needed to be held together because of common stimulus materials. This presented a problem because it

11



eliminated several items from consideration. While such blocks could be used in a matrix design, for the
current approach they would, by their size, lead to important deviations from the specifications.
The current pool for eighth grade science contains 190 items with classification data on at least

one of the dimensions. Table 2.2 contains the two-way classifications.

Table 2.2 Number of Items in Each Two-Way Classification Cell for the 1996 NAEP Science Pool

Scientific Practical Conceptual Not
Investigation Reasoning Understanding Classified Total
Physical Science 13 17 31 1 62
Earth Science 12 12 34 5 63
Life Science 9 14 42 0 65
Total 34 43 107 6 190

* Using assumed testing times

Examination of the pool with respect to the constraints given in Table 2.1 and the actual number of
different item types given in Table 2.2 made it clear that only one complete form could be constructed
that would meet all constraints. Part of the problem was the limitations created by the need to hold
together certain blocks. After those blocks were used, many of the content and cognitive categories were
virtually depleted after the construction of a single form.

The results for a single form that best represents the framework are given in Table 2.3. The results
for this form indicated close correspondence to the frameworks. The match-to-content specifications was
very close. The match to the cognitive specification was a somewhat weaker, owing to some extent to
an over-representation of conceptual understanding items in the pool and an undersupply of scientific
investigation items. It was also difficult to match the requirement of 50 percent themes items evenly
distributed among the three domains (patterns of change, models and systems); again, this reflected some

disproportionate percentages in the pool.

12
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The characteristics of the pool in terms of distribution percentages are summarized in Table 2.4.

Some of the disproportionalities in evidence here are reflected in the constructed form.

Table 2.4 Characteristics of NAEP Science Pool”

Summary Across All Items Across All Booklets

% of Items % of Time % of Items % of Time Specs.
Content
Physical Science (PS) 32.3% 34.4% 32.0% 34.1% 30%
Earth Science (ES) 33.3% 32.3% 33.8% 33.3% 30%
Life Science (LS) 34.4% 33.2% 34.2% 32.6% 40%
Cognitive
Scientific Investigation (SI) 18.5% 23.1% 20.3% 25.0% 30%
Practical Reasoning (PR) 22.8% 26.9% 21.8% 25.2% 25%
Conceptual Understanding (CU) 8.7% 50.0% 57.9% 49.8% 45%
Theme
Practical Reasoning (PR) 14.8% 15.6% 15.3% 15.8%
Models (MOD) 12.7% 12.9% 13.1% 13.2%
Systems (SYS) 21.2% 22.5% 21.2% 22.4%
Total 48.7% 50.0% 49.6% 51.4% 50%

(evenly split)

Nature
Nature of Science (NS) 7.9% 12.3% 7.4% 10.9% 9%
Nature of Technology (NT) 7.9% 10.2% 7.3% 9.4% 6%
Total 15.8% 22.5% 14.7% 20.3% 15%

Using assumed testing times

Discussion
These findings suggest that a complete form can be constructed that provides adequate content
coverage in the allotted test time. However, it is clear that considerable item development would be
needed to construct multiple parallel forms. Because the pool was virtually depleted to construct a single
form, it would appear necessary to increase the pool to make it possible to construct parallel forms. Also,

the use of nearly the entire pool to construct this form (excluding the blocks that needed to be held
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together) meant that relatively little attention could be paid to the statistical characteristics of the form.
Initially, in the process of selecting items, those with extreme difficulties or very low discriminations were
passed over. However, it became apparent that if content specifications were to be met, statistical
characteristics would need to take on a minor role in the construction process. This also has implications
for item development. Ideally, the cells of the content-by-cognitive classification table should contain
enough items to permit the development at that level of forms that are equivalent in both content and
statistical characteristics. To the extent that multiple alternate forms depart from equivalence, the
effectiveness of the equating procedures described in Chapter Three would be reduced.

In addition to increasing the scope of the item development, the forms construction process would
benefit from the generation of stable item statistics that are good predictors of final-form performance.
One model would allow item formats and various item types to be initially tested during a preliminary
pilot administration. This pilot administration would identify the types of items and item formats that are
most successful for the population of interest. Following the pilot administration, items should be refined
and additional items produced in preparation for a field test of the items. The field test administration
would produce item-level statistics that would be used to construct the final forms. Items that are either
too difficult or too easy and those that fail to discriminate between students would be eliminated from the
available pool for construction.

In general, the statistical characteristics of the forms would need to be specified so that sufficiently
precise measurement would be expected to occur across a range of ability that encompasses the locations
of the standards that would be set. If IRT parameters are to be used, test information functions could
guide the forms development without explicit constraints on the difficulty and discrimination levels of the
items. Deficiencies in the pool that lead to the inability to match the information functions would need
to be remedied. If classical statistics are employed, some explicit constraints should be made. Without
some preliminary indication of the location of the standards, it is difficult to specify exactly what these

may need to be. However, experience suggests that difficulty values between .2 and .8 and discrimination
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indices greater than .4 will create tests that discriminate across a broad range of ability. More restrictive
specifications involving statistical constraints nested within content classifications could be used to more
closely prescribe the expected performance of the forms and improve their degree of parallelism.
Advances in test generation software make possible the matching of complex sets of test specifications
across multiple forms and may be appropriate for use in this context.

This chapter has presented the results of an ACT-constructed form of the NAEP science
assessment using the current item pool. Two types of test specifications need to be used throughout any
assessment construction of this type: content specifications and statistical specifications. The content
specifications, based on the guidelines presented in the framework, need to specify both the topics to be
covered by the assessment and the proportion of items to measure each topic. The content coverage and
the number of items included in each form need to reflect the emphasis in the framework. If a single-form
approach to NAEP was adopted, the basic structure of the forms would remain the same from
administration to administration, thus making the scores comparable after equating. The statistical
specifications for the form need to indicate the level of difficulty and the minimum acceptable level of
discrimination of the items to be used. These characteristics need to be selected so that the tests will
effectively differentiate between students in the achievement levels-setting process. Forms that match the
statistical specifications will be expected to provide a high degree of measurement precision for the

achievement levels.
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CHAPTER THREE
PSYCHOMETRIC DESIGN

The core of the proposed design is the creation of specific content and statistical specifications
from which individual forms can be built. These specifications, referred to as form specifications, will
represent the content of the Frameworks but be much more precise. The form specifications will include
a precise specification of the items that will appear on a form in terms of content, item format, and
statistical characteristics.

For some examinations, such as the 1996 NAEP Science Assessment considered in Chapter Two,
it may be possible to write form specifications in such a way that forms can be produced that are
administered in full to each examinee. In cases in which this is not possible, more than one administered
form will need to be developed so that the set of items on all administered forms meets the form
specifications. The items on any single administered form would not completely meet the form
specifications. The set of unique items across all administered forms will be denoted a super form. A super
form is constructed to meet the form specifications. The administered forms would not be parallel forms
with respect to the form specifications, but would be as close to parallel as possible.

The administered forms will be more nearly parallel if they contain as many common items as
possible, with as few items that are unique to each form as possible. For example, if the specifications
include a hands-on exercise in each of three content areas and it is possible to have only one hands-on
exercise per form, then administered forms can be built that are identical except for having a different
hands-on exercise.

The next section discusses scoring, scaling, and equating procedures for the proposed design.
NAEP results are reported as properties of distributions of random variables. The second section discusses
estimation of distributions used to report NAEP results. The third section discusses some advantages and
disadvantages of the proposed design relative to the current design. An advantage of the proposed design

is that much simpler analysis procedures, requiring fewer assumptions, can be used. When the assumptions
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required by the complex analysis procedures used in the current design are violated invalid results can be
produced (Zwick, 1991). One assumption required by the analysis procedures used in the current design
is that the performance of an item is not influenced by the context in which the item is presented. The
fourth section presents results based on data from the 1996 NAEP Science Assessment that provides some
indication that the position of an item in a block influences performance on the item. The final section

summarizes the crucial aspects of the proposed psychometric design.

Scoring, Scaling, and Equating

Scoring, scaling, and equating procedures initially will be described under the assumption that the
specifications are written such that parallel forms, administered in full to examinees, can be built. A later
sub-section will discuss scoring, scaling, and equating procedures when super forms are needed to
adequately represent the test specifications.

As described in Chapter Two, a single form has been constructed for the eighth grade NAEP
Science Assessment that appears to adequately cover the content in the Science Framework. In
constructing this form, the NAEP Science Framework was used as the form specification (more precise
specifications based on the Framework would be developed to actually implement the proposed design).
This single form will be used for illustrative purposes in this chapter.

Scoring

For each NAEP examination, results are reported using a single scale. In the current NAEP design,
this scale is defined by latent variable models for the item response data. For example, for the Science
Assessment each item is assumed to measure one of three latent variables corresponding to three content
areas. The scale used to report results is based on a linear combination of the three latent variables. In the
proposed design, scores on a form or super form are the basic data used in the analyses to produce NAEP
results. This necessitates determining an explicit procedure for translating scored item responses into a

form score.
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The influence of items on the scale in the present NAEP design is based largely on psychometric
considerations that result from application of item response models. One potential concern with the
current procedures is that the relative weights given to multiple-choice, dichotomous open-ended, short
constructed response, and extended constructed response items might differ from the weights intended by
content matter specialists. The proposed procedures consider statistical, psychometric, and content-matter
information in deriving the weights.

In NAEP, as presently designed, the intended relative weighting of item types by content matter
specialists is not fully developed in the frameworks or in the specifications documents. To help clarify
this issue, consider the following simple example: Suppose we have a short test composed of three
dichotomously scored multiple-choice items and one constructed response item that is scored on a 0 to
3 scale. Suppose also that constructed response and mpltiple—choice items are to be equally weighted.
In terms of number of score points that contribute to the maximum summed score, the test equally weights
the two types of items. In terms of testing time, the items likely are unequally weighted, because the
multiple-choice items will likely take much less time than the constructed response item. Is the weighting
by content specialists intended to be by numbers of score points, by testing time, or by numbers of items?
Present NAEP framework and specifications documents do not provide a clear answer.

The numbers of score categories used by judges to score the constructed response items also can
influence the weightings. The number of categories, and the numerical values assigned to each category
(e.g., 0, 1, 2 versus 1, 2, 3) should also be part of the specifications. In present NAEP analyses, the score
categories on constructed response items are often collapsed so that the algorithms used in NAEP scaling
procedures will converge. Such collapsing of categories can affect the relative weighting given to the
different item formats. In addition, the combining of score categories can make it difficult for content
specialists and policy makers to understand the meaning of the scores, and can cause confusion when
NAEP standards are set. The scaling and weighting procedures that ACT is recommending directly

address these concerns. In addition, these procedures make explicit the relative weights of different item
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types that are used so that NAEP standard setters can incorporate this information in the standard setting
process.

It is proposed that a weighted combination of item scores on a form be used as the form score.
These form scores would be an a priori weighted linear combination of the item scores. We suggest that
the choice of item weights used to compute a form score be an integral part of constructing the form
specifications. Content and format should be principal considerations in determining the weights.

Wang and Stanley (1970) indicate that, from a psychometric perspective, differential weighting
is only effective when there are only a few measures in the composite that are not highly related to one
another. This suggests that a small set of mutually exclusive unweighted sums of item scores first be
formed based on content or item format. These sums will be denoted form subscores. Differential
weighting to produce a form score would only be applied to the form subscores. Hence, weights do not
need to be determined for individual items, but for a smaller number of sums of item scores.

There are three main factors to consider in determining weights: 1) item content, 2) item format,
and 3) the statistical and psychometric properties of the resulting scores. Content is important to consider
in weighting as it affects the meaning of the score. Presumably, the reason for having different item
formats is that the different formats measure somewhat different things. The a priori weighting used to
compute a form score will determine the influence of each of the constructs measured by the items in the
score, and consequently the meaning of the score. Determination of weighting with regard to format and
content should be made by policy-makers and/or content matter experts who are involved in designing the
frameworks, the specifications, and in designing the forms. The a priori weighting used to compute a form
score would determine the influence of each of the constructs measured by the items in the score, and
consequently the meaning of the score.

Statistical and psychometric considerations in deciding on weights include the statistical influence
of the components of a score on the score distribution and the effect of weights on the measurement

properties of the score (including reliability and the conditional standard error of measurement of the
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observed score given the true score). Content considerations in weighting are addressed based on the
content and format of the items and do not require empirical data. Empirical data are needed to address
statistical and psychometric considerations in weighting.

One statistical consideration in determining weights involves the extent to which components
contribute empirically to the form score, as opposed to the contribution of the components implied by the
nominal weights (nominal weights are the a priori weights chosen). Wang and Stanley (1970) define the
effective weight of a component in a composite score. as the contribution of that component to the variance
of the composite. Consideration should be given to the effective weights of the components in the score
as well as to the nominal weights based on format and content.

Consideration of reliability in determining weights is especially important when the components
of the score have fairly different reliabilities. An example is the case of combining multiple-choice and
constructed-response items (Wainer & Thissen, 1993).

We believe that specifications for weighting should be embedded in the development of
frameworks and specifications. These specifications include determining which sets of item scores should
be added together to produce subscores, and the weights to be used for combining subscores into a form
score.

Data on the base form used to define the scale could be used to incorporate statistical and
psychometric factors in the weighting, and also possibly to adjust the nominal weighting based on
statistical and psychometric considerations. For example, if effective weights are quite different from the
nominal weights, then some adjustment of the nominal weights may be required. Still, to the extent
possible, we believe the nominal weights should drive the weighting process because they are more readily

interpretable by content-matter specialists and policy-makers.
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We propose the following sequence of steps in determining the weighting used to produce form

scores.

1. Define a small number of form subscores that are unweighted sums of item scores.
Subscores are based on item format. Each subscore contains a unique set of items of a
particular item format (possibly a single item), and each item is included in one and only
one subscore.

2. Decide on nominal weights for each subscore that will be used to produce the linear
combination of subscores that will serve as the total form score.

3. Using data on the base form, examine the statistical and psychometric properties of the
form scores defined by the weighting in step 2. The analyses would include examining the
effective weights and the reliability of the form scores in relation to the reliability of the
subscores.

4. Possibly adjust the nominal weights determined in step 2 based on the empirical results
in step 3.

These steps assume the score categories for the items are predefined and are not collapsed. The
subsets of items used for subscores should be defined so that sets of items could be developed for other
forms such that the statistical and psychometric characteristics of subscores on alternate forms are
approximately equivalent (after possibly equating the subscores), and the relationships among the subscores
approximately equal across forms. The nominal weights would be chosen in step 2 based on the format
of the items in each subscore.

The weights developed with the above four steps for the first (base) form would be used as
nominal weights for all parallel forms built to the form specifications. This weighting assumes precise
form specifications that include the number of items of different response types that are in particular
content categories. For example, the specifications might call for one extended constructed-response item
that has life sciences content. The item used for this specification would differ in different forms, but be
weighted the same in computing the form scores for each form. The item would be included in a particular
subscore which would be weighted to produce the form score.

As an example of the effects of weighting we will look at some alternative weightings to produce

scores for the 1996 NAEP Science form that ACT developed in Chapter Two. Two subscores will be
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defined. One subscore is the sum of the item scores on the multiple-choice items (objectively scored) and
the other subscore is the sum of the item scores on the constructed-response items (subjectively scored).
Of the 57 items on the form, 39 items are multiple-choice and 18 items are constructed-response. The sum
of the item scores on the 39 multiple-choice items range from O to 39, and the sum of the item scores on
the 18 constructed-response items range from O to 31. Four weightings of the two subscores are
considered. The first weighting is just a sum of the two subscores (weighting by number of score points).
The second weighting is by the time allotment for the items (each subscore is converted to a proportion
of possible points and multiplied by the time allotted for all items in the subscore). There are 39 minutes
allotted to the multiple-choice items and 35 minutes allotted to the constructed-response items. These are
the sums of times allotted to the individual items of each type; the time actually spent on an item may
be different from the allotted time. The third weighting is by the number of items (each subscore is
converted to a proportion of possible points and multiplied by the number of items in the subscore). The
fourth subscoré is the sum of the proportion of possible score points on the multiple choice items and the
proportion of possible score points on the constructed-response items (equal weighting of multiple-choice
and constructed-response item scores).

Item response data were simulated using the item response model used in the current design. The
itern parameters used were those that were estimated in the operational scaling for the 1996 NAEP Science
Assessment. The distribution of the three latent variables was taken to be multivariate normal with means
all equal to zero and standard deviations all equal to one. The correlations among the three variables were
those estimated in the operational 1996 NAEP. scaling for Science. The three latent variables for each
examinee were generated from a multivariate normal distribution. For each simulated examinee, item
responses for each item in the form built by ACT were simulated. A sample of 2000 examinees was
generated. For each simulated examinee, the multiple-choice and constructed-response form subscores were

calculated. These two subscores were used to calculate the four possible form scores.
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The correlation between the multiple-choice subscore and the constructed-response subscore in the
simulated data was .76. The correlations between the four form scores were all greater than .99. This result
is consistent with the conclusions of Wang and Stanley (1970) that in many cases weighting does not
make much of a difference on the statistical properties of the score. However, weighting might have
serious implications for how scores are interpreted. In addition, the weights that are used might influence
the standards that are set in NAEP standard setting procedures, even if the scores are highly correlated as
in this example.

Table 3.1 Nominal and Effective Weights for Multiple-Choice (MC) and Constructed-Response (CR)
Subscores

Nominal Weights Effective Weights
Form Score MC CR MC CR
Weight by points .50 .50 58 42
Weight by time 47 .53 54 46
Weight by number of items .63 37 72 28
Equal weight for proportion of score points 44 .56 51 49

The nominal and effective weights of the multiple-choice and constructed-response subscores for
the four form scores are given in Table 3.1. Both the nominal and effective weights have been
standardized to sum to one. The effective weights represent the contribution of the multiple-choice and
constructed-response subscores to the variance of each form score. The effective weights are greater than
the nominal weights for the multiple-choice subscore, and the effective weights are less than the nominal
weights for the constructed-response subscore.

To assess the measurement properties of the four form scores the squared correlation of the
observed and true scores were computed for each weighting over the 2000 simulated observations. True
scores were computed for each examinee using the estimated parameters in the model used to simulate
the data. These squared correlations are estimates of the reliability of the scores produced by the various

weightings. The squared correlation was 0.83 for the score based on weighting by the number of items

24



in each subscore, and the correlations were 0.85 for the other three weightings. Thus, the reliability of the
scores was very similar across the four weightings. The squared correlation between the multiple choice
subscore and its true score was .77. The square of the correlation between the constructed response
subscore and its true score was .71. The purpose of computing these reliabilities was to examine the effect
of the various weightings on the measurement properties of the scores. The reliability of individual scores
is not directly relevant for NAEP since scores for individual examinees are not reported.

In the proposed design the issue of how item scores are used to produce the scale on which results
are reported needs to be explicitly considered. In the current design the latent variable model used for
scaling determines the how the responses of students to individual items influence the scale. Issues of
scoring can sometimes enter into analyses in the current design. For instance, there are cases in the
current design in which the scoring of an item needs to be changed because the item response model used
to produce the scale does not work with the item as originally scored. We believe that an explicit
consideration of the influence of items on the scale helps to clarify the meaning of the scale, and may
make results easier to interpret.

Scaling and Equating

When parallel forms can be developed that meet the specifications and can be completely
administered to examinees, it is proposed that standard scaling and equating procedures be used with the
form scores. If subscores are used that are linearly combined to create a form score (as described in the
Scoring sub-section), these subscores might be equated before equating the form score. Alternatively, it
might be better to equate scores at the form level. A scale could be defined based on the form score for
a base form. As indicated by Petersen, Kolen, and Hoover (1989), the score scale could be defined using
normative data, score precision considerations, or by incorporating information from test content.

One possibility in a design such as this is to administer a single form to most examinees on a
particular administration. The form administered to most examinees will be denoted the major form. The

major form would be either a form that had been previously equated to the NAEP score scale or the form
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used to construct the score scale. In addition, one or more other forms and the major form would be given
to randomly equivalent groups of examinees. This process allows all forms to be put on the same scale.
The major form could be completely released, and the other forms used in future administrations to put
new forms on the same scale. It is recommended that a random groups equating design be used to equate
other forms to the major form. One method of equating that could be used is equipercentile equating with
smoothing (Kolen & Brennan, 1995).

Simple and straightforward scaling and equating procedures using form scores can be used in the
proposed design. These straightforward procedures contrast with the approach used in the current NAEP
design, in which scaling and equating is accomplished with much more complex analyses using item
response models with item data.

Scoring, Scaling, and Equating for Super Forms

A super form consists of a collection of items on a group of administered forms, where each
administered form is given in full to examinees. Th¢ items in a super form meet the specifications for the
examination, whereas the items in each administered form do not fully meet the specifications. Super
forms are needed when forms that meet the specifications and are completely administered to examinees
cannot be built.

We have proposed that a single form score be the basis of analyses to produce NAEP results.
Super form scores cannot be directly computed because no single examinee takes a complete super form,
so more complex analysis procedures will be required. When super forms are needed we recommend that
the majority of items in each administered form be common among all administered forms. The common
items should be as representative as possible of the complete specifications. The combination of common
items and unique items on each administered form would comprise the super form.

The strategy we recommend for obtaining results for super forms is to first estimate distributions

of super form scores (this will require the application of some appropriate models and assumptions). The
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analysis procedures outlined in the preceding sub-section, where a single administered form meets the
specifications, could then be used with the estimated super form distributions.

We will illustrate some potential procedures for estimating super form score distributions using
the 1996 NAEP Science Assessment. The ACT NAEP Science form described in Chapter Two has 57
items, 6 of which are part of a single hands-on exercise. This hands-on exercise has 4 physical science
items and 2 life science items. We constructed a super form by adding another hands-on exercise to the
original form. The hands-on exercise added consists of 8 earth science items (there were no earth science
itemns in the hands-on exercise in the original form). There are two administered forms. One form is the
original ACT constructed form (denoted administered form 1). In the second administered form the
hands-on exercise in the original form is replaced by the earth sciences hands-on exercise (this form is
denoted administered form 2). Administered form 1 has 57 items, administered form 2 has 59 items, and
there are 51 items common to the two forms. The super form consists of 65 items (the 51 common items,
plus the 6 items on.the first hands-on exercise, plus the 8 items on the second hands-on exercise).

The score of interest on the super form is the sum of item scores on the 65 items. The super form
score ranges from O to 84. The score on the common items range from 0 to 58, and the scores on the
hands-on exercises in administered forms 1 and 2 range from 0 to 12 and 0 to 14, respectively. Simulated
responses to the 65 item were generated for 6000 examinees using parameters of the item response models
used in the current design for the 1996 Science Assessment. The distribution of the three latent variables
used in the item response models was multivariate normal with the correlations as estimated for the 1996
Science Assessment. The data for the 6000 examinees on all 65 items are referred to as the complete data.
The first 3000 examinees were designated to take administered form 1 (containing only the first hands-on
exercise), and the second 3000 examinees were designated to take administered form 2 (containing only
the second hands-on exercise). Thus, in the analysis to compute a distribution of super form scores for the
6000 examinees, the responses of the first 3000 examinees to the second hands-on exercise, and the

responses of the second 3000 examinees to the first hands-on exercise were not used. Half of the
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examinees were treated as missing the responses to items in the first hands-on exercise, and the other half
of the examinees were treated as missing the responses to items in the second hands-on exercise. The data
with each examinee missing responses to one of the hands-on exercises are called the incomplete data.

Let X be the score on the common items, ¥; be the score for the first hands-on exercise, and Y,
be the score for the second hands-on exercise. All three variables are discrete, so the full data is contained
in a three-way table (common item score by hands-on score 1 by hands-on score 2). Each cell in the
three-way table contains the count of the number of examinees who obtained a particular combination of
the three scores.

Analysis procedures for missing data will be used to estimate the counts in the complete three-way
table. The distribution of the super form scores can then be computed from the counts in the complete
three-way table. Data are observed for the X-Y; two-way marginal table and for the X-Y, two-way
marginal table. Some assumptions need to be made in order to produce estimates of cell counts in the
complete X-Y,-Y, three-way table.

The first step was to fit a polynomial loglinear models to each of the two observed two-way tables.

The model for the X-Y, table has the form:

nl n

) n
log (m) =g + ¥, o, i" + ¥ it + Y Y 19 1,87, -1)
s=1 s=1

r=1 r=1

—

where m;; is the expected count for score i on X (i = 0,...,51) and score jon Y; (j = O,...,12), and I(r,s)
equals zero or one for each r and s indicating which of the v, are allowed to be non-zero. Polynomial
loglinear models such as that in Equation 3.1 have been successfully used in applications involving test
score distributions (Rosenbaum & Thayer, 1987; Holland & Thayer, 1987; Hanson, 1991a; Livingston,
1993). A model analogous to that given in Equation 3.1 was used for the X-Y, two-way table. It was
found that for the X-Y; two-way table a model with n; =5, n, =7, I(1,1) = 1 and I(r,s) = O for r # 1 and
s # 1 fit the data well. For the X-Y, two-way table it was found that a model with ny=35,n,=6,1(1,1)

=1and I(r,s) =0 forr# 1 and s # 1 fit the data well.
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The assumption made in order to estimate the counts in the three-way table using the incomplete

data was that the following polynomial loglinear model holds:

n n
log (m;j) = ag + ;ll oy, i" + SX_Z:I 0y j° + f:l ok’ *+ Y1108 * Yiorik (3-2)
where my; is the expected count for score i on X, score jon Y, and score k on ¥,, and ny =5, n, =7,
and n = 6. This model incorporates the assumption that Y, and Y, are conditionally independent given
X (Y, and Y, can still be associated when not conditioned on X). Maximum likelihood estimates of the
model in Equation 3.2 can be found using the data in the X-Y; and X-Y, two-way tables using the EM
algorithm (Dempster, Laird, and Rubin, 1977). Procedures described by Rindskopf (1992) could also be
used to fit the model in Equation 2 using the incomplete data.

Using the incomplete data for the 6000 examinees, the model in Equation 3.2 was estimated using
the EM algorithm. The estimated cell counts m the complete three-way table were used to compute an
estimated super form distribution. Figure 3.1 contains this estimated super form distribution along with
the actual super form distribution for the complete data on all 6000 examinees. Note that estimated
distribution is Figure 3.1 is based only on data in the X-Y; and X-Y, two-way tables (this is the data that
would be obtained for the two administered forms), whereas the observed distribution in Figure 3.1 is the
actual super form distribution of scores for the 6000 examinees (using the complete data). For this
example the model in Equation 3.2 worked well for estimating the super form score distribution from the

incomplete data.
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Other data collection designs are possible for the situation considered in the example. For instance,

in addition to the two randomly equivalent groups of examinees who take administered forms 1 and 2,

a third group taking only the two hands-on exercises could be used. This would provide some information

on the association between the two hands-on exercises. The EM algorithm could be used to estimate the

counts in the full table using this incomplete data and an appropriate loglinear model.
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An alternative to the use of missing data methods as presented in the example is the use of latent
variable models. Latent variable models derive their analytical power from the strong assumption that the
observed variables are independent when conditioned on a small number of latent variables, and
assumptions concerning the parametric form of functions giving the probability of item responses
conditioned on the latent variables. The use of latent variable models may be most appropriate when
results are to be reported using estimated latent variable distributions. Treating the analysis as a missing
data problem is more straightforward when the goal is to estimate distributions of observed variables. The
"observed" variables may not in fact be observed for any of the examinees, but they potentially could be
observed. In the example, the super form scores were not observed for any examinee when using the
incomplete data, but they potentially could be observed (as in the complete data).

An issuc;. when specifying latent variable models for multiple observed scores is dimensionality,
or the number of latent variables required for the observed variables to be conditionally independent given
the latent variables. If a latent variable model were used in the example where there were three variables
(a common item score, and two hands-on scores) the issue of dimensionality would need to be considered,
especially given the different content of the two hands-on exercises.

When super forms are needed, the design moves closer to the currently used NAEP design, in that
the items taken by a single examinee do not encompa.és the full range of content in the test specifications.
Even so, the design associated with our proposal to use super forms is much less complex than the current
design, so that simpler analysis procedures can be used to produce the results.

When super forms are used, or with a design like the current NAEP design, there are missing data.
These missing data require analyses using models, and associated assumptions, that can produce results
using the incomplete data. To the extent to which the assumptions of the models are violated, invalid
results can be produced. Because of this concern we believe every effort should be made to avoid the use

of super forms in order to minimize the number of assumptions needed to produce results.

31



Estimating Distributions

Presently, NAEP results are reported as properties of latent proficiency distributions for various
groups of students. The distribution properties reported are means or the percent of students above certain
values on the latent proficiency scale. The concept of latent proficiency distributions can be difficult to
explain to policy makers and the public. For this reason, in most major testing programs, normative data
are presented in terms of statistics and distributions of observed scores on actual test forms. When
interpreting results, test users can be shown a form of the test, and told that the scores reported reflect
observed performance on a form like the one they are shown. ACT recommends that in NAEP, as in most
major testing programs, scores be reported based on observed score distributions. Smoothing procedures
could be used to provide more precise estimates of observed score distributions (Kolen, 1991).

Reporting results using estimated distributions of latent variables is also possible. This section
describes procedures for estimating true score distributions using only observed form score distributions,
rather than individual item responses.

For the present NAEP design, the proficiency scales are defined based on the latent variables in
item response models used for scaling. The latent variables in these models represents the variables
measured by the items, where the item responses are assumed to be independent given the latent variables.
In the present design for the 1996 NAEP Science Assessment, models are used that assume three latent
variables are measured by the items, where each item measures only one of the three latent variables.

To avoid problems with the assumption of local independence at the item level, ACT proposes
using latent variable models that model scores at the form level for the purpose of estimating latent
variable distributions. Latent variable models could be used with the form score as observed data to
estimate a latent variable distribution. In this case there is only one observed variable in the model (the

form score) rather than many observed item scores. A general latent variable model for the form score is

b .
Pr(X =x; | o) = [Pr(X = x | © = 6,a)g(® [B)d6, (3.3)
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where X is the random variable representing the observed form score that takes on the 7 discrete values
X], Xy,.--» X1, © is the random variable representing the latent variable, and o and B are parameter vectors.
One class of models of this type are strong true score models (Lord, 1965, 1969). In strong true score
models the parametric form of Pr(X = x | © = 6, @) is given such that E(X | 8, o) = 6, so the latent
variable is a true score [defined on an interval (a,b)].

An example of estimating the latent variable distribution is presented using simulated data for the
ACT-built NAEP science form. Item response data were simulated with the item response model used in
the current design. The item parameters used were those that were estimated in the operational NAEP
scaling for the 1996 Science Assessment. The distribution of the three latent variables was taken to be
multivariate normal with means all equal to zero and standard deviations all equal to one. The correlations
among the three variables were those estimated in the operational 1996 NAEP scaling for science. The
three latent variables for each examinee were generated from a multivariate normal distribution. For each
simulated examinee, item responses for each item in the form built by ACT were simulated. Two hundred
samples of 2000 examinees were generated. The sum of item scores on the 57 items was used as the form

score (the minimum form score is 0 and the maximum form score is 70). The true form score is defined

as ., T, Where: n;
Eia T, =8(8) =Y Pr(Y;=j|8). (3.4)
pard

In Equation 3.4, ©; is a value of latent variable i (i = 1, 2, 3), ¥; is the sum of the item scores for the items
measuring latent variable i, and n; is the largest possible score for ;. The conditional probabilities on the
right side of Equation 3.4 depend on item parameters in the item response models for the items, although
this is not explicitly presented in the notation. Note that each of the 7, is a true score for the sum of the
item scores, so that the true form score is not an equally weighted composite of the three true scores on

a proportion of total points metric.
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The density of the true form score was computed as:

U, U,

h(r) = f fg(t - Ty - T3,7,T3)dT,d T (3.5)
L L

where the limits Ly, U,, L3, and U; are a function of ¢ determined by the constraints 0 < 7, < 1 and 1, +

1

 _£(6,,6,,65), (3.6)
J(91,62,93)f(1 23

8(11,12,13) =

where f(8;, 6,, ;) is the multivariate normal density used to simulate the latent variables in the item

response model, and the Jacobian J(8,, 6,, 65) is given by

a1, 0
E:R
) d1; 91, ot
o T2 oo|.%0 9% 9y G
J(el’62'93) 892 : ael aez E
0 97,
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For each of the 200 simulated data sets, two methods were used to estimate the distribution of the
true form scores using only the observed form score distribution. The first method is the four-parameter
beta binomial model (Lord, 1965). In the four-parameter beta binomial model the conditional error
distribution Pr(X = x| © = 6, @) is a binomial distribution (in this case there is no o parameter), and the
distribution of the true score g(8 | B) is assumed to be a four-parameter beta distribution (the vector B
has four elements). The specific procedures used to estimate the true form score distribution using the
four-parameter beta binomial model are described in Hanson (1991b).

For one of the 200 sets of 2000 simulated examinees, Figure 3.2 gives the observed form score

distribution and fitted form score distributions using the four-parameter beta binomial model (labeled
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"Observed" and "Beta", respectively). The model appears to provide an adequate fit to the data (the
Pearson goodness of fit chi-square statistic is approximately equal to its degrees of freedom). Figure 3.3
gives the true form score distribution as computed using Equation 3.5 with the parameters used to generate
the data (labeled "True"). The total score scale is used for the true scores in Figure 3.3 (the true scores
range from O to 70). Also given in Figure 3.3 is the average of the true form score distributions estimated
using the four-parameter beta binomial model over the 200 simulated data sets (labeled "Beta"). The
difference between the true and average estimated true form score distributions represents the bias in using

the four-parameter beta binomial model.
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The second method of estimating the true form score distribution maintains the assumption of a
binomial error distribution used by the four-parameter beta binomial model, but allows a nonparametric
form of the true score distribution (nonparametric in the sense that the true form score distribution is not
a parametric function of the true score). A discrete true score distribution is assumed for this method. For
this example a discrete true score distribution with 69 values is used. The 69 values on the proportion of
possible points scale are given by j/70 for j = 1,..., 69. The distribution of the observed form score can

be written as
69

PriX =x) =y Pr(X =x;10 = 8)m, (3.8)
j=1

where X is the random variable representing the form score (with possible values x; = 0, x, = 1,..., x9
= 70), © is a discrete random variable representing the true score with possible values 6, = 1/70, 6, =
2/10,..., 8gg = 69/70, and T is the probability that the true score is equal to 6;. The error distribution Pr(X
=x;1©= ej) is taken to be a binomial distribution. The probabilities T; are estimated using a distribution

of observed form scores [Pr(X = x;)]. An ad hoc two-step procedure was used to estimate the . First, the

observed form score distribution was smoothed using the following polynomial loglinear model:
6
log(m;) = ag + Y, o.x; , (3.9)
r=1

where m; is the expected count of the number of examinees obtaining a form score of x;. The second step
involves using the smoothed observed form score distribution as computed using the model in Equation
3.9 to estimate the T in Equation 3.8. The distribution of the form score given by Equation 3.8 is a finite
mixture. The EM algorithm for estimating the mixing weights of a finite mixture (Dempster, Laird, &
Rubin, 1977; Titterington, Smith, & Makov, 1985) was used to estimate the T using the smoothed values
of Pr(X = x;).

This nonparametric method was used to estimate the true score distribution of each of the 200

simulated samples of 2000 examinees. The smoothed observed score distribution using the model in
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Equation 3.8 is presented for one of the samples in Figure 3.2 (labeled "Nonparametric"). The average of
the true score distributions computed over the 200 simulated samples is given in Figure 3.3 (labeled
"Nonparametric").

The purpose of this example is to demonstrate how the distribution of the observed form score
could be used to estimate the distribution of the true form score. Figure 3.3 shows there is some bias in
each of the two methods of estimating the true form score distribution. One source of this bias is the
assumption of the conditional distribution of the form score given the true score [Pr(X = x | © = 6, )
in Equation 3.7] is binomial, which can only be an approximation. Based on the item response model
used to simulate the data, the conditional distribution of the form score given the latent variables is
actually a sum of multinomial random variables. Given the model used to generate the data, the
multinomial random variables are independent conditioned on the latent variables, although in reality they
may not be independent (this would be the case if the assumption that item responses are conditionally
independent given the specified latent variables does not hold). The binomial distribution should result in
an over estimate of the error variance, or an underestimate of the true score variance. A pattern of
underestimation of the true score variance is evident in Figure 3.3 (this is especially clear for the
nonparametric estimate).

The item response model uses the assumption of conditional independence of the item responses
given the latent variables along with an assumption of the parametric forms of the item response functions
and latent variable distribution. A latent variable model for the form score does not require the assumption
of local independence, although a parametric form of the conditional form score distributions given the
latent variable is assumed. The advantage of modeling the form score is that the problematic assumption
of conditional independence of item scores is not needed. In addition, item response models are much
more complicated to fit and provide much more opportunity for numerical problems to occur. The bias
in Figure 3.3 represents bias assuming the item response model currently used is correct. To the extent

that the process generating the data is more complicated than can be represented by the item response
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model used, the results using the item response model will be biased. It is possible that a simple true score
model of form scores, such as those presented using binomial error distributions, could provide less biased
results than the item response models that are currently used. It is possible that the effect on the results
of the misspecification of models using the form score distributions may be less than the effects on the
results of the misspecification of models using item response data.

Besides systematic error (bias) in the estimates of the latent variable distribution it is also
important to consider random error. We suspect, for a given sample size, that using latent variable models
of form scores will result in less random error in the estimated latent variable distribution than using latent
variable models for item responses. The overall error (systematic and random error) might be less for the
model using the form score data if the advantage of this model with respect to random error outweighed
the advantage of the model using item response data with respect to systematic error (if indeed there were
an advantage of the item response model with regard to systematic error). Simulation studies could be used
to investigate the issue of the relative random error in estimating the latent distribution using the item

response data versus the form score data.

Advantages and Disadvantages of the Proposed Design
The principal difference between the proposed design and the current design is that in the proposed
design precise form specifications are used to build parallel forms (or in the case of super forms,
nearly-parallel forms) that are completely administered to examinees. A principal characteristic of the
proposed design is simplicity. A simpler design has potential advantages and disadvantages relative to a
more complex design like the one currently used. The next two sections present some potential advantages

and disadvantages of the simpler design that is proposed.
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Advantages of Proposed Design

An advantage of a simpler design is that some sources of uncertainty in the results are potentially
reduced. The framework presented by Hodges (1987) will be used to present areas where there may be
a reduction in the uncertainty in the results.

Hodges (1987) states that statistical activity can be divided for descriptive and analytical purposes
into three broad areas: (a) discovery and imposition of structure, (b) assessment of variation conditional
on structure, and (c) execution of techniques selected. Each of these three areas has an associated type of
uncertainty: structural uncertainty, risk, and technical uncertainty, respectively. The term "uncertainty”
refers to doubts about the validity of the results. Invalid results can lead to invalid inferences. The results
for NAEP are distributions of proficiency. Invalidities in NAEP results can lead to invalid inferences being
made about the proficiency of one or more groups of students. Each of the three types of uncertainty may
have potential to be reduced by the simpler design. .

Structural uncertainty involves uncertainty in the validity of the statistical models used to obtain
the results. A statistical model is invalid to the extent to which the process generating the data is not
captured by the model. The term "model misspecification” is also used to refer to invalidity of a model.

In the current NAEP design it is necessary to use statistical models of individual item responses
(item response models). One potential type of structural uncertainty in item response models is called
"context effects” (Leary & Dorans, 1985; Brennan, 1992). Item response models typically assume that the
probability of an examinee responding to an item is not influenced by where the item is located on the
test and which items preceed the item on the test. When this assumption is violated, context effects are
said to occur. There are several examples where context effects appear to occur with the current NAEP
design. An example from the 1994 NAEP reading assessment is given by Zwick (1991) in which invalid
results were produced by the use of a item response model which made the assumption that context effects
did not occur when in fact they did. Examples of context effects on the 1996 NAEP science assessment

are given by Swinton (1997) where item position is shown to have an effect on how often an item is not
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responded to. The next section presents some further results using data from the 1996 NAEP Science
Assessment for eighth grade that suggest different positions of an item in different NAEP blocks
influences performance on the item. Zwick (1991) also indicates that item position had a large impact on
percent of examinees reaching certain items for the 1994 NAEP reading assessment.

Other assumptions made by the item response models used in NAEP are possible sources of
structural uncertainty. Worthington and Donoghue (1997) examined the effect of the violation of the
assumption of local item independence made by most item response models on the validity of the results
for the 1996 NAEP science assessment. They found that estimated ability distributions can be grossly
distorted if local item dependence (the absence of local item independence) exists for even a single pair
of items. They describe changes made to items in the science assessment to attempt to control local item
dependence. This is an example of a modification of test content for the purpose of better meeting the
assumptions made by the model used for the item data. In the proposed design, this type of modification
of test content would not be necessary.

In these examples, sources of structural uncertainty arose due to violations in the models of item
response data. In the proposed design, item responses are combined to produce form scores which are the
primary data used in analyses to produce assessment results. Some of the sources of structural uncertainty
that could possibly exist in item response models would not be a problem in the proposed design where
form scores are the data used in the production of assessment results.

The second type of uncertainty presented by Hodges (1987) is risk. Risk, as used by Hodges,
involves the uncertainty in the estimation of the statistical models. This is the most familiar type of
uncertainty. A large amount of statistical literature is devoted to the assessment and control of this type
of uncertainty. Risk can be controlled by the sampling design used to collect the data. In the current
NAEP design, background variables are used in the estimation of the reported proficiency distributions
in order to reduce risk to an acceptable level. In the proposed design acceptable accuracy of the estimated

proficiency distributions should be possible without the use of background variables. The use of the
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models which incorporate background variables also could potentially lead to systematic uncertainty due,
for example, to the parametric form of the models being misspecified.

The third type of uncertainty is technical uncertainty. Technical uncertainty involves errors that
may occur in the execution of techniques used to implement the data analysis. There are two areas of
activity in which technical uncertainty can arise: processing of data and application of approximations.
Technical uncertainty related to processing of data refers to potential errors in basic data manipulation
(e.g., creating data files, merging files, etc.). The simpler design would result in far simpler data
processing, reducing the possibility of this type of error.

Application of approximations refers to the approximations used in numerical computations.
Examples of these types of approximations include numerical integration and optimization procedures. The
models used in the current NAEP design require complicated numerical computations. An advantage of
the proposed design is that due to the simpler computations needed it is possible that this type of
uncertainty could be reduced. In the proposed design it would be simpler to describe and understand the
numerical techniques used. Understanding the numerical procedures is necessary in order to try to assess
the extent to which technical uncertainty may affect the results. Details of the specific numerical
procedures used in the computations for the current design are not available (undocumented propriety
software is used). In the proposed design we recommend that the source code for all numerical procedures
be made available so that anyone interested can review the numerical methods used, and could replicate
the results.

Disadvantages of Proposed Design

A major disadvantage of the proposed design relative to the current design is that the construction
of test forms with tight specifications administered in their entirety to examinees results in less flexibility
in choosing items, since the items to be included on a form would have to meet the tight form

specifications. On the other hand, the item response models used in the current design can result in
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restrictions on items due to the need for items not to violate the assumptions made in the models
(Worthington & Donoghue, 1997).

In a design like the current design where only a small portion of the total items are presented to
an individual examinee there is a potential for shorter testing times than in the proposed design were
examinees take entire test forms (although the proposed design does not require any additional testing time
over that used in the current design). Shorter testing times may potentially alleviate negative effects on
the results due to low motivation of test takers to do well on the test.

Summary of Advantages and Disadvantages of the Proposed Design

The proposed design has advantages and disadvantages relative to the current design. The
framework of Hodges (1987) was used to present some possible advantages of the proposed design in
terms of reducing the amount of uncertainty in the resu!ts. All three types of uncertainty are present in
both designs. We think a strong case can be made that the simplicity of the proposed design can result
in less uncertainty. We have presented evidence of some sources of structural uncertainty in the current
design that have produced invalid results, or have the potential to produce invalid results.

We have built one form of the eighth grade science assessment that met the Framework for the
science assessment to a reasonable degree. We believe test forms that are completely administered to
individual examinees and constructed to precise specifications have the potential to provide coverage of
an adequate range of content for the NAEP Science Assessment. The current design offers more
flexibility in content coverage, but with potential for more uncertainty in the results. There is an inevitable
tradeoff between flexibility of test construction and uncertainty of results. We believe that adequate content
coverage can be attained with a much simpler design. Whether the advantages of the simpler design
outweigh the greater constraints on test developers that would result is a judgement to be made by the

policy makers for NAEP.
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An Investigation of Context Effects Based on Item-Block Position
on the 1996 NAEP Science for Grade 8

In the present NAEP BIB design, blocks of items change positions. The scaling model assumes
that the position has no effect on the item characteristics. In this section, we examine this assumption.
The violation of this assumption could increase structural uncertainty in the results, as described in the
previous section.

Assessment items in the 1996 NAEP in Science are administered in blocks. There were three
types of blocks: Concept/Problem Solving (CP), Theme-Based (TB), and Hands-On (HO). The first two
types are paper-and-pencil blocks with both multiple-choice (MC) and constructed-response (CR) items.
CP blocks include items from the three fields of science identified in the NAEP Science Assessment
framework. TB blocks include items related to one theme in the framework, and most of these blocks
include items from one single content area. HO blocks involve performing a task and responding to items
related to the task or the results of the experiment performed to complete the task. For each grade level
assessed by NAEP, there were eight CP blocks, three TB blocks, and four HO blocks, for a total of 15
blocks.

Each form of the 1996 NAEP Science Assessment contained three blocks of test items -- two
paper-and-pencil blocks and one HO block. Forms were constructed with one HO block plus either two
CP blocks or one TB and one CP block. This scheme of combining blocks for assessment forms would
yield 208 possible forms. Only 37 forms were used in the assessment, however. The HO block was
always in the third section of each form.

This investigation of context effects focuses on the main effects of block position on student
performance on.individual items and on the percentages of nonresponse to those items. Since only
paper-and-pencil blocks change position, HO blocks were not included in this investigation. Moreover,

all the analyses were performed on grade 8 data only.



Background Studies investigating effects of rearranging sections of items in a test were reported
as early as the 1950’s (Leary & Dorans, 1985). The question under investigation was whether an item
‘appeared to be easier or more difficult when it appeared earlier in a test than when it appeared later.

Mbllenkopf (1950) studied the effects of rearranging sections of test items on item difficulty and
item discrimination for verbal and mathematics aptitude tests. Under power conditions, Mollenkopf found
that for the verbal test an item is easier when the item appeared early in the test (i.e., first section) than
when it appeared late in the test (i.e., third section), but no similar position effect was found in the
mathematics test. Under highly speeded conditions, however, both item difficulty and item discrimination
were affected by position on both the mathematics and verbal tests. Items were found to be more difficult
and had higher discrimination indices when they came late than when the items came early in the test.

Brennan (1992) reported that in a 1988 study of the original ACT Assessment, item position did
affect examinee performance. The test form used for this study had four passages with associated test
items and a set of discrete items. A scrambled form was created by interchanging the positions of the first
two passages and the last two passages. There was no change in item order otherwise. Results indicate
that items related to the first two passages and the discrete items were unaffected by the rearrangement.
However, items in the fourth passage were more difficult in the original form where it was the last passage
than they were in the scrambled form, and items in the third passage were more difficult in the scrambled
form, where it was the last passage than they were in the original form. A hypothesis that was cited for
this context effect is that fatigue causes examinee performance to deteriorate at the end of the test.

Block position effects on the 1996 NAEP Science Assessment was investigated by Swinton (1997).
The focus of his inquiry was mean group performance across the two block positions rather than
characteristics of individual items. He reported significant differences in group performance for grades
4 and 8, although the differences are in the opposite directions. In grade 4, position 2 group performed
better than position 1 group, and the reverse is true for grade 8. There were no significant differences

across group performance for grade 12.
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Analysis and Results

More than 10,000 students took the grade 8 science assessment. Each student took three blocks
of items, the first two of which were paper-and-pencil blocks. About 2,000 students took each of eleven
CP or TB blocks. Each student who took each block was assigned to one of two groups based on whether
that block was in the first or second section of the form that the student took. For each block the number
of students in each group are about equal. The item difficulty, percentages of nonresponse (i.e., "omit"
or "not-reached”) were compared for the two groups for each item. The three TB blocks contain 12, 10,
and 13 items, with two, five, and three MC items, respectively. Each CP block has 16 items with seven
or eight MC items each.

The percent correct or p-value of each itern was used as the index of item difficulty. For MC
items, the p-value was computed as the percent of students who selected the correct response. Omits and
multiple responses were considered incorrect, and examinees who did not reach the items were not
included in the computation.

For each CR items scored for partial credit with n score levels 0, 1,..., n-1, where 0 indicates an
incorrect response and n-1 indicates a correct or complete response, the p-value is the average score
divided by n-1 and the quotient is multiplied by 100. Omits, "off-task,” and "not-rateable” were
considered incorrect. "Not-reached” were not included in the computation.

Results of comparisons of p-values, and percentages of omits and not-reached are presented in
Figures 3.4 through 3.9. Figures 3.4 through 3.6 compare the three item statistics by item format (MC
versus CR), and Figures 3.7 through 3.9 present the comparisons by type of block (TB versus CP).

Results of analyses of variance are in Table 3.2.
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Table 3.2 Comparisons of Average Overall P-Values, and Percentages of Not-Reached and Omits

Overall P-Value % Not-Reached % Omits
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All (n=163) 0.0001 0.0001

MC (n=71)

CR (n=92) 28.90 27.22 | 0.0001 | 3.333 3.93 4.96 5.96 0.0001

Level of Significance of 0.0001 | 0.0001
Item Type Effects

0.0001 | 0.0001 0.0001 | 0.0001

TB (n=31) 48.12 46.19 0.001 1.24 1.39
CP (n=132) 37.25 36.05 | 0.0001 2.32 2.78

Level of Significance of 0.0116 | 0.0175
Block Type Effects

3.69 4.86 | 0.0001
2.80 3.28

0.1878 | 0.1151 0.2850 | 0.0799

Notes: 1. The averages of % omit, % not-reached, and overall p-values are in bold.
2. In shaded cells are the levels of significance of interaction effects.
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Each point below the diagonal lines in Figures 3.4 and 3.7 represents an item that has a p-value
that was higher when the item appeared in the first section of the test form than when it appeared in the
second section. Items seem to be more difficult when they were in the second section of the test form
than when they were in the first section. Moreover, MC items appear to be easier than CR items, as seen
in Figure 3.4. Figure 3.7 does not seem to indicate difference in item difficulty by block type.

Figures 3.5 and 3.8 show that items generally have higher percentages of omits when they appear
in section 2 of the test than when they appear in section 1. Clearly, examinees tend to skip items in the
second section of the test more than they do in the first section. The percentages of omits, however, are
significantly higher for CR items than for MC items. There were no significant differences in percentages
of omits by block type.

The percentages of "not-reached” are generally higher when items appear in section 2 than when
they appear in section 1 as seen in Figures 3.6 and 3.9. Percentages of "not-reached” are definitely higher
for CR than for MC items as shown in Figure 3.6. This occurrence, however, might be due to test
construction more than the students’ test-taking behavior. Except for one TB and one CP blocks, the last
three items in each block are CR items.

Differences in item difficulty and nonresponse rates seem to indicate that the test items in each
block might not be presenting the same cognitive tasks to all examinees, that the difference in the position
of the block alters the cognitive demand of each item. If this hypothesis is true, and the items function
differently when their position in the test form are altered, then the assumption of item parameter

invariance in IRT, which is used in NAEP scaling, might have been violated.
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Summary
The following items summarize the crucial elements of the proposed psychometric design.

1. Write detailed specifications for the test forms. This is the most crucial aspect and the
centerpiece of the proposed design.

2. Determine whether forms administered in full to examinees (administered forms) can be
developed that completely reflect the specifications. If not, construct administered forms
in which the unique items across administered forms (a super form) meets the
specifications. If super forms are needed, create the administered forms that constitute a
super form to have as many common items as possible, where the common items are as
near to meeting the specifications as possible.

3. Define a score on a form or super form that will be used in the analyses to produce
results. Analyses will be based on estimated distributions of this form score for
populations of interest. In the case that super forms are needed, application of missing data
methodology or latent variable models can be used to estimate these distributions.

4. If it is desired to report results using latent variable distributions, estimate these from the
observed form score distributions computed in step 3.

A major distinction between the proposed design and the design currently used is that the proposed

design puts more of the burden for the validity of the results on the specification and construction of

examinations and less of the burden on complex analytic procedures.
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CHAPTER FOUR
SAMPLING METHODOLOGY

In this chapter, we present some simplifications to NAEP methodology, the rationale for these
simplifications, and a simulation study to compare present NAEP sampling methodology to the proposed
methodology. The results of the simulation show that the simplifications would reduce the number of
schools required to participate in NAEP testing. In addition, we make a suggestion on how to combine
the state and national samples in a way that allows for the use of schools in the state assessment for the

national assessment.

Sampling Methodology

The current NAEP sampling methodology utilizes a four-stage cluster sample. This method is a
fairly straightforward and commonly used design; ACT would propose that the basic design remain the
same, but with some simplifications. The current method defines the primary sampling unit (PSU) as a
geographic unit such as a Metropolitan Statistical Area (MSA) as defined by the U.S. Bureau of Census.
Some of the PSUs are selected with certainty. The remainder are selected within strata defined by various
socioeconomic and geographic variables. Selection of schools within PSUs is the next stage, followed by
selection of session type and finally selection of students within schools. At each stage, where

appropriate, selection is made with probability proportional to size, or a measure of size.

Proposed Changes to Sampling Methodology
We propose that the primary sampling unit be designated as the school, which would eliminate
the first step in the current process. Choosing schools as the primary sampling unit is the current
methodology used for the state NAEP assessment. In addition to simplifying the procedure, use of schools
as PSUs allows consideration of combining state and national assessment samples, as suggested below.

Although not addressed here, one should study the effectiveness of alternative definitions of strata.
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Geographic representation can be achieved by dividing the nation into an appropriate number of regions
and selecting schools within each region. Stratifying by geographic region is a common technique and
is similar to what is currently being used. Also, strata will be defined by the size of the school, to control
for bias in the resulting estimates, as discussed below.

In addition, we propose that the schools be selected with equal probability within strata, rather than
proportional to size, and within each school, all eligible students be tested. Sampling proportional to size
is an effective methodology when the cluster size and the cluster total are highly correlated [see Cochran
(1977), p. 295]. The corresponding quantities here are school size and school ability. Thesé variables are
not highly correlated, and so selection proportional to size does not yield large gains in efficiency.
Sampling with equal probability for each school and testing all eligible students makes the sample an
equal probability selection method, eliminating some of the need for complex weighting of cases. We
believe that the simplified design is a more efficient use of resources and the same, or perhaps better,
precision can be achievgd with reduced cost. |

When all students within a school are tested, the sample size is also a random variable, since we
do not know which schools are chosen in advance. Random sample size can introduce a bias into ratio
estimates of means and proportions. To diminish this bias, we need to maintain some control over the
sample size, so that its variability from sample to sample is not large. To maintain this control, we use
size of school as a stratification variable. We divide the schools into strata, based on their size, and
sample from each stratum proportionally. Dividing schools in this way guarantees that we have a certain
number of small, medium-sized and larger schools in the sample. The larger the number of strata, the
lower the variability of the sample size, and consequently, the lower the bias. A coefficient of van'étion
of sample size is calculated for each sample; so long as this coefficient is below .1, the bias will be small

[see Kish (1965), pg 208].
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Rationale for Proposed Changes

The proposed methodology has advantages and disadvantages compared to the current method.
By eliminating the sampling of MSA’s, the proposed method is simpler. The simplicity is further
enhanced by testing all grade-eligible students, rather than using a selection method that relies on field
staff to make appropriate adjustments regarding sample size and requires the school to make a roster
available well ahead of time. We have found in our sampling procedures, that schools would prefer to
test all students rather than be forced to sample a selected few from out of their regular classes and make
special accommodations for testing. Very large schools may prefer to test only a part of their class, for
logistical reasons, and this can be accommodated by allowing subsampling within a school in the large
school stratum.

Sampling schools directly rather than from MSA’s will also likely lead to a more efficient sample;
i.e., a smaller sample size would be needed to achieve a given precision target. The reason is that schools
drawn randomly from within an MSA are likely to be more similar than two schools drawn randomly from
a larger grouping (e.g., stratum) of schools. The greater the similarity of schools within an MSA results
in a greater redundancy of information.

On the other hand, sampling all students within a school, rather than selecting a specific number
to be sampled within a school, will lead to a larger sample size for a fixed precision level. The reason
is that two students randomly selected within a school are likely to be more similar than two students
randomly selected from different schools. From an administrative point of view, the proposed method is
more efficient in that fewer schools are required. It is easier to sample 50 schools with 100 students each
rather than 100 schools with 50 students each. The choice involves some compromise between the two
efficiencies. To get an idea of the size of the difference, we have done a small simulation study
comparing design effects of the two methods. The design effect (DEFF) for estimating a parameter using
a particular sample design is the ratio of the sampling variance of the parameter estimate to that of the

sampling variance of an estimate based on a simple random sample.
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Simulation to Compare Methodology

In our simulation study, ACT scores were used in place of NAEP data, due to the lack of access
to the latter at the time we conducted the analyses. We considered data from the ACT Assessment history
file for June 1996, taking precautions to prevent any duplicates. The number of students from a school
who tested on that date is considered as the "population” from that school. To obtain reasonable sizes for
the schools, the states from which the data were analyzed were limited to the 28 states where the ACT
is the dominant test.

For the study, 100 replications are used. In each replication, 200 schools were chosen and each
student within the schoo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>